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SINGLE IDENTITIES FOR MENDELSOHN AND
STEINER 3-QUASIGROUPS

ZORAN STOJAKOVIC

We prove that varieties of algebras equivalent to Mendelsohn and Steiner quadruple
systems can be defined by single identities.

1. INTRODUCTION

A Steiner system S(t, k, v) is a pair (5, T), where S is a v-set and T is a family
of fc-subsets of 5 such that every t-subset of 5 is contained in exactly one element of
T. An 5(2, 3, v) is called a Steiner triple system (STS) and an 5(3, 4, v) is called a
Steiner quadruple system (SQS). An ordered analogue of Steiner systems are Mendel-
sohn systems. A Mendelsohn system M(t, k, v) is a pair (5, T) where 5 is a w-set
and T is a family of cyclic fc-tuples (ox, . . . , a*), alt ..., ak distinct elements of 5,
such that every ordered pair of distinct elements from 5 belongs to exactly one el-
ement of T. A cyclic fc-tuple (oi, . . . , ak) is the following set of k ordered pairs:
(ai,...,ak) = {(a1,a2),(a2,a3),...,(ak-i,ak),(ak,a1)}. An M ( 2 , 3, v) and an

M(3, 4, v) are called a Mendelsohn triple system (MTS) and a Mendelsohn quadruple
system (MQS), respectively.

It is well known that Steiner and Mendelsohn triple and quadruple systems are
equivalent to some algebras. There are two methods of turning STSs into algebras [1,
4]-

The first method turns the STS (5, T) into a Steiner quasigroup (squag) (5, •)
by defining xy — z if and only if {x, y, z} £ T and x2 = x otherwise. (5, •) satisfies
x2 — x, xy — yx and x(xy) = y and every such algebra generates an STS (5, T),
where T is the set of 3-element subalgebras of (5, •).

The second method turns the STS (5, T) into a Steiner loop (sloop) (5, •) , where
5 = 5 U {e}, e ^ 5: define xy = z if and only if {x, y, z) G T and xe = ex — x,
x2 — e otherwise. (5, •) satisfies ex — x, x2 — e, xy = yx, x(xy) = y, and, as before,
every such algebra generates an STS. We see that the classes of all squags and sloops
are varieties.

Analogously, one can obtain similar results for MTSs [6].
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By a similar procedure we get that an SQS (5, T) is equivalent to a 3-groupoid
(5, / ) satisfying

(1) / ( / ( * , V, z), x, y) = z,

(2) / (*, y, f(x, y, z)) = x,

(3) f(x,x,y)=y.

Every such 3-groupoid is necessarily a 3-quasigroup which is called an SQS-skein [4].

An MQS (S, T) is equivalent to a 3-groupoid (5, / ) satisfying (1) and

(4) f(x, x, y) = f(x, y, x) = y,

and this 3-groupoid is also a 3-quasigroup. Such 3-quasigroups we shall call Mendelsohn
ternary quasigroups (MTQs).

Besides these bases the varieties of algebras equivalent to SQSs and MQSs can be
defined by some other bases which are equivalent to the given ones. For example, it is
not difficult to see that identity (1) can be replaced by the equivalent identity

(5) f(x,y,f(z,x,y)) = z.

2. SINGLE IDENTITIES FOR ALGEBRAS EQUIVALENT TO STEINER AND

MENDELSOHN SYSTEMS

In [6] it was proved that an MTS (S, T) is equivalent to an algebra (5, •), 5 =
S U {e}, e ^ S, satisfying xe = ex = x, x2 = e, x(yx) = y and also that such
algebras can be characterised by a single identity x(((yy)z)x) — z. In [5, 6] Mendelsohn
called systems which are today known as MTSs "generalised Steiner systems" and
algebras equivalent to them "generalised Steiner loops and quasigroups". These results
of Mendelsohn from [6] were quoted in [4] where the term "sloop" was used instead of
"generalised Steiner loop" for the algebra equivalent to an MTS. Such statement is not
true, as was shown by Donovan and Oates-Williams in [3].

In [3] it was proved that each of the varieties of sloops and squags can be defined

by a single identity. In [2] single identities which define two subvarieties of squags were

given.

Now we shall show that algebras equivalent to SQSs and MQSs can be defined by

single identities.

The following notation will be used. If (5, / ) is a 3-groupoid, then the so-called

translation maps Tj.(a, b), T2(a, b), Ta(a, b) can be defined by

Ttiy, z)(x) = T2(x, z)(y) = T3(x, y)(z) = / (* , y, z).
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THEOREM 1 . A 3-groupoid (5 , / ) is an MTQ if and only if the following identity
is satisfied

(6) /(/(*, V, /(«, f(v, v, f(p, q, /(/(z, t, t), p, q))), «)), x, y) =. z.

PROOF: If (S, f) is an MTQ, then it is easy to see that (6) is satisfied.

Now, let (S, f) be a 3-groupoid such that (6) is valid. We shall prove that (6)

implies (1) and (4).

(6) can be written as:

(7) 2U*. y)T,(x, y)T2(u, u)Ts(v, v)T3(p, q)Tx{p, qJT^t, t) = I,

where I is the identity mapping of S. From (7) we get that Ti(t, i) is 1-1 and Ti(z, y)
is onto, hence for all t £ S, Ti (t, t) is a bijection, which implies

T!(x, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)^, q) = Tf1^, t).

The last equality implies that Ti(x, y) is a bijection and

T,(x, y)T2(u, u)T3(v, v)T3{P, q) = T-^x, yjrf^t, ^T'^p, q).

By a similar argument we obtain that T3(x, y) is a bijection for all x, y £ S, which
gives

T2(u, u) = T3\x, y)T~l{x, y)T^{t, t)T^{p, q)T3\p, q)Tf\v, v).

Hence T2(u, u) is a bijection for all u G 5 .

From (7) we get that for all x, y, u, v, p, q, t, r, s £ S

Ti(z, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)Ti{p, q)^, t)

= TX(T, S)T3{T, S)T2(U, U)T3(V, v)T3(p, ^ ( p , ^ ( t , t)

and

T^x, y)T3{x, y) = Tx{r, s)T3(r, s),

that is,

(8) /(/(x, y, z), x, y) = /(/(r, s, z), r, s).

By an analogous procedure it follows that for all x, y £ 5

Ti(x, x) - Ti(y, y), » = 1, 2, 3,
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that is

(9) f(z, x, x) = f(z, y, y), f(x, z, x) = f(y, z, y), f(x, x, z) = f(y, y, z).

Putting y = z in (9), one gets

(10) f(z, x, x) = f(x, z, x) = / ( * , x, z) = f(z, z, z).

If in (8) we put x = f(z, z, z), y = r = a = z, by using (10) it follows that

/(/(/(*> z. •*), z, z), f{z, z, z), z) = f(f{z, z, z), z, z) = f(z, f(z, z, z), z).

Since Ti(x, y) is a bijection, from the preceding equality we get

(11) /(/(*, z, z), z, z) = z.

If now we put r = s = z in (8), it follows that

> V, z), x, y) = f(f{z, z, z), z, z) = z,

hence identity (1) is valid. So we have proved that for all x, y £ S, Ti(x, y)T${x, y) —
I. But identity (1) is equivalent to (5), which means that for all x, y £ S,
T3(x, y)Ti(x, y) = I. Therefore, (7) becomes

T2(u,u)T3{v,v)T1{t,t)=I,

that is
f(u, f(v, v, f(z, t, t)), u) = z.

Putting u — v — t — z in the preceding identity, and using (10) and (11) we get

f(z, z, z) = z,

which by (10) gives

f(z, x, x) = f(x, z, x) = f(x, x, z) = z. []

THEOREM 2 . A 3-groupoid (S, f) is an SQS-skein if and only if the following

identity is satisfied:

(12) /(/(*, y, /(«, /(», v, f{p, q, f{f(z, t, t), q, p))), »)), x, y) = z.

PROOF: If (5 , / ) is an SQS-skein, then (12) clearly holds.
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Now, let (5 , / ) be a 3-groupoid such that (12) is satisfied. (12) can be written as

(13) Ti(x, y)T3(x, y)T2(u, u)T3{v, v)T3(p, g)T1(g, p)2\(*, t) = I .

By an analogous procedure to that used in the proof of Theorem 1, we get that Ti(sc, y),

T3(x, y), T2(x, x) are bijections for all x, y £ 5 , that

(14) T,{x, y)T3(x, y) = T^r, s)T3(r, 3),

and f(z, x, x) = f(x, z, x) = f(x, x, z) = f(z, z, z). From (14), as before, we get

, V, z), x, y) = / ( / ( * , z, z), z, z) = z,

that is, identity (1) holds.

As in the proof of Theorem 1, we get that T^x, y)T3(x, y) = T3(x, y)Tx{x, y) = I.

Putting p = q in (13), we get

T2(u,u)T3(v,v)T1(t,t) = I,

which implies f(x, x, z) = z.

Finally, as in the proof of Theorem 1, we get that

that is,

f(p, 9, / ( * . 9> P)) = f(r, B, f(z, s, r)).

Putting r — s = z in the preceeding equality, we get

f{P, 9, f(z, 9, P)) = z\

hence identity (2) holds. U
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