WEAKLY HOMOGENEOUS ORDER TYPES

BY
M. E. ADAMS

An order type α is said to be weakly homogeneous ($\boldsymbol{\aleph}_{0}$-homogeneous) if for any $x_{1}<x_{2}$ and $y_{1}<y_{2}$ there exists an order preserving bijection f on α such that $f\left(x_{i}\right)=y_{i}$ for $i=1,2$. The reverse of an order type α is denoted, as usual, by α^{*}. We say that α is order invertible if $\alpha^{*} \leq \alpha$. J. Q. Longyear [5] has asked whether for a weakly homogeneous order type α such that no (non-trivial) interval of α is order invertible we may deduce that every interval of α contains a copy of $\eta \omega_{1}$ or $\left(\eta \omega_{1}\right)^{*}$. We will show this to be false under the assumption of the Continuum Hypothesis (C.H.) by constructing such order types α in λ, the set of reals. We actually prove a more general result which implies, assuming C.H., that an order type β may be embedded in every weakly homogeneous order type α whose intervals are not order invertible iff β is countable.

The proof involves new variations on a type of argument first introduced by B. Dushnik and E. W. Miller [1] (see also S. Ginsburg [2], [3], [4] and B. Rotman [6]). C.H. is needed to ensure that the order types we construct will be weakly homogeneous. The symbol λ will denote the real line and η the rational members. Furthermore the Dedekind completion of a totally ordered set A will be given by A^{+}. Both components of a Dedekind cut are assumed to be non-void. We note that for totally ordered sets A and B any similarity map of A onto B can be extended to a similarity map of A^{+}onto B^{+}(B. Rotman [6]).

Theorem (C.H.). If C is a set of order types such that $\beta \leq \lambda,|\beta|=|C|=|\lambda|(\beta \in C)$, then there is a weakly homogeneous order type $\alpha \leq \lambda$ such that no interval of α is order invertible and such that $\beta \npreceq \alpha(\beta \in C)$.

Proof. If I is any interval of λ there are only $2^{N_{0}}$ order inverting injections on I (a monotone function has countably many discontinuities). Since there are $2^{\mathrm{N}_{0}}$ intervals on λ it follows that there are $2^{\aleph_{0}}=\aleph_{1}$ order inverting injections $f_{i}\left(i<\omega_{1}\right)$ whose domains are intervals of λ. Similarly if $B \subseteq \lambda$ is an ordered set of type β then there are $2^{N_{0}}$ order preserving injections of B into λ. Since $|C|=2^{N_{0}}$ the order preserving injections of each $\beta(\beta \in C)$ may be gathered into a single sequence of functions $g_{i}\left(i<\omega_{1}\right)$.

Let $A^{\prime} \subseteq \lambda$ be dense in λ. If A^{\prime} is denumerable then it is weakly homogeneous. Therefore, if $X=\left\{x_{1}, x_{2}\right\} \subseteq A^{\prime}, Y=\left\{y_{1}, y_{2}\right\} \subseteq A^{\prime}, x_{1}<x_{2}, y_{1}<y_{2}$ there is an order

[^0]preserving bijection $h=h(X, Y): A^{\prime} \rightarrow A^{\prime}$ such that $h\left(x_{i}\right)=y_{i}$ for $i=1$, 2. Since $A^{\prime+}=\lambda, h(X, Y)$ extends to an order preserving bijection $h^{+}(X, Y)$ on λ. We set $H\left(A^{\prime}\right)=\left\{h^{+}(X, Y) \mid X, Y \subseteq A^{\prime}\right.$ and $\left.|X|=|Y|=2\right\}$. Since A^{\prime} is denumerable, so is $H\left(A^{\prime}\right)$.

Our object is to define by transfinite induction a set A of type α that satisfies the conditions of the theorem. Put $A_{0}=\eta, B_{0}=\varnothing, H_{0}=H\left(A_{0}\right)$. Let $0<\delta<\omega_{1}$ and suppose that we have already defined sets $A_{\gamma}, B_{\gamma}, H_{\gamma}$ for $\gamma<\delta$ such that for $\gamma \leq \gamma^{\prime}<\delta$ we have: (a) $A_{\gamma} \subseteq A_{\gamma^{\prime}}, B_{\gamma} \subseteq B_{\gamma^{\prime}}, H_{\gamma} \subseteq H_{\gamma^{\prime}}$, (b) $A_{\gamma}, B_{\gamma}, H_{\gamma}$ are countable, (c) $A_{\gamma} \cap B_{\gamma}=\varnothing$, and (d) each $h \in H_{\gamma}$ is an order preserving bijection on λ such that $h\left(A_{\gamma}\right)=A_{\gamma}$.

The set $S_{\delta}=f_{\delta}-\{\langle x, x\rangle \mid x \in \lambda\}$ is uncountable. Thus we can always choose an ordered pair $\left\langle a_{\delta}, b_{\delta}\right\rangle \in S_{\delta}$ such that $a_{\delta}, b_{\delta} \notin \bigcup_{\gamma<\delta} A_{\gamma} \cup B_{\gamma}$. Moreover we will define two sets $T_{1 \delta}, T_{2 \delta}$ and prove that the pair $\left\langle a_{\delta}, b_{\delta}\right\rangle$ can be chosen in such a way that $a_{\delta} \notin T_{1 \delta}$ and $\left\langle a_{\delta}, b_{\delta}\right\rangle \notin T_{2 \delta}$. Put $H_{\delta}^{-}=\bigcup_{\gamma<\delta} H_{\gamma}$ and $K_{\delta}=\left\{h_{1}^{\prime}{ }^{0} \cdots{ }^{0} h_{n}^{\prime} \mid n<\omega_{0}\right.$, $\left.h_{i}^{\prime} \in\left\{h_{i}, h_{i}^{-1}\right\}, h_{i} \in H_{\delta}^{-}(1 \leq i \leq n)\right\}$. We let $T_{1 \delta}=\left\{k(b) \mid b \in \bigcup_{\gamma<\delta} B_{\gamma}, k \in K_{\delta}\right\} . T_{1 \delta}$ is countable because both K_{δ} and $\mathrm{U}_{\gamma<\delta} B_{\gamma}$ are countable. Since S_{δ} represents an injection the value x of a pair $\langle x, y\rangle$ in S_{δ} can occur once at most, thus we can always insist that $a_{\delta} \notin T_{1 \delta}$. Next we let $T_{2 \delta}=f_{\delta} \cap\left(\cup K_{\delta}\right)=\left\{\langle x, y\rangle \mid\langle x, y\rangle \in f_{\delta} \cap k\right.$ for some $\left.k \in K_{\delta}\right\}$. Each $k \in K_{\delta}$ is a composition of order preserving bijections on λ and therefore is also order preserving. Since f_{δ} is order reversing it follows that there is at most one pair $\langle x, y\rangle \in f_{\delta} \cap k$ for each $k \in K_{\delta}$. Thus $T_{2 \delta}$ is countable. Consequently we may choose the pair $\left\langle a_{\delta}, b_{\delta}\right\rangle \notin T_{2 \delta}$.

Set $A_{\delta}=\mathrm{U}_{\gamma<\delta} A_{\gamma} \cup\left\{k\left(a_{\delta}\right) \mid k \in K_{\delta}\right\}$. If B is the domain of g_{δ} choose $c_{\delta} \in g_{\delta}(B)-$ A_{δ}. A choice is always possible since $|B|=\aleph_{1}$. Put $B_{\delta}=\bigcup_{\gamma<\delta} B_{\gamma} \cup\left\{b_{\delta}, c_{\delta}\right\}$. The denumerable set A_{δ} is an extension of A_{0} and therefore dense in λ. Put $H_{\delta}=\bigcup_{\gamma<\delta}$ $H_{\gamma} \cup H\left(A_{\delta}\right)$.

We must now show that the conditions $(a), \ldots,(d)$ are satisfied by A_{δ}, B_{δ}, and H_{δ}. Clearly (a) and (b) are satisfied by definition. To see (c) consider $a \in A_{i}$. If $a \in \bigcup_{\gamma<\delta} A_{\gamma}$ then $a \notin B_{\delta}$. If $a \in A_{\delta}-\bigcup_{\gamma<\delta} A_{\gamma}$ then $a=k\left(a_{\delta}\right)$ for some $k \in K_{\delta}$. $a \notin \mathrm{U}_{\gamma<\delta} B_{\gamma}$ since $a_{\delta} \notin T_{1 \delta}$ and $a \neq b_{\delta}$ since $\left\langle a_{\delta}, b_{\delta}\right\rangle \notin T_{2 \delta}$. Moreover c_{δ} is chosen not to be in A_{δ}. We conclude that $A_{\delta} \cap B_{\delta}=\varnothing$. Finally we must show that $h\left(A_{\delta}\right)=A_{\delta}$ for all $h \in H_{\delta}$. If $h \in H_{\delta}-\bigcup_{\gamma<\delta} H_{\gamma}$ then this is true by definition. If $h \in \bigcup_{\gamma<\delta} H_{\gamma}$ then we observe that $h\left(\bigcup_{\gamma<\delta} A_{\gamma}\right)=\bigcup_{\gamma<\delta} A_{\gamma}$. However any $a \in A_{\delta}-$ $\mathrm{U}_{\gamma<\delta} A_{\gamma}$ is of the form $k\left(a_{\delta}\right)$ for some $k \in K_{\delta}$. Thus $h(a)$ and $h^{-1}(a)$ are members of A_{δ}. We conclude $h\left(A_{\delta}\right)=A_{\delta}$.

We now let $A=\mathrm{U}_{\delta<\omega_{1}} A_{\delta}$. Suppose some interval of A is order invertible. This defines an order inverting injection on the corresponding interval of λ. Hence there exists some $\delta<\omega_{1}$ such that f_{δ} represents this injection. a_{δ} is a member of A while $f_{\delta}\left(a_{\delta}\right)$ (that is to say b_{δ}) is not a member of A. By contradiction we conclude that no interval of A is order invertible. Since $c_{\delta} \notin A$, it follows that $g_{\delta}(B) \not \ddagger A$ $\left(\delta<\omega_{1}\right)$. Thus A does not contain a subset of type β for any $\beta \in C$. To exhibit the weak homogeneity of α we choose A_{δ} containing the finite set of points under
consideration. An order preserving bijection with an appropriate restriction to the weakly homogeneous set A_{δ} can be found in H_{δ}. This concludes the proof.

Corollary (C.H.). If β is an order type such that $|\beta|>\aleph_{0}$ then there exists a weakly homogeneous order type α such that no interval of α is order invertible, $\beta \npreceq \alpha$, and $\beta^{*} \$ \alpha$.

Corollary (C.H.). An order type β is embeddable in every order type α that is weakly homogeneous and has no order invertible intervals iff $|\beta|=\boldsymbol{\aleph}_{0}$.

Proof. Observe that if α has no order invertible intervals then α is dense. Thus we may embed η into any such α.

References

1. B. Dushnik and E. W. Miller, Concerning similarity transformations of linearly ordered sets, Bull. Amer. Math. Soc. 46 (1940), 322-326.
2. S. Ginsburg, Some remarks on order types and decompositions of sets, Trans. Amer. Math. Soc. 74 (1953), 514-535.
3. S. Ginsburg, Further results on order types and decompositions of sets, Trans. Amer. Math. Soc. 77 (1954), 122-150.
4. S. Ginsburg, Order types and similarity transformations, Trans. Amer. Math. Soc. 79 (1955), 341-361.
5. J. Q. Longyear, Patterns: the structure of linear homogeneous sets, preprint (see Notices Amer. Math. Soc. 21 (1974), A-293).
6. B. Rotman, On the comparison of order types, Acta Math. Sci. Hungar. 19 (1968), 311-327.

University of Manitoba
Winnipeg, Canada.

[^0]: Received by the editors March 25, 1974 and, in revised form, June 10, 1974.
 Research supported by National Research Council of Canada.

