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Abstract
Cruciferous vegetables contain high levels of glucosinolates (GSL) and isothiocyanates (ITC). ITC are known to induce glutathione
S-transferases (GST) and thus exert their anticarcinogenic effects. This study explored the combined effects of cruciferous vegetable,
GSL and ITC intake and GST polymorphisms on breast cancer risk. A total of 737 breast cancer cases and 756 controls were recruited into
this case–control study. OR and 95 % CI were assessed by multivariable logistic regression. Higher cruciferous vegetable, GSL and
ITC intakes were inversely associated with breast cancer risk, with adjusted OR of 0·48 (95 % CI 0·35, 0·65), 0·54 (95 % CI 0·40, 0·74)
and 0·62 (95 % CI 0·45, 0·84), respectively. Compared with women carrying the GSTP1 rs1695 wild AA genotype and high cruciferous veg-
etable, GSL or ITC intake, carriers of the AA genotype with low cruciferous vegetable, GSL and ITC intake had greater risk of breast cancer,
with adjusted OR of 1·43 (95 % CI 1·01, 1·87), 1·34 (95 % CI 1·02, 1·75) and 1·37 (95 % CI 1·05, 1·80), respectively. Persons with theGSTM1-null
genotype and lower intake of cruciferous vegetables, GSL and ITC had higher risk of breast cancer than those with the GSTM1-present geno-
type and higher intake, with OR of 1·42 (95 % CI 1·04, 1·95), 1·43 (95 % CI 1·05, 1·96) and 1·45 (95 % CI 1·06, 1·98), respectively. Among
women possessing the GSTT1-present genotype, low intake of cruciferous vegetables, GSL or ITC was associated with higher risk of breast
cancer. But these interactions were non-significant. This study indicated that there were no significant interactions between cruciferous veg-
etable, GSL or ITC intake and GST polymorphisms on breast cancer risk.
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Breast cancer is the most common cancer in women in the vast
majority of countries. In total, there are 2·1 million newly diag-
nosed female breast cancer cases in 2018 and ranks as the lead-
ing cause of cancer-related death among women in over 100
countries(1). Breast cancer is also the most frequently
diagnosed cancer in women in China. Although the incidence
and mortality rates are not excessively high in China compared
with those inWestern countries, the burden is enormous relative
to the large Chinese population(2).

Cruciferous vegetables have currently attracted great inter-
est for their protective role of combating breast cancer(3). The
anticarcinogenic effect may be due to the high containing
levels of glucosinolates (GSL)(4), which can be converted into
isothiocyanates (ITC) and indole-3-carbinol by the catalytic
action of plant myrosinase and gastrointestinal microflora.
These major hydrolysis products of GSL exert their anticarcino-
genic effects through several mechanisms, including the inhib-
ition of carcinogen-activating enzymes, the facilitating effect of

Abbreviations: GSL, glucosinolates; GST, glutathione S-transferase; ITC, isothiocyanates.
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apoptosis and the suppression of cell cycle progression(5).
Several epidemiological studies have indicated that high
consumption of cruciferous vegetables may reduce the risk
of breast cancer(6–10). A previous study by our group also
suggested that intake of cruciferous vegetables, GSL and ITC
was inversely associated with breast cancer risk among
Southern Chinese women(11).

The beneficial effect of cruciferous vegetables against breast
cancer may attribute to the inherent metabolic activity. The
GSL breakdown products, particularly ITC, can induce gluta-
thione S-transferases (GST), which are members of the phase
II enzyme systems. GST can effectively detoxify electrophilic
cancerogen activated by phase I enzymes, thus destroy their
ability to damage DNA and against the development of
cancer(12). Besides, ITC is not only inducers but also substrates
for GST. GST can catalyse the conjugation of glutathione with
ITC to accelerate membrane transport and excretion of ITC(13),
thus, first increasing the availability of ITC but ultimately
reducing the systemic concentrations of ITC, which adds more
complexity to the anticarcinogenic mechanisms.

GST are a family that takes a crucial part in the detoxification
of a large range of electrophilic cancerogen via conjugating
with glutathione,(14) and evidences showed that GST can take
part in the pathogenesis of breast cancer(15). GSTP1 is a para-
mount GST enzyme found in the breast. Amutant ofGSTP1 gene
from an A to a G nucleotide transition in exon 5 leads to a
replacement 105 Ile to Val and causes the decreased enzyme
activity of GSTP1 protein(16). GSTT1 and GSTM1 polymorphisms
are caused by a deletion of the genes, which leads to a complete
lack of the encoding protein(17). Previous studies suggested that
the mutant of GSTP1 and the deficiency in GSTT1 and GSTM1
may be related with the susceptibility to breast cancer, but the
results remained inconsistent due to the sparse data of some
studies or without considering adjustment for various potential
confounders in multivariable models(18–20).

So far, two studies conducted in the USA(21,22) have examined
the role of GST gene polymorphisms in relation to cruciferous
vegetable intake and the risk of breast cancer. To date, only
one case–control study has been conducted in Shanghai,
China to examine the association between cruciferous vegetable
intake, GSTP1 polymorphism and breast cancer risk(23). This

study also investigated the association between breast
cancer and urinary ITC levels, biomarkers for recent cruciferous
vegetable intake(24) and the interactions with GSTM1, GSTT1
and GSTP1 genotypes(10). As a vast country, there are great
differences in lifestyle and dietary habits between different
geographic regions in China(25). Therefore, more studies are
needed to clarify the associations between cruciferous vegeta-
ble, GSL and ITC intake, GST polymorphisms and breast cancer
risk. Here, we performed this case–control study to explore
whether the inverse association between cruciferous vegetable,
GSL and ITC intake and breast cancer risk observed in Southern
Chinese women(11) was modified by GSTP1, GSTM1 and GSTT1
polymorphisms.

Materials and methods

Study population

This ongoing case–control study was performed to recruit breast
cancer cases and controls from September 2011. The details of
the study methods and design have been described previ-
ously(26). Briefly, eligible women aged 25–70 years, native of
Guangdong Province or having lived in Guangdong for at least
5 years with histologically confirmed, incident, primary breast
cancer diagnosed no more than 3 months before the interview,
were recruited from three major hospitals in Guangzhou.
Potential participants were excluded if they could not under-
stand or speakMandarin or Cantonese or had a history of cancer.
In total, we recruited 792 eligible cases, of which 737 were
both successfully interviewed and provided blood specimen,
resulting in a response rate of 93 %.

Simultaneously, controls were recruited from the same
hospitals as cases, age-frequency matched (5 year interval)
with cases. The eligibility criteria for control subjects were similar
with cases except that they had no past history of cancer.
They were selected from the Departments of Vascular
Surgery, Ear-Nose-Throat, Plastic and Reconstructive Surgery,
and Orthopedics and Microsurgery. Totally, 756 controls out
of 804 eligible controls were recruited, yielding a response rate
of 94 %. Details of the recruitment of breast cancer cases and
controls are shown in Fig. 1.

Fig. 1. Flow chart of the recruitment of breast cancer cases and controls.
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The present study was performed according to the Declara-
tion of Helsinki. The procedures and protocols of this studywere
approved by The Ethical Committee of School of Public Health,
Sun Yat-sen University. Written informed consent forms were
obtained from all participants.

Data collection

Trained interviewers performed face-to-face interviews by
using a structured questionnaire, which comprised socio-
demographic factors, anthropometric factors, lifestyle factors
(e.g. alcohol drinking, smoking and physical activity), reproduc-
tive information and family history of cancer among first-degree
relatives. In the present study, subjects were classified as
non-smokers and ever smokers (including regular smokers
and former smokers). Someone who had smoked at least one
cigarette per d formore than six consecutivemonthswas defined
as a regular smoker. Former smokers were those who reported
being regular smokers in the past, but not having smoked in the
past 6 months. Passive smokers were non-smokers exposed to
the exhalations of smokers for at least 15 min per d in the pre-
vious 5 years. Regular drinkers were defined as alcohol drinking
at least once per week in the past 5 years. BMI was computed
by dividing weight (kg) by height squared (m2). Women were
classified as postmenopausal if they had cessation of menstrual
periods for more than 12months. Data on current occupational
activity were evaluated based on self-reported employment
status and the physical activity level at work (non-working,
sedentary, standing, manual and heavy manual). The mean
metabolic equivalent task value was calculated to self-reported
activity in the Compendiumof Physical Activities(27,28). Metabolic
equivalent task hours per week (numbers of days per week ×
numbers of hours per d × metabolic equivalent task for a certain
activity) were calculated for the typical duration (h/d) and
frequency (d/week) of household activities (cooking, mopping
and so on) and recreational activities (walking, jogging, running,
climbing, playing basketball and so on) during the previous year.
Relevant personal medical history, medical diagnosis, histologi-
cal findings and hormone receptor status were obtained from the
hospital medical records. According to the hormone receptor
status, the breast cancer was classified into three subtypes:
(1) luminal subtype (oestrogen receptor and/or progesterone
receptor positive); (2) human epidermal growth factor receptor
(HER2)-positive subtype (oestrogen receptor negative and
progesterone receptor negative and HER2 positive) and (3)
basal-like subtype (oestrogen receptor negative and progester-
one receptor negative and HER2 negative).

Dietary assessment

Data on cruciferous vegetable consumption were collected
from the study subjects using a validated eighty-one-item
FFQ which evaluated the dietary habits of all the individuals
during the past year before the interview. Ten kinds of crucif-
erous vegetables frequently consumed in Guangdong Province
were included in the FFQ. The validity and reliability of FFQ
have been reported previously(29). Each participant was asked
to report the average frequency of each type of food they con-
sumed over the past year. Participants were provided with food

photographs about different portion sizes of foods to better
estimate the consumed amounts of food. Nutrient intake values
were calculated using the 2002 Chinese Food Composition
Table(30). Dietary GSL was computed according to a food
composition database which summarised eighteen published
studies to form a database on GSL contents in cruciferous
vegetables(31). The intake of ITC was calculated by using pre-
viously published ITC concentrations in cooked cruciferous
vegetables(32).

Genotype of polymorphisms

Fasting blood samples were collected on the second day after
admission to the hospital for cases and controls and were stored
at –80°C until experiments. TIANamp Genomic DNA Kit
(Tiangen Biotech) was used to extract genomic DNA from the
peripheral blood according to the manufacturer’s instructions.

SNP for GSTP1 rs1695 was selected because it causes
functional mutation located in exons and the minor allele
frequency >5 % in Chinese population. Genotyping of GSTP1
polymorphism in rs1695 was conducted using a custom-
by-design 48-Plex SNP scan Kit (Genesky Biotechnologies
Inc.) as previously described(33).

Multiplex PCR protocol was used to examine the absence
or presence of the GSTM1 and GSTT1 genes. The absence of
the specific fragment indicated the corresponding null genotype.
The primers used for amplification of 215 bp for GSTM1
allele and 480 bp in case of GSTT1 allele were FwM1
5 0-GAACTCCCTGAAAAGCTAAAGC-3 0, RevM1 5 0-GTTGGG-
CTCAAATATAGGGTGG-3 0 and FwT1 5 0-TTCCTTACTGGTC-
CTCACATCTC-3 0 and RevT1 5 0-TCACCGGATCATGGCCAGCA-3 0.
The primer pair for a co-amplification of 268 bp of β-globin
gene was used as a positive control for target DNA. A gradient
thermocycler (Bio-Rad®) was used for PCR reactions: 95°C for
5 min and then thirty-five cycles of 95°C for 45 s, 58°C for 45 s,
72°C for 45 s and a final polymerisation step at 72°C for 7 min.
A total amount of 100 ng of genomic DNA was obtained, and
it was amplified in a total volume of 50 μl reaction mixture
containing 25 μl 2× PCR Premix Taq (TaKaRa®), 1 μl of each
primer (Sangon Biotech®) and water free of nucleases to
complete the 50 μl reaction volume. The electrophoresis in
ethidium bromide 1·5 % agarose gel (TaKaRa®) was used to
analyse the amplification products; the null genotypes were
considered in the absence of respective amplification products
(215 bp for GSTM1 and 480 bp for GSTT1).

For quality control, the laboratory staff was blind to the
identity of the study subjects. Totally, 737 cases and 756 controls
were included in the study. The genotyping concordance rates
for GSTP1, GSTM1 and GSTT1 were 100, 99·3 and 99·3 %,
respectively.

Statistical analysis

Weassumed that peoplewith higher consumption of cruciferous
vegetables represented 25 % of the general population, the
estimated OR between cruciferous vegetable intake and breast
cancer risk was 0·49(34); the minor allele frequency for GSTP1
rs1695 is 40 %, the rate for homozygous deletion of GSTM1
and GSTT1 is 45 and 64 %(35) and the estimated relative risks
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were 1·40(6), 1·34(36) and 1·47(20). The type I error rate was <0·05
(α= 0·05), the power of test was 90 % ( β= 0·10) and the
response rate was 80 %. Based on these assumptions, we
required a sample size of 670 cases.

Student’s t tests were used for continuous variables (such as
BMI, age, age at menarche, household and recreational activ-
ities), and χ2 tests were used for categorical variables (such as
educational level, income and smoking habit) to test differences
between cases and controls. Dietary cruciferous vegetable, GSL
and ITC intake was adjusted for total energy intake by using the
residual method(37). Subjects were categorised into quartiles
based on the distribution of cruciferous vegetables or nutrients
among the controls. The lowest quartile served as the reference
group in the analyses. OR and 95 % CI were calculated to evalu-
ate the association between cruciferous vegetables, nutrients or
GST genotype and breast cancer risk. To control for potential
confounders, the following variables were included in the
unconditional logistic regression model: age, BMI, educational
level, occupation, regular drinking, passive smoking, occupa-
tional activity, household and recreational activities, parity and
first-degree relative with cancer. Confounding factors were
selected based on comparing characteristics between the cases
and controls. Tests for trend were assessed by entering the
categorical variables as continuous parameters in the models.

Hardy–Weinberg equilibrium was used to evaluate whether
GSTP1 genotype fell within a standard distribution. Deviation
from the Hardy–Weinberg equilibrium in genotype frequency
was assessed with χ2 test. Interactions between cruciferous
vegetable, GSL and ITC intake and GST polymorphisms were
assessed by adding the multiplicative interaction terms (dietary
intake × genotype) to the multivariable models as indicator
variables. In the present study, significance was defined as
P< 0·05 and statistical tests were two-tailed. All statistical analy-
ses mentioned before were carried out using IBM SPSS Statistics,
version 21.0.

Results

Table 1 shows the characteristics of the study population.
Among 737 breast cancer cases, 643 patients were diagnosed
with invasive breast cancer and ninety-four were diagnosedwith
carcinoma in situ. When categorised according to hormone
receptor status, 501 were luminal subtype, ninety-six were
Her-2þ subtype and twenty-five were basal-like subtype.
Compared with controls, a higher proportion of breast cancer
patients tended to have higher BMI and more live births, less
engaged in white-collar or white-collar occupation, less edu-
cated and more likely to have a first-degree relative with cancer.
Breast cancer patients were more likely to drink regularly and be
exposed to second-hand smoke, engaged in more occupational
activities and fewer household and recreational activities. All of
the above-referenced variables were considered as potential
confounders and were adjusted in the subsequent multivariable
analyses. Agewas also adjusted in themodel sincematchingwas
on 5 year intervals. No significant differences were observed
between cases and controls on age, age at menarche, age at first

live birth, marital status, income, menopausal status, smoking
habit, breast-feeding history and history of using oral
contraceptive.

Among control subjects,mean intakewas 156·31 (SD 78·64) g/d
for energy-adjusted total cruciferous vegetables, 115·75
(SD 65·33) mg/d for energy-adjusted GSL and 34·88
(SD 21·64) μmol/d for energy-adjusted ITC. Compared with con-
trols, cases tended to have lower dietary intake of total cruciferous
vegetables, GSL and ITC (Table 1).

There was an inverse association between total cruciferous
vegetable intake and breast cancer risk in the present study
(Table 2). TheOR for the highest quartile of intake in comparison
with the lowest quartile was 0·48 (95 % CI 0·35, 0·65) after
adjusting for potential confounding factors (Ptrend< 0·001).
GSL intake was also significantly inversely associated with the
risk of breast cancer (highest v. lowest quartile OR 0·54; 95 %
CI 0·40, 0·74, Ptrend< 0·001). Similarly, individuals with high
consumption of ITC had significantly lower risk of breast cancer
(highest v. lowest quartile adjusted OR 0·62; 95 % CI 0·45, 0·84,
Ptrend= 0·001).

The GSTP1 distribution was in accordance with Hardy–
Weinberg equilibrium among controls. The GSTP1 G allele
was prevalent among 18·1 % of cases and 19·8 % of controls.
The GSTM1 null genotypes were observed in 65·3 % of cases
and 60·7 % of controls, and the GSTT1 null genotypes were
observed in 16·1 % of cases and 16·3 % of controls. No significant
associations were found between GSTP1, GSTM1 and GSTT1
genotypes and breast cancer risk (for GSTP1, adjusted OR 0·75,
95 % CI 0·43, 1·30 for the GG genotype compared with the
referent AA genotype, Pfor trend = 0·095; for GSTM1, adjusted
OR 1·06, 95 % CI 0·85, 1·33 for the null genotype compared with
the present genotype; forGSTT1, adjusted OR 0·93, 95 % CI 0·70,
1·24 for the null genotype comparedwith the present genotype).
Stratified analysis by menopausal status showed that there were
no significant associations between GSTP1, GSTM1 and GSTT1
genotypes and breast cancer risk neither in premenopausal
nor postmenopausal women (Table 3).

OR and 95 % CI for breast cancer risk according to GST
polymorphisms and cruciferous vegetable intake are shown in
Table 4. Overall, we found a combined effect between
cruciferous vegetable intake and GST polymorphisms in
relation to breast cancer risk. However, there were no
statistically significant interactions. Among individuals with
the GSTP1 rs1695 wild AA genotype, the OR for low v. high
cruciferous vegetable intake was 1·43 (95 % CI 1·01, 1·87)
(Pfor interaction 0·251). Compared with women carrying the
GSTM1 present genotype with higher cruciferous vegetable
intake, women with the GSTM1 null genotype and lower intake
had a higher risk of breast cancer, with an OR of 1·42 (95 % CI
1·04, 1·95) (Pfor interaction 0·398). Persons with GSTT1 present
genotype and low cruciferous vegetable intake had a 42 %
greater risk of breast cancer than did persons with present
genotype and high intake (Pfor interaction 0·677). There were no
statistically significant interactions between GSL and ITC
intake and GST polymorphisms in relation to breast cancer risk
(Tables 5 and 6).
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Table 1. Socio-demographic and clinical characteristics of breast cancer in the study population
(Mean values and standard deviations)

Cases (n 737) Controls (n 756)

PMean SD Mean SD

Age (years) 47·60 9·36 47·46 9·33 0·773
BMI (kg/m2) 23·01 3·60 22·65 3·14 0·047
Household and recreational activities (metabolic equivalent task-h/week) 37·51 23·57 40·41 24·91 0·024
Age at menarche (years) 14·37 1·96 14·49 1·73 0·202
Age at first live birth (years)* 25·40 3·69 25·51 3·40 0·576
Total energy (kcal/d)† 1413 374 1420 369 0·690
Total cruciferous vegetables (g/d)‡ 141·24 77·30 156·31 78·64 <0·001
Glucosinolates (mg/d)‡ 103·96 61·84 115·75 65·33 <0·001
Isothiocyanates (μmol/d)‡ 32·18 20·28 34·88 21·64 0·013

n % n %
Marital status

Married 692 93·89 700 92·59 0·317
Unmarried/divorced/widowed 45 6·11 56 7·41

Educational level
Primary school or below 191 25·92 183 24·21 <0·001
Junior high school 231 31·34 181 23·94
Senior high school/secondary technical school 168 22·80 176 23·28
College or above 147 19·95 216 28·57

Occupation
Administrator/other white-collar worker 259 35·14 308 40·74 0·007
Blue-collar worker 211 28·63 231 30·56
Farmer/other 267 36·23 217 28·70

Income (yuan/month)
≤2000 65 8·82 44 5·82 0·053
2001–5000 198 26·87 185 24·47
5001–8000 248 33·65 289 38·23
>8001 226 30·66 238 31·48

Smoking habit
Ever smoker 10 1·36 8 1·06 0·597
Non-smoker 727 98·64 748 98·94

Passive smoker 410 55·63 356 47·09 0·001
Regular drinker 65 8·82 36 4·76 0·002
Occupational activity

Non-working 193 26·19 157 20·77 0·012
Sedentary 283 38·40 302 39·95
Standing 144 19·54 183 24·21
Manual 67 9·09 80 10·58
Heavy manual 50 6·78 34 4·50

Menopausal status
Premenopausal 480 65·13 483 63·89 0·617
Postmenopausal 257 34·87 273 36·11

Parity
0 33 4·48 41 5·42 0·024
1–2 531 72·05 580 76·72
≥3 173 23·47 135 17·86

Breast-feeding* 617 85·10 640 85·91 0·619
First-degree relative with cancer 91 12·35 67 8·86 0·029
Ever used an oral contraceptive 48 6·51 45 5·95 0·557
Breast cancer subtype

Luminal 501 67·98
Human epidermal growth factor receptor 2 positive 96 13·03
Basal-like 25 3·39
Unknown 115 15·60

Breast cancer pathological type
Carcinoma in situ 94 12·75
Invasive tumour 643 87·25

* Among women who have had a live birth.
† To convert kcal to kJ, multiply by 4·184.
‡ Consumption was adjusted for total energy intake by residual method.

Table 2. Risks for breast cancer according to quartiles of cruciferous vegetable, glucosinolate (GSL) and isothiocyanate (ITC) intakes
(Odds ratios and 95% confidence intervals)

No. of cases/controls Crude OR 95% CI Adjusted OR* 95% CI Ptrend

Cruciferous vegetables (g/d)
<103·35 260/189 1·00 1·00 <0·001
103·35–145·72 172/189 0·66 0·50, 0·87 0·63 0·47, 0·85
145·72–195·35 165/189 0·64 0·48, 0·84 0·69 0·49, 0·91
≥195·35 136/189 0·52 0·38, 0·70 0·48 0·35, 0·65

GSL (mg/d)
<70·54 257/189 1 1 <0·001
70·54–105·04 166/189 0·65 0·49, 0·86 0·69 0·51, 0·93
105·04–146·90 164/189 0·64 0·48, 0·85 0·66 0·49, 0·89
≥146·90 146/189 0·57 0·43, 0·76 0·54 0·40, 0·74

ITC (μmol/d)
<19·27 206/189 1 1 0·001
19·27–30·71 209/189 1·01 0·77, 1·34 0·92 0·68, 1·24
30·71–48·81 167/189 0·81 0·61, 1·08 0·73 0·53, 0·99
≥45·81 151/189 0·75 0·55, 0·98 0·62 0·45, 0·84

* OR adjusted for age, educational level, occupation, BMI, passive smoking, regular drinking, household and recreational activities, occupational activity, parity and first-degree rel-
ative with cancer.
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Table 3. Associations between glutathione S-transferase polymorphisms and breast cancer risk according to menopausal status
(Odds ratios and 95% confidence intervals)

All women Premenopause women Postmenopause women

Cases/
controls

Crude
OR 95% CI

Adjusted
OR* 95% CI

Cases/
controls

Crude
OR 95% CI

Adjusted
OR* 95% CI

Cases/
controls

Crude
OR 95% CI

Adjusted
OR* 95% CI

GSTP1 rs1695
AA 496/489 1 1 324/306 1 1 172/183 1 1
GA 215/234 0·91 0·73, 1·13 0·84 0·67, 1·06 136/151 0·85 0·64, 1·13 0·74 0·55, 1·00 79/83 1·01 0·70, 1·47 1·07 0·72, 1·59
GG 26/33 0·78 0·46, 1·32 0·75 0·43, 1·30 20/26 0·73 0·40, 1·33 0·71 0·37, 1·37 6/7 0·91 0·30, 2·77 0·81 0·26, 2·55

GSTM1
Present 278/297 1 1 186/186 1 1 92/111 1 1
Null 459/459 1·07 0·87, 1·32 1·06 0·85, 1·33 294/297 0·99 0·76, 1·28 0·95 0·72, 1·25 165/162 1·23 0·87, 1·75 1·31 0·91, 1·92

GSTT1
Present 618/633 1 1 402/407 1 1 216/226 1 1
Null 119/123 0·99 0·75, 1·31 0·93 0·70, 1·24 78/76 1·04 0·74, 1·47 0·97 0·67, 1·41 41/47 0·91 0·58, 1·44 0·87 0·53, 1·41

* OR adjusted for age, educational level, occupation, BMI, passive smoking, regular drinking, household and recreational activities, occupational activity, parity and first-degree relative with cancer.

Table 4. Breast cancer risk according to glutathione S-transferase gene polymorphisms and cruciferous vegetable intake
(Odds ratios and 95% confidence intervals)

Cruciferous vegetable intake above median (≥145·72 g/d) Cruciferous vegetable intake below median (<145·72 g/d)

PinteractionCases/controls Crude OR 95% CI Adjusted OR* 95% CI Cases/controls Crude OR 95% CI Adjusted OR* 95% CI

GSTP1 rs1695
AA 202/243 1 1 294/246 1·44 1·12, 1·85 1·43 1·01, 1·87 0·251
GA 97/115 1·02 0·73, 1·41 0·94 0·66, 1·33 118/119 1·19 0·87, 1·64 1·10 0·78, 1·54
GG 9/20 0·54 0·24, 1·22 0·49 0·21, 1·14 17/13 1·57 0·75, 3·32 1·61 0·72, 3·59

GSTM1
Present 128/150 1 1 150/147 1·20 0·86, 1·66 1·21 0·85, 1·71 0·398
Null 180/228 0·93 0·68, 1·26 0·93 0·68, 1·28 279/231 1·42 1·06, 1·90 1·42 1·04, 1·95

GSTT1
Present 263/324 1 1 355/309 1·42 1·13, 1·77 1·42 1·12, 1·81 0·677
Null 45/54 1·03 0·67, 1·58 0·97 0·62, 1·52 74/69 1·32 0·92, 1·91 1·24 0·84, 1·83

* OR adjusted for age, educational level, occupation, BMI, passive smoking, regular drinking, household and recreational activities, occupational activity, parity and first-degree relative with cancer.
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Table 5. Breast cancer risk according to glutathione S-transferase gene polymorphisms and glucosinolate intake
(Odds ratios and 95% confidence intervals)

Glucosinolate intake above median (≥105·04mg/d) Glucosinolate intake below median (<105·04mg/d)

PinteractionCases/controls Crude OR 95% CI Adjusted OR* 95% CI Cases/controls Crude OR 95% CI Adjusted OR* 95% CI

GSTP1 rs16950
AA 208/240 1 1 288/249 1·34 1·04, 1·72 1·34 1·02, 1·75 0·415
GA 99/119 0·96 0·69, 1·33 0·86 0·61, 1·21 116/115 1·16 0·85, 1·60 1·12 0·80, 1·58
GG 10/19 0·61 0·28, 1·34 0·51 0·23, 1·16 16/14 1·32 0·63, 2·77 1·50 0·66, 3·37

GSTM1
Present 127/149 1 1 151/148 1·20 0·86, 1·66 1·26 0·89, 1·78 0·667
Null 190/229 0·93 0·72, 1·72 0·98 0·72, 1·35 269/230 1·37 1·02, 1·84 1·43 1·05, 1·96

GSTT1
Present 268/326 1 1 350/307 1·39 1·11, 1·73 1·45 1·14, 1·85 0·263
Null 49/52 1·15 0·75, 1·75 1·09 0·70, 1·70 71/70 1·20 0·83, 1·73 1·16 0·78, 1·71

* OR adjusted for age, educational level, occupation, BMI, passive smoking, regular drinking, household and recreational activities, occupational activity, parity and first-degree relative with cancer.

Table 6. Breast cancer risk according to glutathione S-transferase gene polymorphisms and isothiocyanate intake
(Odds ratios and 95% confidence intervals)

Isothiocyanate intake above median (≥30·71 μmol/d) Isothiocyanate intake below median (<30·71 μmol/d)

PinteractionCases/controls Crude OR 95% CI Adjusted OR* 95% CI Cases/controls Crude OR 95% CI Adjusted OR* 95% CI

GSTP1 rs1695
AA 215/240 1 1 281/249 1·26 0·98, 1·62 1·37 1·05, 1·80 0·513
GA 99/118 0·94 0·68, 1·30 0·85 0·61, 1·20 116/116 1·12 0·81, 1·53 1·15 0·82, 1·62
GG 11/21 0·59 0·28, 1·24 0·56 0·25, 1·22 15/12 1·40 0·64, 3·05 1·51 0·65, 3·52

GSTM1
Present 133/149 1 1 145/148 1·10 0·79, 1·52 1·20 0·85, 1·70 0·336
Null 192/230 0·94 0·69, 1·27 0·93 0·68, 1·27 267/229 1·31 0·97, 1·75 1·45 1·06, 1·98

GSTT1
Present 275/321 1 1 343/312 1·28 1·03, 1·60 1·45 1·15, 1·85 0·363
Null 50/58 1·01 0·67, 1·52 1·02 0·66, 1·56 65/69 1·24 0·85, 1·80 1·22 0·82, 1·82

* OR adjusted for age, educational level, occupation, BMI, passive smoking, regular drinking, household and recreational activities, occupational activity, parity and first-degree relative with cancer.
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Discussion

The aim of this case–control study was to examine the combined
associations between cruciferous vegetable, GSL and ITC intake
and GST polymorphisms and breast cancer risk. The results
confirmed that higher intake of cruciferous vegetables, GSL
and ITC was inversely associated with the risk of breast cancer.
There were no overall associations between GSTP1, GSTM1 or
GSTT1 polymorphisms and breast cancer risk. Combined effects
were observed between cruciferous vegetable intake and GST
polymorphisms in relation to breast cancer risk, but there were
no statistically significant interactions.

The frequency of GSTP1 G allele was 18·1 % among controls
in the present study. It was in accordance with the reported fre-
quency of GSTP1 G allele from three studies in China(23,38,39).
Previous studies suggested that the functional mutation of
the GSTP1 rs1695 polymorphisms may reduce the activity of
GST-π enzyme deactivating and detoxifying carcinogens and
thusmay increase cancer vulnerability(40). Nevertheless, our data
showed no significant association between the GSTP1 homozy-
gous mutant GG genotype and breast cancer risk, which was
consistent with a 2016 meta-analysis of thirty-six case–control
studies including 20 615 cases and 20 481 controls(19), and
studies from China(39) and Cyprus(41), but contrary to studies
from Shanghai(23) and Zhejiang(38) of China which found that
the GSTP1 GG genotype was significantly associated with
greater risk of breast cancer (OR 2·23 and 1·50, respectively,
GG v. AA). The GSTM1 and GSTT1 null genotypes were preva-
lent among 60·7 and 16·3 % of controls in the present study,
which was consistent with the rate of GSTM1 null genotype
(59·1 %), but much lower than that of GSTT1 null genotype
(51·9 %) in Shanghai Women’s Health Study(42). Given the
activity of GST enzyme towards carcinogen detoxification,
the deficiency of GST-μ and GST-θ enzyme activity caused by
deletions in GSTM1 and GSTT1 genes may compromise an indi-
vidual’s ability to deactivate carcinogens, leading to be involved
in carcinogenesis(17). A 2018 meta-analysis of fifty-three studies
for GSTM1 polymorphism and forty-four studies for GSTT1
polymorphism found that GSTM1 and GSTT1 null genotypes
were risk factors for breast cancer (OR were 1·22 and 1·07,
respectively)(18). However, our data demonstrated that GSTM1
and GSTT1 polymorphisms were not significantly associated
with the risk of breast cancer. Consistent with our results, reports
from Philippines(43) and Mexico(44) also suggested that the
deletion of GSTM1 and GSTT1 may not be risk factors for breast
cancer susceptibility. Possible explanation for the different
results of different studies might be that the genetic variability
and lifestyle habits varied from different races(45). Besides, the
genetic predisposition to breast cancer associated with GST
genotypes may be modified by some environmental factors(40),
such as the consumption of cruciferous vegetables.

GST play a paramount role in the detoxification of a large
range of electrophilic cancerogens. Not only can ITC induce
GST enzyme activity Kelch-like ECH-associated protein 1 and
nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) signal-
ling pathway(46) but also GST conjugate ITC. Therefore, low
GST enzyme activity may result in a greater extent of ITC exer-
tion and reduce the protective effects of ITC(47). To date, only

three epidemiological studies have reported the associations
between cruciferous vegetable intake,GST genotypes and breast
cancer risk. One case–control study in the Long Island, USA
found no interactions between cruciferous vegetable intake
and GSTP1, GSTM1 or GSTT1 polymorphisms on breast cancer
risk(22). Another case–control study including 208 breast cancer
cases and 212 controls conducted in Caucasian–American
women also suggested that the beneficial effect of broccoli
was not modified by GSTM1 and GSTT1 genotypes(21). One
case–control study conducted in Shanghai, China found that
womenwith theGSTP1GGgenotype and lower cruciferous veg-
etable intake had a greater risk of breast cancer than did individ-
uals with GA or AA genotypes and higher cruciferous vegetable
intake (OR 1·74, 95 % CI 1·13, 2·67), but the interaction effect
was non-significant (Pinteraction = 0·331)(23). This study also
did not find statistically significant interaction between
urinary ITC and GST genotypes and breast cancer risk
(Pinteraction> 0·05)(10). Consistent with these results, although
the present study found combined effects between cruciferous
vegetable, GSL and ITC intake and GST polymorphisms in
relation to breast cancer risk, there were no statistically signifi-
cant interactions. For GSTP1 rs1695, highest risk was observed
in those consuming lower cruciferous vegetable, GSL and ITC
intakes with the wild AA genotype as compared with high con-
sumers with the wild AA genotype. The increased risk observed
for carriers with GSTM1 null genotype and with lower intakes of
cruciferous vegetable, GSL and ITC as compared with carriers
with GSTM1 present genotype and higher intakes. Women
carrying the GSTT1 present genotype with low cruciferous
vegetable, GSL and ITC intake had a greater risk of breast cancer
than did women with present genotype and high intake. Studies
investigating other cancers did not show significant interaction
effect of cruciferous vegetable or ITC intake and GSTP1,
GSTM1 or GSTT1 polymorphisms on gastric cancer(48), oral
cancer(49), kidney cancer(50), colorectal cancer(51) and colorectal
adenoma(52). But interactions were significant between urinary
ITC concentrations and GSTM1, or GSTT1 polymorphisms and
lung cancer(53) and colorectal cancer(54). Due to the small sample
in some subgroups of the present study, further studies with
larger sample size are needed to clarify this issue.

The major strengths of this study are the satisfactory
reproducibility, reasonable validity of the FFQ and extensive
collections of multiple known or suspected confounders.
While there are also limitations warranted consideration. First,
the results could be inevitably affected by recall bias and selec-
tion bias because of the hospital-based case–control studies
design. To reduce selection bias, control subjects were excluded
if they had any history of diseases potentially related to either
dietary habits or breast cancer. The time-concordant period of
hospitalisation, identical catchment areas of all study subjects
and the relatively high response rate helped to minimise
selection bias. In addition, the allele frequencies in the present
study were corresponded to previous studies in Chinese
population(23,38,39), which suggested that selection bias may
not be a serious problem. Besides, to reduce recall bias, cases
were interviewed as soon as they were diagnosed with breast
cancer (77·6 % of the cases were interviewed within 3 d after
hospitalisation) and as far as possible before their surgery.

Cruciferous vegetables and breast cancer 555

https://doi.org/10.1017/S0007114520001348  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114520001348


Moreover, participants were provided with food photographs to
better estimate the consumed amounts of food. Second, there
remained residual confounding, although various dietary and
non-dietary confounders were adjusted in the multivariable
models. Third, due to relatively small samples in stratification
analysis, we did not have enough power to detect some associ-
ations with smaller effects. Further studies with larger sample
size are needed to verify the present findings. Fourth, the
food composition database used to calculate the consumption
of ITC from vegetables was based on boiled vegetables.
However, lack of collecting information on methods of cooking
vegetables might lead to some information bias. Besides,
previous studies have shown that urinary ITC concentrations
could be useful biomarker for cruciferous vegetable intake
over the prior 24–48 h period(24,55). However, this study did
not measure urinary ITC due to the lack of collecting urine
specimens. Further studies are expected to examine the
interaction of urinary ITC and GST polymorphisms on breast
cancer risk.

In conclusion, this study indicated that there were no signifi-
cant interactions between cruciferous vegetable, GSL or ITC
intake and GST polymorphisms in relation to breast cancer risk.
The observed combined effects between cruciferous vegetable,
GSL or ITC intake and GST polymorphisms on breast cancer risk
need to be confirmed in other studies.
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