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WEAKLY HOMOGENEOUS ORDER TYPES 

BY 

M. E. ADAMS 

An order type a is said to be weakly homogeneous (^homogeneous) if for any 
x1<x2 andy±<y2 there exists an order preserving bijection/on a such thatf(xi)=yi 

for i = 1, 2. The reverse of an order type a is denoted, as usual, by a*. We say that 
a is order invertible if a*<a . J. Q. Longyear [5] has asked whether for a weakly 
homogeneous order type a such that no (non-trivial) interval of a is order invertible 
we may deduce that every interval of a contains a copy of rjco1 or (^cox)*. We 
will show this to be false under the assumption of the Continuum Hypothesis 
(C.H.) by constructing such order types oc in X, the set of reals. We actually prove 
a more general result which implies, assuming C.H., that an order type ft may be 
embedded in every weakly homogeneous order type oc whose intervals are not 
order invertible iff /? is countable. 

The proof involves new variations on a type of argument first introduced by 
B. Dushnik and E. W. Miller [1] (see also S. Ginsburg [2], [3], [4] and B. Rotman 
[6]). C.H. is needed to ensure that the order types we construct will be weakly hom
ogeneous. The symbol X will denote the real line and r\ the rational members. 
Furthermore the Dedekind completion of a totally ordered set A will be given by 
A+. Both components of a Dedekind cut are assumed to be non-void. We note that 
for totally ordered sets A and B any similarity map of A onto B can be extended 
to a similarity map of A+ onto B+ (B. Rotman [6]). 

THEOREM (C.H.). If C is a set of order types such thatp<X, [£1 = ^ 1 = 1̂1 (/? e C), 
then there is a weakly homogeneous order type OL<X such that no interval of a. is 
order invertible and such that jS^oc (fl e C). 

Proof. If / is any interval of X there are only 2No order inverting injections on / 
(a monotone function has countably many discontinuities). Since there are 2Ko 

intervals on X it follows that there are 2Ko=X1 order inverting injections f (i<co^) 
whose domains are intervals of X. Similarly if B^ X is an ordered set of type /? 
then there are 2Xo order preserving injections of B into X. Since |C|=2K o the order 
preserving injections of each (3 (/? G C) may be gathered into a single sequence of 
functions^ (Kcoj). 

Let A,(=, X be dense in A. If A' is denumerable then it is weakly homogeneous. 
Therefore, if X={xl9 *2}—A\ Y={y1,y2}^A'9 xx<,x2, J i < j 2 there is an order 

Received by the editors March 25, 1974 and, in revised form, June 10,1974. 
Research supported by National Research Council of Canada. 

159 

https://doi.org/10.4153/CMB-1975-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-032-2


160 M. E. ADAMS [June 

preserving bijection h=h(X, Y):A'->A' such that h(xi)=yi for *=1,2. Since 
A'+=À9 h(X9 Y) extends to an order preserving bijection h+(X9 Y) on A. We set 
H(A')={lfi(X9 Y)\X9 Y<^A' and |X| = |F |=2} . Since A' is denumerable, so is 
H{A'). 

Our object is to define by transfinite induction a set A of type a that satisfies 
the conditions of the theorem. Put A0=r), Bo=0 9 H0=H(A0). Let 0<(5<co1 

and suppose that we have already defined sets Ay9 By9 Hy for y < ô such that for 
y<y'<à we have: (a) Ay^Ay,9 By^Br, Hy^Hy,9 (b) Ay, By, Hy are countable, 
(c) Ay n By=0, and (d) each h G Hy is an order preserving bijection on A such that 
h(Ay)=Ar 

The set Sb=fb—{(x9 x) \ x e A} is uncountable. Thus we can always choose an 
ordered pair (ab9bb)eSb such that ab9 bb $ \Jy<ôAy U Br Moreover we will 
define two sets Tlb9 T2b and prove that the pair (ab9 bb) can be chosen in such a way 
that ab $ Tlb and (ab9 bô) $ T2b. Put H~b = \Jy<b Hy and Kb={h[ ° • • • ° h'n \ n<co09 

h\ G {hi9 hf}, h< e H~ô{\ <i<n)}. We let Tlô={k(b) \ b e \Jy<0 By9 k e Kô}. Tlô is 
countable because both Kô and \Jy<ôBy are countable. Since Sô represents an 
injection the value x of a pair (x, y) in Sô can occur once at most, thus we can always 
insist that aô $ Tlô. Next we let T2Ô =fô n ( | J ^ ) = { ( ^ , j ) | (x,y)efô n ^ f o r s o m e 
k G Kô}. Each k e Kô is a composition of order preserving bijections on À and 
therefore is also order preserving. Since fb is order reversing it follows that there 
is at most one pair (x, y) efô n k for each k G KÔ. Thus T2Ô is countable. Conse
quently we may choose the pair (aô9 bô) $ T2Ô. 

Set Aô=\Jy<ôAy U {k(aô) \ k e Kô). If B is the domain of gô choose cô egô(B)— 
Aô. A choice is always possible since |JB| = X1 . Put Bô=\Jy<ôBy U {bô9 cô}. The 
denumerable set Aô is an extension of A0 and therefore dense in À. Put Hô= \Jy<ô 

Hy U H(AÔ). 
We must now show that the conditions (a), . . . , (d) are satisfied by Aô9 Bb9 and 

Hô. Clearly (a) and (b) are satisfied by definition. To see (c) consider aeA^. 
If ae Uy<<5 A th e n a$Bô. If a G Ab— \Jy<0 Ay then a=k(aô) for some k e Kô. 
a $ Uy<<5 By since a5 ̂  Tlô and a ^ è 5 since (a5, bô) $ T2Ô. Moreover cô is chosen 
not to be in A5. We conclude that Aô n Bô=0. Finally we must show that 
h(Aô)=Aô for all /z G J ^ . If h e Hô— \Jy<ô Hy then this is true by definition. If 
h G Uy<<5 Hy then we observe that h(\Jy<0 Ay)= \Jy<0 AY However any a e Ab— 
\}y<b Ay is of the form k(ab) for some k G Kb. Thus h{a) and br\d) are members 
of Ab. We conclude h(Ab)=Ab. 

We now let 4̂ = U<5<c0 Aà. Suppose some interval of A is order invertible. This 
defines an order inverting injection on the corresponding interval of A. Hence 
there exists some à<sœ1 such that/5 represents this injection. ab is a member of A 
while fb(ab) (that is to say bb) is not a member of A. By contradiction we conclude 
that no interval of A is order invertible. Since cb$ A, it follows that gb(B)^A 
(ô<(*)!). Thus A does not contain a subset of type /? for any /? G C. TO exhibit the 
weak homogeneity of a we choose ^45 containing the finite set of points under 
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consideration. An order preserving bijection with an appropriate restriction to the 
weakly homogeneous set Ab can be found in Hô. This concludes the proof. 

COROLLARY (C.H.). If p is an order type such that |/?|>N0 then there exists a 
weakly homogeneous order type a such that no interval of a is order invertible, 
jSjÇoc, and /?* fgoc. 

COROLLARY (C.H.). An order type /? is embeddable in every order type a that is 
weakly homogeneous and has no order invertible intervals iff\P\ = X0. 

Proof. Observe that if a has no order invertible intervals then a is dense. Thus 
we may embed r\ into any such a. 
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