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1. Introduction and statement of the main result

The p-adic Gross–Zagier formula of Perrin-Riou relates p-adic heights of Heegner points
and derivatives of p-adic L-functions. In its original form [26], it concerns (modular)

elliptic curves over Q, and it is proved under two main assumptions: first, that the elliptic

curve is p-ordinary; second, that p splits in the field E of complex multiplications of the

Heegner points. The formula has applications to both the p-adic and the classical Birch
and Swinnerton-Dyer conjecture.

The first assumption was removed by Kobayashi [19] (see also [4]). The purpose of this

work is to remove the second assumption.
We work in the context of our previous work [9], which will enable us in [13] to deduce,

from the formula presented here, the analogous one for higher-weight (Hilbert-) modular

motives, as well as a version in the universal ordinary family with some new applications.
Nevertheless, the new idea we introduce is essentially orthogonal to previous innovations,

including those of [9] (and in fact it can be applied, at least in principle, to the nonordinary

case as well). For this reason we start in §1.1 by informally discussing it in the simplest

classical case of elliptic curves over Q. The general form of our results is presented in §1.2.

1.1. The main ideas in a classical context

Classically, Heegner points on the elliptic curve A/Q are images of CM points (or divisors)

on a modular curve X, under a parametrization f : X → A. More precisely, choosing an

imaginary quadratic field E, for each ring class character χ : Gal
(
E/E
)
→ Q

×
one can

construct a point P (f,χ) ∈AE(χ), the χ-isotypic part of A
(
E
)
Q
. The landmark formula

of Gross and Zagier [17] relates the height of P (f,χ) to the derivative L′(AE⊗χ,1) of the

L-function of a twisted base change of A. The analogous formula in p-adic coefficients,1〈
P (f,χ),P

(
f,χ−1

)〉 .
=

d

ds |s=0
Lp

(
AE,χ ·χs

cyc

)
, (1.1.1)

relates cyclotomic derivatives of p-adic L-functions to p-adic height pairings 〈 , 〉. We

outline its proof for p-ordinary elliptic curves.

1We denote by
.
= equality up to a less-important nonzero factor.
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The p-adic Gross–Zagier Formula at Nonsplit Primes 2201

Review of Perrin-Riou’s proof. Our basic strategy is still Perrin-Riou’s variant of
the one of Gross and Zagier; we briefly and informally review it, ignoring, for simplicity

of exposition, the role of the character χ. Throughout the following discussion, we include

pointers to corresponding statements in the main body of the paper, as guideposts
meant to assist the reader’s navigation through the more technical framework used

there.

Denoting by ϕ the ordinary eigenform attached to A, each side of formula (1.1.1) is
expressed as the image under a functional ‘p-adic Petersson product with ϕ’, denoted by

�ϕ = formula (3.1.6), of a certain kernel function (a p-adic modular form).

For the left-hand side of formula (1.1.1), the form in question is the generating series

(compare formula (3.3.4))

Z =
∑
m≥1

〈
P 0,TmP 0

〉
X
qm =

∑
v

Zv, (1.1.2)

where P 0 ∈Div0(X) is a degree 0 modification of the CM point P ∈X, 〈 , 〉X is a p-adic

height pairing on X compatible with the one on A, and the decomposition into a sum
running over all the finite places of Q (compare equation (3.6.1)) follows from a general

decomposition of the global height pairing into a sum of local ones. More precisely, global

height pairings are valued in the completed tensor product H×\H×
A∞⊗̂L of the finite

idèles of the Hilbert class field H of E, and of a suitable finite extension L of Qp. The

series Zv collects the local pairings at w | v, each valued in H×
w ⊗̂L.

The analytic kernel I ′ giving the right-hand side of formula (1.1.1) is the derivative
of a p-adic family of mixed theta-Eisenstein series (compare definition (3.2.5)). It also

enjoys a decomposition

I ′ =
∑
v �=p

I ′
v,

where, unlike in equation (1.1.2), the sum runs over the finite places of Q different

from p (compare equation (3.5.2)). Once we have established that Zv
.
= I ′

v for v �= p by

computations similar to those of Gross and Zagier (compare Theorem 3.6.1), it remains to

show that the p-adic modular form Zp is annihilated by �ϕ (compare Proposition 3.6.2).
In order to achieve this, one aims at showing that after acting on Zp by a Hecke

operator to replace P 0 by P [ϕ] (a lift of the component of its image in the ϕ-part of

Jac(X)), the resulting form Z
[ϕ]
p is p-critical (compare Proposition 3.6.3). That is, its

coefficients

amps :=
〈
P [ϕ],TmpsP 0

〉
X,p

decay p-adically no more slowly than a constant multiple of ps. The p-shift of Fourier
coefficients extends the action on modular forms of the operator Up – which, in contrast,

acts by a p-adic unit on the ordinary form ϕ: this implies that p-critical forms are

annihilated by �ϕ.
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To study the terms amps , one constructs a sequence of points Ps ∈XH whose fields of
definitions are the layers Hs of the anticyclotomic p∞-extension of E. The relations they

satisfy allow us to express

amps =
〈
P [ϕ],Dm,s

〉
X,p

,

where Dm,s is a degree 0 divisor supported at Hecke-translates of Ps, which are all
essentially CM points of conductor ps defined over Hs (compare Proposition 4.1.4). By

a projection formula for XHs
→XH , the height amps is then a sum, over primes w of H

above p, of the images

Ns,w (hm,s,w)

of heights hm,s,w computed on XHs,w
, under the norm map Ns,w : H×

s,w⊗̂L → H×
w ⊗̂L.

Moreover, it can be shown that the L-denominators of hm,s,w ∈ H×
s,w⊗̂L are uniformly

bounded (compare Proposition 4.4.1), so that here we may ignore them and think of

hm,s,w ∈H×
s,w⊗̂OL.

A simple observation from [9] is that the valuation w (hm,s,w) equals

mXHw

(
P [ϕ],Dm,s

)
, (1.1.3)

the intersection multiplicity of the flat extensions (§4.2) of those divisors to some regular

integral model X of XHw
. In the split case, it is almost immediate to see that this

intersection multiplicity vanishes. This implies that

Ns,w (hm,s) ∈Ns,w

(
O×

Hs,w

)
⊗̂OL ⊂H×

w ⊗̂OL. (1.1.4)

Since the extension Hs,w/Hw is totally ramified of degree ps, the subset in formula (1.1.4)

is ps
(
O×

Hw
⊗̂OL

)
⊂ ps
(
H×

w ⊗̂OL

)
, as desired.

The nonsplit case. In the nonsplit case, the p-adic intersection multiplicity has no

reason to vanish. However, the foregoing argument will still go through if we more

modestly show that expression (1.1.3) itself decays at least like a multiple of ps (compare
Lemma 4.4.3). The idea to prove this is very simple: we show that if s is large, then for

the purposes of computing intersection multiplicities with other divisors D on X , the

Zariski closure of a CM point of conductor at least ps can almost be approximated by

some irreducible component V of the special fiber of X ; hence the multiplicity will be 0
if D arises as a flat extension of its generic fiber. The qualifier ‘almost’ means that the

foregoing holds except if |D | contains V itself, which will be responsible for a multiplicity

error term equal to a constant multiple of ps.
The approximation result (Proposition 4.3.3) is precisely formulated in an (ultra)metric

space of irreducible divisors on the local ring of a regular arithmetic surface, which

we introduce following a recent work of Garćıa Barroso, González Pérez, and Popescu-
Pampu [15]. The proof of the result is also rather simple (albeit not effective), relying on

Gross’s theory of quasicanonical liftings [18]. The problem of effectively identifying the

approximating divisor V is treated in [11].
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Subtleties. This description ignores several difficulties of a relatively more technical
nature, most of which we deal with by the representation-theoretic approach of [9] (in

turn adapted from Yuan, Zhang, and Zhang [29]). Namely, we allow for arbitrary modular

parametrizations f, resulting in an extra parameter φ in the kernels Z and I ′. By
representation-theoretic results, one is free to some extent to choose the parameter φ

to work with without losing generality. A fine choice (or rather a pair of choices) for

its p-adic component is dictated by the goal of interpolation, while imposing suitable
conditions on its other components allows us to circumvent many obstacles in the proof.

1.2. Statement

We now describe our result in the general context in which we prove it – which is the same

as that of [9] (and [29]), to which we refer for a less terse discussion of the background.
(At some points, we find some slightly different formulations or normalizations from those

of [9], to be more natural: see §2.2 for the equivalence.)

Abelian varieties parametrized by Shimura curves. Let F be a totally real field

and let A/F be a simple abelian variety of GL2-type. Assume that L(A,s) is modular
(this is known in many cases if A is an elliptic curve). Let B be a quaternion algebra

over the adèles A=AF of F, whose ramification set ΣB has odd cardinality and contains

all the infinite places. To B is attached a tower of Shimura curves
(
XU/F

)
U⊂B∞× , with

respective Albanese varieties JU . It carries a canonical system of divisor classes ξU ∈
Cl(XU )Q of degree 1, providing a system ιξ of maps ιξ,U ∈ HomF (XU,JU )Q defined by

P 	→ P −deg(P )ξU .

The space

π = πA,B = lim−→
U

Hom0(JU,A)

is either zero or a smooth irreducible representation of B× (trivial at the infinite places),

with coefficients in the number field M := End0(A). We assume we are in the case π =
πA,B �= 0, which under the modularity assumption and condition (1.2.2) can be arranged

by suitably choosing B. Then for all places v � ∞, we have Lv(A,s) = Lv(s− 1/2,π) in

M ⊗C. We denote by ω : F×\A× →M× the central character of π. We have a canonical
isomorphism πA∨,B

∼= π∨
A,B[29, §1.2.2], and we denote by ( , )π : πA,B⊗πA∨,B →M the

duality pairing.

Heegner points. Let E/F be a CM quadratic extension with associated quadratic

character η, and assume that E admits an A-embedding EA ↪→B, which we fix. Then E×

acts on the right on X = lim←−U
XU . The fixed-points subscheme XE× ⊂X is F -isomorphic

to SpecEab, and we fix a point P ∈XE× (
Eab
)
. Let

χ : E×\E×
A∞ ∼=Gal

(
Eab/E

)
→ L(χ)×
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be a character valued in a field extension of L(χ)⊃M , satisfying

ω ·χ|A∞× = 1,

and define

AE(χ) :=
(
A
(
Eab
)
⊗M L(χ)χ

)Gal(Eab/E)
,

where L(χ)χ is an L(χ)-line with Galois action by χ.

Then we have a Heegner point functional

f 	→ P (f,χ) :=−
∫
Gal(Eab/E)

f(ιξ(P )τ )⊗χ(τ)dτ ∈AE(χ) (1.2.1)

(integration for the Haar measure of volume 1) in the space of invariant linear functionals

H(πA,B,χ)⊗L(χ)AE(χ), H(π,χ) := HomE×
A
(π⊗χ,L(χ)),

where E×
A acts diagonally. There is a product decomposition H(π,χ) =

⊗
vH(πv,χv),

where similarly H(πv,χv) := HomE×
v
(πv ⊗χv,L(χ)).

A local unit of measure for invariant functionals. By foundational local results

of Waldspurger, Tunnell, and Saito, the dimension of H(π,χ) (for any representation π of

B×) is either 0 or 1. If A is modular and the global root number

ε(AE ⊗χ) =−1, (1.2.2)

then the set of local root numbers determines a unique quaternion algebra B over

A, satisfying the conditions already required and containing EA, such that πA,B �= 0

and dimL(χ)H(πA,B,χ) = 1.2 We place ourselves in this case; then there is a canonical
factorizable generator

Q(,),dt =
∏
v

Q(,)v,dtv
∈H(π,χ)⊗H

(
π∨,χ−1

)
depending on the choice of a pairing (,) =

∏
v(,)v : π⊗π∨ → L(χ) and a measure dt =∏

v dtv on E×
A/A×. It is defined locally as follows. Let us use symbols V(A,χ) and V(A,χ),v,

which we informally think of as denoting (up to abelian factors) the virtual motive over
F with coefficients in L(χ)

V(A,χ) =ResE/F (h1(AE)⊗χ)�ad(h1(A)(1))

and its local components (the associated local Galois representation or, if v is

Archimedean, Hodge structure). Then for each place v of F and any auxiliary
ι : L(χ) ↪→C,3 we define

2If ε(AE ⊗χ) = +1, there is no such quaternion algebra, and all Heegner points automatically
vanish.

3Explicitly, if v is Archimedean, we have L
(
V(A,χ),v,0

)
= 2 and Q(,)v,dtv

(f1,v,f2,v) =

2−1vol
(
C×/R×,dtv

)
(f1,v,f2,v).
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L
(
ιV(A,χ),v,s

)
:=

ζF,v(2)L(1/2+s,ιπE,v ⊗ ιχv)

L(1,ηv)L(1,ιπv,ad)
·
{
1 if v is finite,

π−1 if v | ∞
∈ ιL(χ),

(1.2.3)

Q(,)v,dtv
(f1,v,f2,v,χv) := ι−1L

(
ιV(A,χ),v,0

)−1
∫
E×

v /F×
v

χ(tv)(πv(tv)f1,v,f2,v)v dtv.

(1.2.4)

We make the situation more canonical by choosing dt=
∏

v dtv to satisfy

vol
(
E×\E×

A/A×,dt
)
= 1

and by defining, for any f3 ∈ π,f4 ∈ π∨ such that (f3,f4) �= 0,

Q

(
f1⊗f2
f3⊗f4

;χ

)
:=

Q(,),dt(f1,f2,χ)

(f3,f4)
. (1.2.5)

p-adic heights. Let us fix a prime p of M and denote by p the underlying rational
prime. Suppose from now on that for each v | p, AFv

has p-ordinary (potentially good

or semistable) reduction. That is, for a sufficiently large finite extension L ⊃ Mp, the

rational p-Tate module Wv := VpA⊗M L is a reducible 2-dimensional representation of
Gal
(
F v/Fv

)
:

0→W+
v →Wv →W−

v → 0. (1.2.6)

Fix such a coefficient field L, and for each v | p let αv : F
×
v

∼=Gal
(
F ab
v /Fv

)
→ L× be the

character giving the action on the twist W+
v (−1). The field L(χ) will from now on be

assumed to be an extension of L. Under those conditions, there is a canonical p-adic

height pairing

〈 , 〉 : AE(χ)⊗A∨
E

(
χ−1
)
→ ΓF ⊗̂L(χ),

where ΓF :=A×/F×Ôp,×
F (the bar denotes Zariski closure). It is normalized ‘over F ’ as

in [9, §4.1].
For f1,f3 ∈ π, f2,f4 ∈ π∨, and P∨ : π∨⊗χ→A∨

E

(
χ−1
)
the Heegner point functional of

the dual, our result will measure the ratio
〈
P (f1,χ),P

∨ (f2,χ−1
)〉

/(f3,f4)π against the
value at the fi of the ‘unit’ Q. The size will be given by the derivative of the p-adic

L-function that we now define.

The p-adic L-function. We continue to assume that A is p-ordinary, and review the
definition of the p-adic L-function from [9, Theorem A] (in an equivalent form). We start

by defining the space on which it lives. Write ΓF = lim←−n
ΓF,n as the limit of an inverse

system of finite groups, and define

Y l.c.
F :=

⋃
n

SpecL [ΓF,n]⊂ YF := SpecOL�ΓF �⊗OL
L. (1.2.7)

Then YF is a space of continuous characters on ΓF , and the 0-dimensional ind-scheme

Y l.c.
F is its subspace of locally constant (finite-order) characters.
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For a character χ′ : Gal
(
Eab/E

)
→L′× together with an embedding ι : L′ →C, we shall

interpolate the ratio of complete L-functions

L
(
ιV(A,χ′),s

)
:=
∏
v

L
(
ιV(A,χ′),v,s

)
, L

(
ιV(A,χ′),v,s

)
= formula (1.2.3), �(s)� 0,

where the product runs over all places of F.
We now define the p-interpolation factors for the p-adic L-function. First, recall that

the (inverse) Deligne–Langlands gamma factor of a Weil–Deligne representation W ′ of
Gal
(
F v/Fv

)
over a p-adic field L′, with respect to a nontrivial character ψv : Fv →C×

and an embedding ι : L′ ↪→C, is defined as4

γ(W ′,ψv)
−1 :=

L(W ′)

ε(W ′,ψv)L(W ∗(1))
.

Let ψ =
∏

vψv : F\A → C× be the standard additive character such that ψ∞(·) =
e2πiTrF∞/R(·); let ψE =

∏
wψE,w = ψ◦TrAE/A. For a place v | p of F, let dv be a generator

of the different ideal of Fv. For a character χ′ : Gal
(
E/E
)
→C×, we define

ev
(
V(A,χ′)

)
= |dv|−1/2

∏
w|v γ
(
ιWD

(
W+

v|GE,w
⊗χ′

w

)
,ψE,w

)−1

γ(ιWD(ad(Wv)(1))++,ψv)−1
·L
(
V(A,χ′),v

)−1
, (1.2.8)

where ad(Wv)(1)
++ := Hom(W−

v ,W+
v )(1) = ω−1

v α2
v| |2v and ιWD is the functor from

potentially semistable Galois representations to complex Weil–Deligne representations

of [14].

Theorem A. There is a function

Lp

(
V(A,χ)

)
∈ O(YF )

characterized by the following property. For each complex geometric point s = χF ∈
Y l.c.

F (C), with underlying embedding ι : L(χF ) ↪→C,

Lp

(
V(A,χ),s

)
= ιep

(
V(A,χ′)

)
·L
(
ιV(A,χ′),0

)
, χ′ := χ ·χF |Gal(E/E),

where ep
(
V(A,χ′)

)
:=
∏

v|p ev
(
V(A,χ′)

)
.

The factor ep
(
V(A,χ′)

)
coincides with the one predicted by Coates and Perrin-Riou [7]

for V(A,χ′) (their conjecture motivates the denominator terms in equation (1.2.8), which

are constants), up to the removal of a trivial zero from their interpolation factor for
ad(Wv)(1).

The p-adic Gross–Zagier formula. We are almost ready to state our main result.

Denote by 0 ∈ YF the point corresponding to χF = 1, and define

L ′
p

(
V(A,χ),0

)
:= dLp

(
V(A,χ),0

)
∈ T0YF

∼= ΓF ⊗̂L(χ).

4The terms L and ε are normalized as in [28].
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We say that χp is sufficiently ramified if it is nontrivial on a certain open subgroup
of O×

E,p depending only on ωp (see Assumption 3.4.1 for the precise definition and a

comment).

Theorem B. Suppose that the abelian variety A/F is modular and that for all v |
p, the Gal

(
F v/Fv

)
-representation VpA is ordinary and potentially crystalline. Let

χ : Gal
(
Eab/E

)
→ L(χ)× be a finite-order character satisfying

ε(AE ⊗χ) =−1,

and suppose that χp sufficiently ramified.

Then for any f1,f3 ∈ π, f2,f4 ∈ π∨ such that (f3,f4)π �= 0, we have〈
P (f1,χ),P

∨ (f2,χ−1
)〉

(f3,f4)π
= ep
(
V(A,χ)

)−1 ·L ′
p

(
V(A,χ),0

)
·Q
(
f1⊗f2
f3⊗f4

;χ

)
in ΓF ⊗̂L(χ).

Remark 1.2.1. The technical assumptions that χp is sufficiently ramified and that VpA

is potentially crystalline5 are removed by p-adic analytic continuation in [13, Theorem

B], and replaced by the (necessary) assumption that χp is not exceptional for A – that

is, ep
(
V(A,χ)

)
�= 0 (which in our case is implied by the potential crystallinity).

Note that for the removal of the first assumption, one only needs the anticyclotomic

formula analogous to [9, Theorem C.4], and not the full generality of the multivariable

formula in [13, Theorem D].

Remark 1.2.2. Concrete versions of the formula of Theorem B may be obtained by

choosing explicit parametrizations fi and evaluating the term Q. This is a local problem,
solved in [5]. In particular, by starting from Theorem B (as generalized to all characters

following Remark 1.2.1) and applying the same steps as in the proofs of [10, Theorems

4.3.1, 4.3.3], we obtain the simple p-adic Gross–Zagier formula in anticyclotomic families
for elliptic curves A/Q proposed in [10, Conjecture 4.3.2], and similarly the direct

analogue6 of Perrin-Riou’s original result in [26].

The theorem has familiar applications extending to the nonsplit case from [9] (when

the other ingredients are available); we leave their formulation to the interested reader,

and highlight instead an application specific to this case pointed out in [10], as well as a

new application to the nonvanishing conjecture for p-adic heights.

A new proof of a result of Greenberg and Stevens. As noted in [10, Remark 5.2.3],
the anticylcotomic formula indicated in the previous remark, combined with a result of

5An assumption of this sort is equally necessary in the proof of the main theorem of [9] (see
Appendix B).

6Of course, this is a long detour to get there; readers interested exclusively in the removal of
the ‘p splits’ assumption from Perrin-Riou’s formula, or from its analogue over totally real
fields, may prefer to try and insert the new argument of the present paper into Perrin-Riou’s
proof, or respectively into [8].
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Bertolini and Darmon, gives yet another proof (quite likely the most complicated so far,

but amenable to generalizations) of the following famous result of Greenberg and Stevens

[16]. If A/Q is an elliptic curve of split multiplicative reduction at p, with Néron period
ΩA and p-adic L-function Lp(A,−) on YQ, then Lp(A,1) = 0 and

L′
p(A,1) = λp(A) ·

L(A,1)

ΩA
, (1.2.9)

where λp(A) is the L-invariant of Mazur, Tate, and Teitelbaum [21].

We recall a sketch of the argument, referring to [10] for more details. One chooses an
imaginary quadratic field E such that p is inert in E and that the twist A(E) satisfies

L
(
A(E),1

)
�=0. By the anticyclotomic p-adic Gross–Zagier formula, L′

p(AE,1) is the value

at χ= 1 of the height of an anticyclotomic family P of Heegner points. It is shown in [2,

§5.2] that the value P(1) equals, in an extended Selmer group, the Tate parameter qA,p

of AQp
multiplied by a square root of L(AE,1)/ΩAE

. The height of qA,p, in the ‘extended’

sense of [21, 25], essentially equals λp(A). This shows that after harmless multiplication

by L
(
A(E),1

)
/ΩA(E) , the two sides of equation (1.2.9) are equal.

Exceptional cases and nonvanishing results. Suppose that A/Q has multiplicative

reduction at a prime p inert in E, and that L(AE,1) �= 0. Then for all but finitely many
anticyclotomic characters χ of p-power conductor, a Heegner point in AE(χ) is nonzero

and the p-adic height pairing on AE(χ) is nondegenerate. This follows from noting,

similarly to before, that in the p-adic Gross–Zagier formula in anticyclotomic families
for AE , both sides are nonzero since the height side specializes, at the character χ = 1,

to a nonzero multiple of λp(A), which is in turn nonzero by [1].

A similar argument, applied to the formula in Hida families of [13], will yield the
following result: if A/Q is an elliptic curve with multiplicative reduction and L(A,1) �= 0,

then the Selmer group of the self-dual Hida family f through A has generic rank 1, and

neither the height regulator nor the cyclotomic derivative of the p-adic L-function of f

vanishes. The details will appear in [13].

1.3. Organization of the paper

In §2, we restate our theorems in an equivalent form, a direct generalization of the
statements from [9] (up to a correction involving a factor of 2, discussed in Appendix B).

In §3 we recall the proof strategy from [9], with suitable modifications and corrections.

The new argument to treat p-adic local heights in the nonsplit case is developed in §4.
We conclude with two appendices, one dedicated to some local results and the other

containing a list of errata to [9].

2. Comparison with [9]

We compare Theorems A and B with the corresponding results from [9]. We continue

with the setup and notation of §1.2.
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2.1. The p-adic L-function

We deduce our Theorem A from [9, Theorem A].

Let σ∞ be the nearly p-ordinary, M -rational [9, Definition 1.2.1] representation of

GL2(A) attached to A as in [9]. In [9, Theorem A], we constructed a p-adic L-function

Lp,α(σE),

which is a bounded function on a rigid space Y ′rig
/L (denoted by Y ′ in [9]). In the

construction of that theorem (and in all this paper), we use the same additive character

ψp =
∏

v|pψv as in Theorem A (and see the correction in Appendix B for the exact ring

of definition of Lp,α(σE)).
The space Y ′rig = Y ′rig

ω,V p parametrizes certain continuous p-adic characters of E×\E×
A

invariant under an arbitrarily fixed compact open subgroup V p ⊂ E×
Ap∞ . Boundedness

means precisely that we may (and do) identify Lp,α(σE) with a function on a correspond-

ing scheme

Y ′ ⊂ SpecOL

�
E×\E×

A∞/V p
�
⊗L (2.1.1)

that, when also viewed as a space of characters χ′, is the subscheme cut out by the

closed condition ω ·χ′
| ̂Op,×

F

= 1. Similarly to YF , the scheme Y ′ contains a 0-dimensional

subscheme Y ′l.c. parametrizing the locally constant characters in Y ′. The function

Lp,α(σE) is characterized by the following property. Denote by DK the discriminant
of a number field K. Then at all χ′ ∈ Y ′ with underlying embedding ι : L ↪→C, we have

Lp,α(σE)(χ
′) =
∏
v|p

Z◦
v (χ

′
v,ψv) ·

π2[F :Q]|DF |1/2
2ζF (2)

·L
(
ιV(A,χ′)

)
(2.1.2)

for certain local factors Z◦
v .

Fix a finite-order character

χ : E×\E×
A∞ ∼=Gal

(
Eab/E

)
→ L(χ)×

satisfying ω ·χ|A∞× = 1, and consider the map

jχ : YF → Y ′,

χF 	→ χ ·χF ◦NEA∞×/A∞× .

Proof of Theorem A. Define

C
(
χ′
p

)
:=

ep
(
V(A,χ′)

)∏
v|pZ

◦
v (χ

′
v,ψv)

. (2.1.3)

We show in Proposition A.1.2 that this is a constant in C ∈ L, independent of χ′
p.

Define

Lp

(
V(A,χ)

)
:=

2ζF (2)

π2[F :Q]|DF |1/2
·C ·L(1,σv,ad) · j∗χLp,α(σE), (2.1.4)
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a function in O(YF ). It is clear from the definition and equation (2.1.2) that it satisfies

the required interpolation property.

2.2. Equivalence of statements

We now restate Theorem B in a form that directly generalizes [9, Theorem B]. It is the

form in which we will prove it, for convenience of reference.

We retain the setup of §1.2. Let dF be the ΓF -differential defined before [9, Theorem
B]. For all v �∞, let dtv be the measure on E×

v /F×
v specified in [9, paragraph after (1.1.2)]

if v �∞ and the measure giving C×/R× volume 2 if v | ∞.

Theorem 2.2.1. Retain the assumptions of Theorem B, and fix a decomposition (,)π =∏
v(,)v, with (1,1)v = 1 if v | ∞. Then for all f1 ∈ π,f2 ∈ π∨,〈
P (f1,χ),P

∨ (f2,χ−1
)〉

= cE ·
∏
v|p

Z◦
v (χv)

−1 ·dFLp,α(σA,E)(χ) ·
∏
v�∞

Q(,)v,dtv
(f1,f2,χ)

(2.2.1)

in ΓF ⊗̂L(χ), where

cE :=
ζF (2)

(π/2)[F :Q]|DE |1/2L(1,η)
∈Q×.

Lemma 2.2.2. Theorem 2.2.1 is equivalent to Theorem B. When every prime v | p splits

in E, it specializes to [9, Theorem B] as corrected in Appendix B.

Proof. The second assertion is immediate; we prove the first one. First, we note that
equation (2.2.1) is equivalent to〈

P (f1,χ),P
∨ (f2,χ−1

)〉
(f3,f4)π

= cE ·
∏
v|p

Z◦
v (χv)

−1 ·dFLp,α(σA,E)(χ) ·2−[F :Q]
∏
v

Q(,)v,dtv
(f1,f2,χ)

(f3,v,f4,v)v
(2.2.2)

for any f3 ∈ π,f4 ∈ π∨ with f3,∞ = f4,∞ = 1 and (f3,f4)π �= 0 (the extra power of 2 comes

from the Archimedean places). The left-hand side of equation (2.2.2) is the same as that
of the formula of Theorem B, and the product of the terms after the L-derivative in the

right-hand side equals

2−[F :Q]

∏
v dtv
dt

·Q
(
f1⊗f2
f3⊗f4

;χ

)
= 21−[F :Q]

∣∣DE/F

∣∣1/2 |DF |1/2π−[F :Q]L(1,η) ·Q
(
f1⊗f2
f3⊗f4

;χ

)
,

because the measure
∏

v dtv (resp., dt) gives E×\A×
E/A

× volume 2
∣∣DE/F

∣∣1/2
|DF |1/2π−[F :Q]L(1,η) (resp., 1).
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Next, we have dFLp,α(σE)(χ) =
1
2d
(
j∗χLp,α(σE)

)
(1), and it is clear from comparing

the interpolation properties that

∏
v|p

Z◦
v (χv)

−1 · 1
2
d
(
j∗χLp,α(σE)

)
(1) =

π2[F :Q]|DF |1/2
2ζF (2)

·ep
(
V(A,χ)

)−1 ·L ′
p

(
V(A,χ),0

)
.

It follows that the right-hand side of equation (2.2.1) equals c ·ep
(
V(A,χ)

)−1 ·L ′
p

(
V(A,χ),0

)
·

Q
(

f1⊗f2
f3⊗f4

;χ
)
, where

c= cE · π
2[F :Q]|DF |1/2

2ζF (2)
·21−[F :Q]

∣∣DE/F

∣∣1/2 |DF |1/2π−[F :Q]L(1,η) = 1.

3. Structure of the proof

We review the formal structure of the proof in [9], dwelling only on those points where

the arguments need to be modified or corrected. For an introductory description with

some more details than are given in §1.1, see [9, §1.7]. Readers interested in a detailed
understanding of the present section are advised to keep a copy of [9] handy.

3.1. Notation and setup

We very briefly review some notation and definitions from [9], which will be used

throughout the paper.

Galois groups. If K is a perfect field, we denote by GK := Gal
(
K/K

)
its absolute

Galois group.

Local fields. For v finite a place of F, we denote by �v a fixed uniformizer and by qF,v

the cardinality of the residue field of Fv. We denote by dv a generator of the absolute

different of Fv, by Dv a generator of the relative discriminant of Ev/Fv (equal to 1 unless

v ramifies in E ), and by ev the ramification degree of Ev/Fv. If w | v is a place of E, we

denote by qv : Ev → Fv and qw : Ew → Fv the relative norm maps.
We denote by ψ =

∏
vψv : F\A→C× the additive character fixed before Theorem A.

Base change of rings and schemes. If R is a ring, R′ is an R-algebra, M is an

R-module, and S is an R-scheme, we denote MR′ =M ⊗RR′,SR′ = S×SpecR SpecR′.

Groups, measures, integration. We adopt the same notation and choices of measures

as in [9, §1.9], including a regularized integration
∫ ∗

. In particular, T :=ResE/FGm,E,Z =
Gm,F , and on the adelic points of T/Z we use two measures dt (the same as introduced

before Theorem 2.2.1) and d◦t. The measure denoted by dt in the introduction will not be

used.
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Operators at p. Let v | p be a place of F. We denote by �v a fixed uniformizer at v.

For r ≥ 1 we let K1
1 (�

r
v)⊂GL2 (OF,v) be the subgroup of matrices which become upper

unipotent upon reduction modulo �r. We denote by

Uv,∗ =K1
1 (�

r
v)

(
1

�−1
v

)
K1

1 (�
r
v), U∗

v =K1
1 (�

r
v)

(
�r

1

)
K1

1 (�
r
v)

the usual double coset operators, and define

wr,v :=

(
1

−�r
v

)
∈GL2(Fv).

We also define wr :=
∏

v|pwr,v ∈GL2(Fp), and if (βv)v|p are characters of F×
v , we denote

βp(�) :=
∏

v|pβv(�v).

Spaces of characters. We denote by YF ,Y ′,Y , respectively, the schemes over L
defined in formulas (1.2.7) and (2.1.1) and the subscheme of Y cut out by the condition

χ|A∞× = ω−1. We add to this notation a superscript ‘l.c.’ to denote the ind-subschemes

of locally constant characters (which has a model over a finite extension of M in L).
Let IY /Y ′ be the ideal sheaf of Y ⊂ Y ′. If M is a coherent OY ′ -module, we denote

dF : M ⊗OY ′ IY /Y ′ → M ⊗OY ′ IY /Y ′/I 2
Y /Y ′ = M|Y ⊗̂ΓF

the normal derivative (compare the definition before [9, Theorem B]).

Kirillov models. Let σ∞ =
⊗

v�∞σv be the M -rational automorphic representation

of GL2(A) attached to A, and denote abusively still by σ∞ its base change to L. For

every place v the representations σv of B×
v and πv of GL2(Fv) are Jacquet–Langlands

correspondents.

For v | p, we denote by

Kψv
: σv → C∞ (F×

v ,L
)

a fixed rational Kirillov model.

Orthogonal spaces. We define V :=B equipped with the reduced norm q, a quadratic

form valued in A. The image of EA is a subspace V1 of the orthogonal space V, and we
let V2 be its orthogonal complement. The restriction q|V1

is the adelization of the norm

of E/F .

Schwartz spaces and Weil representation. If V′ is any one of the spaces already

discussed, we denote by S (V′ ×A×) =
⊗′

v S (V′
v ×F×

v ) the Fock space of Schwartz
functions considered in [9]. (This differs from the usual Schwartz space only at infinity.)

There is a Weil representation

r = rψ : GL2(A)×O(V,q)→ EndS (V×A×),

defined as in [9, §3.1]. The orthogonal group of V naturally contains the product

T (A)×T (A) acting by left and right multiplication on V. The Weil representation also
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depends on a choice of additive characters ψ. The restriction r|T (A)×T (A) preserves the
decomposition V1⊕V2, hence it accordingly decomposes as r1⊕ r2.

Special data at p. We list the functions at the places v | p that we use.

Define

Wv(y) := 1OF,v−0(y)|y|vαv(y), (3.1.1)

the ordinary vector in the fixed Kirillov model Kψv
of σA,v. We consider

ϕv = ϕv,r := K −1
ψv

(
αv(�v)

−rwrWv

)
∈ σv. (3.1.2)

Now we consider Schwartz functions. We let

Bv
∼=M2(Fv)

be the indefinite quaternion algebra over Fv; this choice is justified a posteriori by

Corollary A.2.3. The following choices of functions correct and modify the ones fixed in
[9] (compare the errata in Appendix B); note in particular that we will use two different

functions on V2,v.

Decompose orthogonally Vv =V1,v⊕V2,v, where V1,v =Ev under the fixed embedding
EA∞ ↪→ B∞. We define the following Schwartz functions on, respectively, F×

v and its

product with V1,v, V2,v, Vv:

φF,r(u) := δ1,UF,r
(u), where δ1,UF,r

(u) :=
vol
(
O×

F,v

)
vol(1+�rOF,v)

11+
rOF,v
(u),

φ1,r(x1,u) := δ1,UT,r
(x1)δ1,UF,r

(u), where δ1,UT,r
(x1) =

vol(OE,v)

vol(1+�rOE,v)
11+
rOE,v

(x1),

(3.1.3)

and

φ◦
2(x2,u) := 1OV2,v

(x2)1O×
F,v

(u),

φ2,r(x2,u) := e−1
v |d|v ·1OV2,v

∩q−1(−1+
rOF,v)(x2)11+
rOF,v
(u),

φr(x,u) := φ1,r(x1,u)φ2,r(x2,u).

(3.1.4)

p-adic modular forms and q-expansions. In [9, §2], we defined the notion of Hilbert
automorphic forms and twisted Hilbert automorphic forms (the latter depend on an

extra variable u ∈A×). We also defined the associated space of q-expansions, and a less

redundant space of reduced q-expansions. When the coefficient field is a finite extension

L of Qp, these spaces are endowed with a topology. We have an (injective) reduced-q-
expansion map on modular forms, denoted by

ϕ′ 	→ qϕ′.

The image of modular forms (resp., cusp forms) of level KpK1
1 (p

∞)⊂GL2(A
p∞), parallel

weight 2, and central character ω−1 is denoted byM=M
(
Kp,ω−1

)
(resp., S). The closure
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of M (resp., S) in the space of q-expansions with coefficients in L is denoted M′ (resp.,
S′) and its elements are called p-adic modular forms (resp., cusp forms).

If Y ? =YF ,Y ′, we define the notion of a Y ?-family of modular forms by copying word
for word [9, Definition 2.1.3]; the resulting notion coincides with that of bounded families

on the analogous rigid spaces considered there.

For a finite set of places S disjoint from those above p, we have also defined a certain
quotient space S

′
S of cuspidal reduced q-expansions modulo those whose coefficients of

index a ∈ F×AS∞× all vanish. According to [9, Lemma 2.1.2], for any S the reduced-q-

expansion map induces an injection

S ↪→ S
′
S . (3.1.5)

p-adic Petersson product and p-critical forms. For ϕp ∈ σ, we defined in [9,

Proposition 2.4.4] a functional

�ϕp,α : M
(
Kp,ω−1,L

)
→ L, (3.1.6)

whose restriction to classical modular forms equals, up to an adjoint L-value, the limit

as r→∞ of Petersson products with antiholomorphic forms ϕpϕp,r ∈ σ with component
ϕp,r =

∏
v|pϕv,r as in equation (3.1.2).

Set v | p. We say that a form or q-expansion over a finite-dimensional Qp-vector space

L is v-critical if its coefficients a∗ (where ∗ ∈A∞×) satisfy

am
s
v
=O
(
qsF,v

)
(3.1.7)

in L, uniformly in m ∈A∞×. Here for two functions f,g : N→ L, we write

f =O(g)⇐⇒ there is a constantc > 0such that |f(s)| ≤ c|g(s)| for all sufficiently large s.

The space of p-critical forms is the sum of the spaces of v -critical forms for v | p. Any
element in those spaces is annihilated by �ϕp,α.

3.2. Analytic kernel

The analytic kernel is a p-adic family of theta-Eisenstein series, related to the p-adic
L-function. We review its main properties.

Proposition 3.2.1. There exist p-adic families of q-expansions of modular forms E over

YF and I over Y ′, satisfying the following:

1. For any χF ∈Y l.c.
F (C) and any r= (rv)v|p satisfying c(χF ) | pr, we have the identity

of q-expansions of twisted modular forms of weight 1:

E (u,φp∞
2 ;χF ) = |DF |

L(p)(1,ηχF )

L(p)(1,η)
qEr(u,φ2,χF ),

where

Er(g,u,φ2,χF ) :=
∑

γ∈P 1(F )\SL2(F )

δχF ,r(γgwr)r(γg)φ2(0,u) (3.2.1)

https://doi.org/10.1017/S1474748021000608 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000608


The p-adic Gross–Zagier Formula at Nonsplit Primes 2215

is the Eisenstein series defined in [9, §3.2], with respect to φ2 = φp∞
2 (χF )φ

◦
2,p∞, with

φ◦
2,v as in formula (3.1.4) for v | p and φ2,v(χv) for v �∞ and φ◦

2,v for v |∞ as defined

in [9, §3.2].
2. For φ1 ∈ S (V1×A×) and χ′ ∈ Y ′l.c., consider the twisted modular form of weight

1 with parameter t ∈ E×
A:

θ(g,(t,1)u,φ1) :=
∑
x1∈E

r1(g,(t,1))φ1(x,u). (3.2.2)

For any χ′ ∈Y ′l.c., define χF := ω−1χ′
|A× ∈Y l.c.

F . Then for any r= (rv)v|p satisfying

rv ≥ 1 and c(χF ) | pr, we have

I (φp∞;χ′) =
cUp |DE |1/2
|DF |1/2

∫ ∗

[T ]

χ′(t)
∑

u∈μ2
Up\F×

qθ((t,1),u,φ1;χ
′)E (q(t)u,φp∞

2 ;χF )d
◦t,

(3.2.3)

where for v | p, we have φ1,v = φ1,v,r is as in formula (3.1.3).

3. We have

�ϕp,α(I (φp∞)) = Lp,α(σE) ·
∏
v|p

|d|2v|D|v
∏
v�p∞

R�
v (Wv,φv,χ

′
v), (3.2.4)

where the local terms R�
v are as in [9, Propositions 3.5.1, 3.6.1].

Proof. Part 1 is [9, Proposition 3.3.2]. Part 2 summarizes [9, §3.4]. Part 3 is [9, (3.7.1)],

with the correction of Appendix B.

Derivative of the analytic kernel. We denote

I ′(φp∞;χ) := dFI (φp∞;χ), (3.2.5)

a p-adic modular form with coefficients in ΓF ⊗̂L(χ).

3.3. Geometric kernel

The geometric kernel function [9, §§5.2, 5.3] is related to the heights of Heegner points.

We recall its construction and modularity.

CM divisors. For any x ∈ B∞×, we have a Hecke translation Tx : X → X, and a

Hecke correspondence Z(x)U on XU ×XU . Fix any P ∈ XE× (
Eab
)
, and for x ∈ B∞×,

let [x] := TxP be the Hecke-translate of P by x, and let [x]U be its image in XU . If H/E

is any finite extension, the points in XU,H corresponding to Galois orbits of points of the

form [x]U are called CM points (for the CM field E ).
Let Cl(XU,F )Q ⊃ Cl0(XU,F )Q be the space of divisor classes with Q-coefficients and

its subspace consisting of classes with degree 0 on every connected component. Denote by

( )
0
: Cl(XU,F )Q →Cl0(XU,F )Q the linear section of the inclusion whose kernel is spanned
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by the push-forwards to XU,F of the classes of the canonical bundles of the connected
components of XU ′,F , for any sufficiently small U ′.
We define the χ-isotypic CM divisors

tχ :=

∫ ∗

[T ]

χ(t)
[
t−1
]
U
d◦t ∈Div

(
XU,F

)
L(χ)

,

t0χ :=

∫ ∗

[T ]

χ(t)
[
t−1
]0
U
d◦t ∈Div0

(
XU,F

)
L(χ)

,

where the integrations simply reduce to (normalized) finite sums.

Generating series. For a ∈A∞×, φ∞ ∈ S (V×A×), consider the correspondences

Z̃a(φ
∞) := cUpwU |a|

∑
x∈U\B∞×/U

φ∞ (x,aq(x)−1
)
Z(x)U, (3.3.1)

where wU = |{±1}∩U | and cUp is defined in [9, (3.4.3)]. By [9, Theorem 5.2.1] (due to

Yuan, Zhang, and Zhang), there is an automorphic form

Z̃(φ∞) ∈ C∞(GL2(F )\GL2(A),C)⊗QPic(XU ×XU )Q, (3.3.2)

whose ath reduced coefficient is the image of Z̃a(φ
∞) for each a ∈A∞×.

Let

〈 , 〉= 〈 , 〉X : J∨ (F )×J
(
F
)
→ ΓF ⊗̂L (3.3.3)

be the p-adic height pairing defined as in7 [9, Lemma 5.3.1]. (We abusively omit the
subscript X, as we will no longer need to use the pairing on AE(χ)⊗A∨

E(χ).)

We define the geometric kernel to be

Z̃(φ∞,χ) :=
∑

a∈F×

〈
Z̃a(φ

∞)[1]0U,t
0
χ

〉
qa. (3.3.4)

By [I, Proposition 5.3.2 and the formula after its proof], the series Z̃(φ∞,χ) is (the q-

expansion of) a weight 2 cuspidal Hilbert modular form of central character ω−1, with

coefficients in ΓF ⊗̂L(χ).

Geometric kernel and Shimizu lifts. Let

θιp :
(
σ∞⊗S (V∞×A∞,×)

)
⊗M L→ (π⊗π∨)⊗M,ιp L

be Shimizu’s theta lifting defined in [9, §5.1]. Let

Talg : π
U ⊗M π∨,U →Hom(JU,J

∨
U )⊗M

be defined by Talg(f1,f2) := f∨
2 ◦f1.

7There is a typo in loc. cit. (also noted in Appendix B): the left-hand side of the last equation
in the statement should be

〈
f ′
1(P1),f

′
2(P2)

〉
J,∗.
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Proposition 3.3.1. If φv = φr,v is as in formula (3.1.4) for all v | p, then for any

sufficiently large r′, the geometric kernel

Z̃(φ∞,χ)

is invariant under
∏

v|pK
1
1 (�

r′

v ), and it satisfies

�ϕp,α

(
Z̃(φ∞,χ)

)
= 2|DF |1/2|DE |1/2L(1,η) ·

〈
Talg,ιp

(
θιp

(
ϕ,αp|·|p(�)−r′w−1

r′ φ
))

Pχ,P
−1
χ

〉
X
. (3.3.5)

Proof. The invariance under
∏

v|pK
1
1 (�

r′

v ) follows from the invariance of φr under the

action of (1 OF,p

1
) and the continuity of the Weil representation. The proof of equation

(3.3.5) is indicated in [9, proof of Proposition 5.4.3] (with the correction of Appendix B).

3.4. Kernel identity

We state our kernel identity and recall how it implies the main theorem.

Assumptions on the data. Consider the following local assumptions on the data at
primes above p:

Assumption 3.4.1. Let U◦
F,v := 1+�n

v OF,v with n ≥ 1 be such that ωv is invariant
under U◦

F,v. The character χp is sufficiently ramified in the sense that it is nontrivial on

V ◦
p :=
∏
v|p

q−1
v|OE,v

(
U◦
F,v

)
⊂ O×

E,p.

(Recall from §3.1 that qv : Ev → Fv is the norm map.)

Under this assumption, we have tχ = t0χ; see [I, Proposition 8.1.1.3], where ξU ∈Cl(XU )Q
denotes the Hodge class defining the section Cl(XU )Q → Cl0(XU )Q. The technical

advantage gained, which is the same as in [I] and is implicitly reaped in Theorem 3.6.1, is

that one may analyze the height-generating series purely in terms of pairs of CM divisors
of degree 0, thus avoiding a study of ξU and the recourse to p-adic Arakelov theory made

in [8].

Assumption 3.4.2. For each v | p, the open compact Uv ⊂B×
v satisfies the following:

– Uv = Uv,r = 1+�rM2 (OF,v) for some r ≥ 1.

– The integer r ≥ n is sufficiently large that the characters χv and αv ◦ qv of E×
v are

invariant under Uv,r ∩O×
E,v.

Convention on citations from [9]. In [9], we denoted by Snonsplit the set of places of

F nonsplit in E, and by Sp the set of places of F above p. When referring to results from

[9], we henceforth stipulate that one should read any assumption such as ‘set v ∈ Snonsplit’
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or ‘let v be a place in F nonsplit in E ’ as ‘set v ∈ Snonsplit−Sp’. Similarly, the set S1

fixed in [9, §6.1] should be understood to consist only of places not above p.

Theorem 3.4.3 (kernel identity). Assume the hypotheses of Theorem B, and that

U,ϕp,φp∞,χ,r satisfy the assumptions of [9, §6.1] as well as Assumptions 3.4.1 and 3.4.2.

Define φp :=⊗v|pφv,r, with φv,r =formula (3.1.4). Then

�ϕp,α(dFI (φp∞;χ)) = 2|DF |L(p)(1,η) · �ϕp,α

(
Z̃(φ∞,χ)

)
.

The elements of the proof will be gathered in §3.6.

Lemma 3.4.4. Theorem 3.4.3 implies Theorem 2.2.1.

Proof. As in [9, Proposition 5.4.3] as corrected in Appendix B, we consider the following

equivalent (by [9, Lemma 5.3.1]) form of the identity of Theorem 2.2.1:〈
Talg,ιp(f1⊗f2)Pχ,Pχ−1

〉
J

=
ζ∞F (2)

(π2/2)
[F :Q] |DE |1/2L(1,η)

∏
v|p

Z◦
v (αv,χv)

−1 ·dFLp,α(σA,E)(χ) ·Q(f1,f2,χ), (3.4.1)

where ιp : M ↪→ L(χ), and Pχ = −
∫
[T ]

Tt(P − ξP )χ(t)dt ∈ J
(
F
)
L(χ)

. By linearity, equation

(3.4.1) extends to an identity that makes sense for any element f ∈ π ⊗ π∨. By the

multiplicity 1 result for E×
A∞ -invariant linear functionals on each of π,π∨, it suffices

to prove equation (3.4.1) for one element f ∈ π⊗π∨ such that Q(f,χ) �= 0 (compare [29,

Lemma 3.23]).
We claim that Theorem 3.4.3 gives equation (3.4.1) for f = θ(ϕ,φ), where:

– ϕ∞ is standard antiholomoprhic in the sense of [9] and φ∞ is standard in the sense
of [9]; and

– for all v | p, we have that ϕv =equation (3.1.2) and φv = φv,r =formula (3.1.4) for any

sufficiently large r.

The claim follows from equations (3.2.4) and (3.3.5), the local comparison between R�
v

and Qv ◦ θv for v � p of [9, Lemma 5.1.1], and the local calculation at v|p of Proposition

A.2.2.
Finally, the existence of ϕ,φ satisfying both the required assumptions and Q(θ(ϕ,φ)) �=0

follows from [9, Lemma 6.1.6] away from p, and the explicit formula of Proposition A.2.2

at p.

3.5. Derivative of the analytic kernel

We start by studying the incoherent Eisenstein series E (φp∞
2 ). For a ∈ F×

v , denote by

W ◦
a,v

the normalized local Whittaker function of Er

(
φp∞
2 (χF )φ

◦
2,p,χF

)
= formula (3.2.1),

defined as in [9, Proposition 3.2.1 and the paragraph after its proof].
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The following reviews and corrects [9, Proposition 7.1.1]:

Proposition 3.5.1. For each v | p, let φ2,v = φ2,r,v be as in formula (3.1.4).

1. Let v be a place of F and set a ∈ F×
v .

(a) If a is not represented by (V2,v,uq), then W ◦
a,v(g,u,1) = 0.

(b) (Local Siegel–Weil formula.) If v � p and there exists xa ∈ V2,v such that

uq(xa) = a, then

W ◦
a,v ((

y
1),u,1) =

∫
E1

v

r ((y 1),h)φ2,v(xa,u)dh.

(c) (Local Siegel–Weil formula at p.) If v | p, a∈−1+�rOF,v, and u∈ 1+�rOF,v,

let xa ∈V2,v be such that uq(xa) = a. Then

W ◦
a,v ((

y
1),u,1) = |d|v

∫
E1

v

r ((y 1),h)φ2,v(xa,u)dh. (3.5.1)

2. For any a ∈ F×
v ∩
∏

v|p (−1+�rOF,v), u ∈ F×∩
∏

v|p (1+�rOF,v), there is a place
v � p of F such that a is not represented by (V2,uq).

Proof. Parts 1(a) and (b) are as in [9, Proposition 7.1.1]. Before continuing, observe
that under our assumptions, a is always represented by (V2,v,uqv) for all v | p: this is

clear if v splits in E, and up to possibly enlarging the integer r, it may be seen by the

local constancy of qv and the explicit identity qv(jv) = −1, where jv=formula (4.1.2) if
v is nonsplit. Then part 1(c) follows by explicit computation of both sides (starting, for

example, as in [29, proof of Proposition 6.8] for the left-hand side). Explicitly, we have

equation (3.5.1) ={
e−1
v |d|vvol

(
E1

v ∩O×
E,v,dh

)
|y|1/21OF,v

(ay)1O×
F,v

(
y−1u
)

if v(a)≥ 0 and v(u) = 0,

0 otherwise.

Finally, part 2 follows from the observation of the previous paragraph and

[29, Lemma 6.3].

Lemma 3.5.2. Suppose that for all v | p, we have that φ1,v = φ1,r,v is as in formula
(3.1.3). Then for any t ∈ T (A), the ath q-expansion coefficient of the the theta series of

formula (3.2.2) vanishes unless

a ∈
⋂
v|p

1+�rOF,v.

Proof. This is straightforward.

Denote

Ur
p,∗ :=

⎛⎝∏
v|p

Uv,∗

⎞⎠r

,
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an operator on modular forms that extends to an operator on all the spaces of p-adic
q-expansions defined so far.

Corollary 3.5.3. Suppose that φp∞ ∈ S (Vp∞
2 ×Ap∞,×)satisfies the assumptions of [9,

§6.1]. Set χ ∈ Y l.c.
ω . For any sufficiently large r, we have

Ur
p,∗I (φp∞;χ) = 0.

Proof. For the first assertion, we need to show that the ath reduced q-expansion coeffi-

cient of I vanishes for all a satisfying v(a)≥ r for all v | p. By the defining property (3.2.3)

of I (χ′) and the choice of φp, the group T (Fp)⊂ T (A) acts trivially on the q-expansion
coefficients of I (χ′). The remaining integration on T (F )Z(A)V p\T (A)/T (Fp) is a finite

sum, so the coefficients a are a sum of products of the coefficients of index a1 of θ and

of index a2 of E (1), for pairs (a1,a2) with a1+a2 = a. When a= 0, the vanishing follows
from the vanishing of the constant term of E , which is proved as in [29, Proposition 6.7].

For a �= 0, by Lemma 3.5.2 only the pairs (a1,a2) with a1 ∈
⋂

v|p 1+�rOF,v contribute.

If v(a)≥ r for v | p, this forces a2 ∈
⋂

v|p−1+�r
vOF,v. Then the coefficient of index a2 of

E (1) vanishes by Proposition 3.5.1.

We can now proceed as in [9, §7.2], except for the insertion of the operator Ur
p,∗. (This

will be innocuous for the purposes of Theorem 3.4.3, since the kernel of Ur
p,∗ is contained

in the kernel of �ϕp,α.) We obtain, under the assumptions of [9, §6.1], a decomposition of

formula (3.2.5)

Ur
p,∗I

′(φp∞;χ) =
∑

v∈Snonsplit−Sp

Ur
p,∗I

′(φp∞;χ)(v) (3.5.2)

valid in the space S of p-adic q-expansions with coefficients in ΓF ⊗̂L(χ) (see [9, §6.1] for
the definition of I ′(φp∞;χ)(v)).

3.6. Decomposition of the geometric kernel and comparison

Suppose that Assumptions 3.4.1 and 3.4.2, as well as the assumptions of [9, §6.1], are
satisfied. Then we may decompose [9, §8.2] the generating series (3.3.4) as

Z̃(φ∞,χ) =
∑
v

Z̃(φ∞,χ)(v), (3.6.1)

according to the decomposition 〈 , 〉X =
∑

v〈 , 〉X,v of the height pairing. Here the sum
runs over all finite places of F.

The following is the main result of [9] on the local comparison away from p. Let S′ =S′
S1

be the quotient of the space of p-adic q-expansions recalled before formula (3.1.5).

Theorem 3.6.1 ([9, Theorem 8.3.2]). Let φ∞ = φp∞φp with φp =
∏

v|pφv as in formula
(3.1.4). Suppose that Assumptions 3.4.1 and 3.4.2, as well as the assumptions of [9, §6.1],
are satisfied. Then we have the following identities of reduced q-expansions in S′:

1. If v ∈ Ssplit−Sp, then

Z̃(φ∞,χ)(v) = 0.
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2. If v ∈ Snonsplit−S1−Sp, then

Ur
p,∗I

′(φp∞;χ)(v) = 2|DF |L(p)(1,η)U
r
p,∗Z̃(φ∞,χ)(v).

3. If v ∈ S1, then

Ur
p,∗I

′(φp∞;χ)(v), Ur
p,∗Z̃(φ∞,χ)(v)

are theta series attached to a quaternion algebra over F.

4. The sum

Ur
p,∗Z̃(φ∞,χ)(p) :=

∑
v∈Sp

Ur
p,∗Z̃(φ∞,χ)(v)

belongs to the isomorphic image S⊂ S′of the space of p-adic modular forms S.

By this theorem and the decompositions of I ′ and Z̃, the proof of the kernel identity

of Theorem 3.4.3 (hence of the main theorem) is now reduced to showing the following

proposition. (See [9, §8.3, last paragraph] for the details of the deduction.)

Proposition 3.6.2. Retain the assumptions of Theorem 3.6.1, and further assume that

VpA is potentially crystalline at all v | p. Then the p-adic modular form

Ur
p,∗Z̃(φ∞,χ)(p) ∈ S

is annihilated by �ϕp,α.

Let S be a finite set of non-Archimedean places of F such that for all v /∈ S, all the
data are unramified, Uv is maximal, and φv is standard. Let K =KpKp be the level of

the modular form Z̃(φ∞), and let

Tιp(σ
∨) ∈ H S(L) = H S(M)⊗M,ιp L

be any σ∨-idempotent in the Hecke algebra as in [9, Proposition 2.4.4]. By that result,

in order to establish Proposition 3.6.2 it suffices to prove that

�ϕp,α

(
Ur

p,∗Tιp(σ
∨)Z̃(φ∞,χ)(p)

)
= 0. (3.6.2)

As in [9], we will in fact prove the following, which implies equation (3.6.2):

Proposition 3.6.3. Let v | p. Under the assumptions of Proposition 3.6.2, for all v | p,
the element

Tιp(σ
∨)Z̃(φ∞,χ)(v) ∈ S′

is v-critical in the sense of equation (3.1.7).

The proof will occupy the following section.

https://doi.org/10.1017/S1474748021000608 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000608


2222 D. Disegni

4. Local heights at p

The goal of this section is to prove Proposition 3.6.3, whose assumptions we retain
throughout except for an innocuous modification to the data at the places v | p. Namely,

let φ̃v be the Schwartz function denoted by φr in formula (3.1.4), and let Ũv ⊂B×
v be the

open compact subgroup denoted by Uv,r in Assumption 3.4.2. Then we define

Uv := ŨvU
◦
F,v, φv :=−

∫
U◦

F,v

r(z,1)φ̃v dz.

Since χv|F×
v

= ω−1
v is by construction invariant under U◦

F,v, the geometric kernels

Z̃
(
φp∞φ̃p,χ

)
and Z̃ (φp∞φp,χ) are equal. Therefore we may work on the curve XU .

We fix a place v | p. If v splits in E, then the desired result is proven in [9, §9] with
the correction in Appendix B. Therefore we may and do assume that v is nonsplit. We

denote by w the place of E above v.
We refer the reader to §1.1 for a general sketch of our argument. It is developed here

as follows. In §4.1, we prove that after acting by a high power of Uv,∗, the coefficients

of the generating series are height pairings with CM points of high v -conductor (norm
relation). After some general background in §4.2, we use the norm relation to prove the

decay property of arithmetic intersection multiplicities in §4.3. Finally, in §4.4 we use

again the norm relation and some p-adic Hodge theory to prove the decay property of
local heights.

4.1. Norm relation for the generating series

The goal of this subsection will be to show that for s large enough, each q-expansion
coefficient of Us

p,∗Z̃(φ∞,χ) is a height pairing of CM divisors, one of which is supported

on Galois orbits of CM points of the ‘pseudo-conductor’ s (as defined later).

We start by considering the Uv,∗-action on the generating series Z̃(φ∞) =

formula (3.3.2). Recall that dv (§3.1) is a generator of the different ideal of Fv.

Lemma 4.1.1. If a ∈A∞× satisfies v(a) ≥ −v(dv), the ath reduced q-expansion coeffi-
cient of Uv,∗Z̃(φ∞) equals

Z̃a
v
(φ∞),

where Z̃a′(φ∞) is defined in formula (3.3.1).

Proof. After computing the Weil action of Uv,∗ on φ, this is a simple change of

variables.

We can factor

Z̃a(φ
∞) = Z̃av (φv∞)Zav

(φv)
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as the composition of the commuting correspondences

Z̃v
a(φ

v∞) := cUp

∑
xv∈Uv\Bv∞×/Uv

φv∞ (xv,aq(xv)−1
)
Z(xv)U,

Zav
(φv) :=

∑
xv∈Uv\B×

v /Uv

φv

(
xv,aq(xv)

−1
)
Z(xv)U . (4.1.1)

From here until after the proof of Lemma 4.1.2, we work in a local situation and drop

v from the notation. Let θ ∈ OE be such that OE = OF + θOF , and write T = TrE/F (θ),
N = NE/F(θ). Fix the embedding E →B =M2(F) to be

t= a+θb 	→
(

a+ bT bN

−b a

)
.

Set

j :=

(
1 T

−1

)
. (4.1.2)

Then j2 = 1, q(j) = −1, and for all t ∈ E, jt = tcj; and in the orthogonal decomposition

V =V1⊕V2, we have

OV2 =V2∩M2(OF ) = jOE .

Let Ξ(�r) = 1+�rOE + j
(
OE ∩ q−1(1+�rOF )

)
; then φ is a fixed multiple of the

characteristic function of Ξ(�r)× (1+�rOF )⊂B×F×. For a ∈ F×, let

Ξ(�r)a = {x ∈ Ξ(�r) | q(x) ∈ a(1+�rOF )}.

Then the local component (4.1.1) of the generating series equals

Za(φ) =
∑

x∈U\Ξ(
r)aU
◦
F /U

Z(x)U,

up to a constant that is independent of a.

Lemma 4.1.2. Let a ∈ F× satisfy v(a) = s ≥ r. The natural map Ξ(�r)aU
◦
F /U →

U\Ξ(�r)aU
◦
F /U is a bijection. For either quotient set, a complete set of representatives

is given by the elements

x(b) := 1+jb

as b ranges through a complete set of representatives for

q−1(1−a(1+�rOF ))/(1+�r+sOE)⊂ (OE/�
r+sOE)

×.

Proof. It is equivalent to prove the same statement for the quotients of Ξ(�r)a by the

group Ũ = 1+�rM2(OF ). By acting on the right with elements of OE ∩U , we can bring
any element of Ξ to one of the form x(b). Write any γ ∈ Ũ as γ = 1+�ru1+j�ru2 with

u1, u2 ∈ OE . Then

x(b)γ = (1+jb)(1+�ru1+j�ru2) = 1+�r(u1+ bcu2)+ j(b+�r(bu1+u2)
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is another element of the form x(b′) if and only if u1 =−bcu2. In this case,

b′ = b+�r(1− q(b))u2 ∈ b(1+�r+sOE).

Thus the class of b modulo �r+s is the only invariant of the quotient Ξ/Ũ . The Ũ -action

on the left similarly preserves this invariant.

We go back to a global setting and notation, restoring the subscripts v and w. Denote by
recEw

: E×
w → G ab

E,w the reciprocity map of class field theory. Recall that for x ∈B∞×, we
have a point [x]U ∈XU ; for a subset Ξ′ ⊂B∞×, we similarly denote [Ξ′]U = {[x]U | x∈Ξ′}.

Lemma 4.1.3. Fix a ∈ OF,v with v(a) = s≥ r.

1. Set b ∈ (OE,w/�
r+s
v OE,w)

×
, t ∈ 1+�r

vOE,w. Then

recEw
(t)[x(b)]U = [x(btc/t)]U .

2. We have[
Ξ(�r

v)aU
◦
F,v

]
U
=
⊔
b

recEw

(
(1+�r

vOE,w)/(1+�r
vOF,v)

(
1+�r+s

v OE,w

))[
x
(
b
)]

U
,

where the Galois action is faithful, and b ranges through a set of representatives for

q−1
v (1−a(1+�r

vOF,v))/
(
1+�r+s

v OE,w

)
·
(
1+�r+v(θ−θc)

v OE,w ∩ q−1
v (1)

)
. (4.1.3)

The size of this set is bounded uniformly in a.

Proof. For part 1, we have

recEw
(t)[x(b)]U = [t+ tjb]U = [t+jtcb]U = [1+jbtc/t]U .

Part 2 follows Lemma 4.1.2 and part 1, noting that the group
(
1+�

r+v(θ−θc)
v OE,w

)
∩

q−1
v (1) is the image of the map t 	→ tc/t on 1+�r

vOE,w. Finally, the map (projection,qv)
gives an injection from

q−1
v (1−a(1+�r

vOF,v))/
(
1+�r+s

v OE,w

)
·
(
1+�r+v(θ−θc)

v OE,w ∩ q−1
v (1)

)
to (

OE,w/�
r+v(θ−θc)
v OE,w

)×
× (1−a(1+�r

vOF,v))/q
(
1+�r+s

v OE,w

)
,

whose size is bounded uniformly in a (more precisely, the second factor is isomorphic to

OF,v/Tr(OE,v) via the map 1−a(1+�r
vx) 	→ x).

We denote by w an extension of the place w to Eab. For s≥ 0, let

Hs ⊂ Eab

be the finite abelian extension of E with norm group U◦
FU

v
T (1+�rv+s

v OE,v), where U
v
T =

Uv∩E×
A∞ . Let H∞ =

⋃
s≥0Hs. If rv is sufficiently large, for all s≥ 0 the extension Hs/H0

is totally ramified at w of degree qsF,v, and

Gal(Hs/H0)∼=Gal(Hs,w/H0,w)∼= (1+�rv
v OE,v)/(1+�rv

v OF,v)
(
1+�rv+s

v OE,v

)
.
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In particular,

[Hs :H0] = [Hs,w :H0,w] = qsF,v.

We will say that a CM point z ∈XH0
has pseudo-conductor s≥ 0 (at w) if H0,w(z) =

Hs,w.

Proposition 4.1.4. There exists an integer d > 0 such that for all a ∈A∞,x with v(a) =
s ≥ rv, there exists a degree 0 divisor Da ∈ d−1Div0 (XU,Hs

), supported on CM points,

such that

Z̃a(φ
∞)[1]U =TrHs/H0

(Da)

in Div0 (XU,H0
) . All prime divisor components of Da are CM points of pseudo-

conductor s.

Proof. This follows from Lemma 4.1.3(2), by taking Da to be a fixed rational multiple

(independent of a) of

Z̃v
a(φ

v∞)
∑

b∈formula (4.1.3)

[
x
(
b
)]

U
.

The divisor is of degree 0 by [9, Proposition 8.1.1]. Its prime components are not defined
over proper subfields Hs′ ⊂Hs, because of the faithfulness statement of Lemma 4.1.3(2).

4.2. Intersection multiplicities on arithmetic surfaces

Before continuing, we gather some definitions and a key result.

Ultrametricity of intersections on surfaces. Let X be a 2-dimensional regular
Noetherian scheme, finite flat over a field κ or a discrete valuation ring O with residue field

κ. We denote by ( · )X the usual Z-bilinear intersection-multiplicity pairing of divisors

intersecting properly on X ; for effective divisors Dj (j = 1,2) with ODj
= OX /Ij , it is

defined by

(D1 ·D2)X = lengthκOX /(I1+I2).

The subscript X will be omitted when it is clear from context.

We will need the following result of Garćıa Barroso, González Pérez, and Popescu-
Pampu:

Proposition 4.2.1. Let R be a Noetherian regular local ring of dimension 2, which is

a flat module over a field or a discrete valuation ring. Let Δ be any irreducible curve in
SpecR. Then the function

dΔ(D1,D2) :=

{
(D1 ·Δ)(D2 ·Δ)/(D1 ·D2) if D1 �=D2,

0 if D1 =D2

is an ultrametric distance on the space of irreducible curves in SpecR different from Δ.
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Proof. For those rings R that further satisfy the property of containing C, this is proved
in [15]. The proof only relies on (i) the existence of embedded resolutions of divisors in the

spectra of such rings and (ii) the negativity of the intersection matrix of the exceptional

divisor of a projective birational morphism between spectra of such rings. Both results
still hold under our weaker assumptions: see [20, Theorem 9.2.26] for (i) and [20, Theorem

9.1.27, Remark 9.1.28] for (ii).

Arithmetic intersection multiplicities. Suppose now that X is a 2-dimensional

regular Noetherian scheme, proper flat over a discrete valuation ring O with residue

field κ. A divisor on X is called horizontal (resp., vertical) if each of the irreducible
components of the support |D| is flat over O (resp., contained in the special fiber Xκ).

We extend ( · ) := ( · )X to a bilinear form ( • ) on pairs of divisors on X sharing no

common horizontal irreducible component of the support by

(Xκ •V ) := 0

if V is any vertical divisor.

Denote by X the generic fiber of X . If D ∈ Div0(X) with Zariski closure D in X , a

flat extension of D is a divisor D̂ ∈Div(X )Q such that D̂−D is vertical and

(
D̂ •V

)
= 0

for any vertical divisor V on X . A flat extension of D exists and is unique up to addition
of rational linear combinations of the connected components of Xκ.

The arithmetic intersection multiplicity on divisors with disjoint supports in Div0(X)

is then defined by

mX(D1,D2) :=
(
D1 • D̂2

)
=
(
D̂1 •D2

)
∈Q.

4.3. Decay of intersection multiplicities

We continue using the notation introduced in §4.1. Let mw := mXH0,w
. Developing the

approximation argument sketched in the introduction, we will show that for any degree-0

divisor D on XH0
, we have

mw

(
Z̃a
s(φ∞)[1]U,D

)
=O
(
qsF,v

)
in L, uniformly in a.
Set U0,v := GL2 (OF,v) ⊂ B×

v and X0 := XUvU0,v
, let X0 be the canonical model of

X0,Fv
over OF,v, which is smooth [6], and let X ′

0 be its base change to OH0,w
. Let X be

the integral closure of X ′
0 in XH0,w

, which is a regular model of XH0,w
over OH0,w

, and
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let p: X → X ′
0 be the natural map. Thus we have a diagram

XH0,w

��

�� X

p

��
X0,H0,w

��

��

X ′
0 = X0,OH,w

��
X0,Ev

�� X0,OE,w

of curves and regular integral models. (The bottom row will be used in proving Lemma

4.3.2.)

Some intersection multiplicities. As a preliminary, we first compute the intersection
multiplicities of Zariski closures of CM points with the special fiber of X , then bound

their intersections with horizontal divisors.

We denote by κ the residue field of H0,w and by k the algebraic closure of κ. For a
scheme C and a point y ∈ C , we denote Cy := SpecOC,y.

Lemma 4.3.1. Let zs ∈XH0
be a CM point with pseudo-conductor s, let zs be its closure

in X , and let y ∈ Xκ be its reduction modulo w. Then

(zs · [Xy,κ])Xy
= [κ(y) : κ]qsF,v.

(Recall that, following §3.1, Xy,κ denotes the special fiber of Xy.)

Proof. We will deduce this from Gross’s theory of quasicanonical liftings [18], which we

recall. The situation is purely local, and we drop all subscripts v, w, and w. For a finite
extension K ⊃ E contained in Eab, let Kun be the maximal unramified extension of K

contained in Eab (thus the residue field of Kun is identified with k).

By [6, §7.4], for any supersingular point y0 ∈X0,Oun
E

the completed local ring of X0,Oun
E

at y0 is isomorphic to OEun�u� and is the deformation ring of formal modules studied by

Gross. The main result of [18] is that for any CM point z0 ∈X0,Eun , there exists a unique

integer t (the conductor of z0) such that the following hold. First, the field Eun(z0) is

the abelian extension E(t) of Eun with norm group (OF +�t
vOE)

×
/O×

F , which is totally
ramified of some degree dt. Second, the inclusion of the Zariski closure z0 ↪→X0,Oun

E
gives

rise to a map of complete local rings

OEun�u� → OE(t) = O (z0),

which sends u to a uniformizer �(t) of E(t). It follows that if μt is the minimal polynomial

of �(t),

(z0 ·X0,k)X0,Oun
E

,y0

= dimk OEun�u�/(�E,μt(u)) = dimk OE(t)/�E = dt. (4.3.1)
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Consider now the situation of the lemma. By the projection formula,

(zs · [Xy,κ])Xy
= (zs ·p∗X0,κ0

)Xy

= (p∗zs ·X0,κ)X ′
0,y′

= [H0(zs) : H0 (z0,s)] · (z0,s ·X0,κ)X ′
0,y′

,

where y′ = p(y) and z0,s = p(zs) ∈X0,H0
is a CM point. The last intersection multiplicity

is [κ(y) : κ] times the multiplicities of the base-changed divisors to the ring of integers of

Hun
0 , where z0,s remains an irreducible divisor since H0 (z0,s)⊂H0(zs) is totally ramified

over H0. We perform such base change to OHun
0

without altering the notation. Let z be

the image of z0,s ∈XHun
0

in XEun , and let t be the conductor of z ; so E(t) ⊂Hun
0 (z0,s).

The fiber above z ∼= SpecE(t) in XHun
0

is

SpecE(t)⊗Eun Hun
0 = SpecHun

0 (z0,s)
⊕c

for c=
[
E(t) : Eun

]
· [Hun

0 : Eun]/ [H0 (z0,s) :H0], and z0,s is one of the factors in the right-
hand side. By the projection formula applied to X0×SpecOHun

0
→ X0×SpecOEun and

equation (4.3.1), we have

[H0(zs) : H0 (z0,s)] · (z0,s ·X0,κ)X ′
0,y′

= [κ(y) : κ]c−1 · [H0(zs) : H0 (z0,s)] · [Hun
0 : Eun] ·dt

= [κ(y) : κ] · [H0(zs) :H0] ·d−1
t ·dt = [κ(y) : κ]qsF ,

as desired.

Lemma 4.3.2. Let Δ be an irreducible horizontal divisor in X . The intersection

multiplicities

(Δ · z)

are bounded by an absolute constant as z ranges among CM points of sufficiently large

pseudo-conductor reducing to y.

Proof. The intersection multiplicity (Δ · z) is bounded by the degree of the natural map

q: X →X0,OE,v
near y, times the intersection multiplicities of the push-forward divisors

to X0,OE,v
. Similar to the proof of Lemma 4.3.1, we may estimate this intersection in

the base change of X0 to Oun
E . The base change of the divisor q∗z equals a sum of CM

points of X0,OEun ; because the extensions Hs/H0 are totally ramified, the number of

points in this divisor is bounded by an absolute constant, and the conductors of all those

CM points go to infinity with the pseudo-conductor s of z. Thus it suffices to show that
if Δ0 is a fixed horizontal divisor on X0,Eun , its intersection multiplicity with CM points

of conductor t is bounded as t→∞.

Let z ∈ X0,Oun
E

be a CM point of conductor t, and let y0 ∈ X0,k be the image of the
reduction of t. Now write the image of Δ0 in the completion of X0,OEun at y0 as

Δ̂0 = SpecOEun�u�/(f)⊂ SpecOEun�u�,
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with f =
∑d

i=1 aiu
i an integral nonconstant monic polynomial. Let f̃ ∈ k[u] be the

reduction of f. Then

(Δ0 ·z) = dimk OEun�u�/(f,μt)

= dimk OE(t)/
(
f
(
�(t)
))

= dimk OE(t)/

((
�(t)
)deg(f̃))

= deg
(
f̃
)
≤ d

if t is sufficiently large, since the normalized valuations of �(t) decrease to 0 as t→∞.

This completes the proof of the lemma.

Approximation by vertical divisors. The following proposition contains the essen-
tial new ingredient of this work. We denote by

CM(XH0
)≥s ⊃ CM(XH0

)s

respectively the set of CM points of XH0
that have pseudo-conductor at least and equal

to a given integer s. We denote by V the set of irreducible components of Xκ (henceforth:

‘vertical components’), and if y ∈ Xκ is a closed point, we denote by Vy ⊂ V the set of
vertical components of Xy,κ. We still use a bar to denote Zariski closure.

Proposition 4.3.3. There exist an integer s0 ≥ 1, depending only on XH0
, and a function

(V ,ρ) : CM(XH0
)≥s0

−→ V ×Q×

satisfying the following property:

For every divisor D ∈Div(X )L, there exists a constant sD ≥ s0 depending only on the

support of D, such that if z ∈XH0
is a CM point of conductor s ≥ sD, then (z ·D) may

be computed as follows. Let V = V (z), ρ= ρ(z), and write

D = cXκ+D′

with c ∈ L and D′ ∈Div(X )L a divisor whose support does not contain V. Then

(z ·D) = c[κ(y) : κ]qsF,v +ρ(V •D), (4.3.2)

where y ∈ Xκ denotes the reduction of z modulo w.

Remark 4.3.4. The vertical component V (z) will be characterized as the one maximiz-

ing the intersection multiplicity with z. We refer the reader to [11, §2, Figure 1 in §1]
for an equivalent and possibly more vivid geometric description8 of the relation of V to
zs: one can define pairwise disjoint open subsets (‘geometric basins’) of the Berkovich

analytification of X, labelled by the irreducible components of the special fiber; then zs
belongs to the basin corresponding to V.

Proof. We will omit all subscripts v,w,w and use some of the notation introduced in the

proof of Lemma 4.3.1.

8Note however that the substantial results of [11] hold for the curve X over the field Fv.
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Let y ∈ Xκ be a closed point, and write [Xy,κ] =
∑

V ′∈Vy
eV ′V ′ as divisors. By Lemma

4.3.1, the weighted sum∑
V ′

eV ′ (zs ·V ′) = (zs · [Xy,κ]) = [κ(y) : κ]qsF (4.3.3)

is independent of the choice of a CM point zs ∈XH0
of pseudo-conductor s reducing to

y. As equation (4.3.3) goes to infinity with s (and the coefficients eV ′ are independent of

s), the quantity

maxV ′∈V (zs ·V ′) (4.3.4)

(more precisely, the minimum of those maxima as zs varies in CM(XH0
)s) goes to infinity

with s.

Fix now a CM point zs ∈XH0
of pseudo-conductor s, let y ∈Xκ be its reduction, and let

V ∈ Vy be a vertical component realizing the maximum in expression (4.3.4). Let D �= V
be an irreducible divisor in Xy. Pick any irreducible horizontal divisor Δ �=D,zs in Xy,

and consider the ultrametric distance dΔ of Proposition 4.2.1 for R = OX ,y. (Note that

Δ may be drawn from a finite set independent of zs and D ; in fact, we may fix any set Δ

of at least two irreducible horizontal divisors that are not Zariski closures of CM points,
and for given D pick any Δ ∈Δ−{D}.)
By the choice of V and Lemma 4.3.2, if s is sufficiently large (a condition depending

on D), we have

dΔ (zs,V ) =
(zs ·Δ)(V ·Δ)

(zs ·V )
< dΔ(V ,D),

so that by Proposition 4.2.1,

dΔ (zs,D) = dΔ(V ,D).

Unwinding the definitions,

(zs ·D) = ρ(V ·D) (4.3.5)

for ρ := (zs ·Δ)/(V ·Δ). Applied to a vertical component D = V ′ �= V , formula (4.3.5)
together with Lemma 4.3.2 shows the uniqueness of the maximizing V =: V (zs) for large

s ; it is clear that ρ =: ρ(zs) is then uniquely determined as well. Now the intersection

formula (4.3.2) follows by linearity from equation (4.3.5) and Lemma 4.3.1.

Corollary 4.3.5. If D ∈ Div0 (XH0
)L is any degree-0 divisor, then for all sufficiently

large s and all a,

mw(Z̃a
s(φ∞)[1]U,D) =O(qsF,v)

in L, where the implied constant can be fixed independently of a and s.

Proof. Let D̂ be a flat extension of D to a divisor on X (with coefficients in L), and
abbreviate Za,s := Z̃a
s(φ∞)[1]U . Then by Propositions 4.1.4 and 4.3.3,

mw(Za,s,D) = (Za,s · D̂) =AqsF,v +
∑
i

λi(Vi • D̂)
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for some vertical components Vi ⊂ X and some A, λi ∈ L. By the definition of flat

extension, (Vi •D̂) = 0 for all i. The constant A is a linear combination of the constants c
in equation (4.3.2) (which depend only on D̂), with coefficients whose denominators are

bounded by those of Za,s; by Proposition 4.1.4, the latter are bounded independently of

a and s.

4.4. Decay of local heights

Recall that we need to prove (Proposition 3.6.3) that

Tιp(σ
∨)Z̃(φ∞,χ)(v)

is a v -critical element of S′.
As in [9, §9.2, proof of Proposition 9.2.1], this is reduced to the following. For any s≥ 0,

denote by 〈 , 〉s,w the local height pairing on XHs,w
, which is valued in H×

s,w⊗̂L; and let

〈 , 〉w = [Hs,w : Fv]
−1 ·NHs,w/Fv

(
〈 , 〉s,w

)
,

which is valued in F×
v ⊗̂L⊂ ΓF ⊗̂L and is compatible with varying s by [9, (4.1.6)]. Then

we will show that for all w | v and all a ∈AS1∞,× with v(a) = rv, we have〈
Z̃a
s(φ∞)[1]U,Tιp(σ

∨)tU tχ
〉
w
=O
(
qsF,v

)
in F×

v ⊗̂L(χ),〈
Z̃a
s(φ∞)[1]U,Tιp(σ

∨)tU tχ
〉
0,w

=O
(
qsF,v

)
in H×

0,w⊗̂L(χ),
(4.4.1)

where the second statement implies the first one. Until Lemma 4.4.3, the argument follows

the lines of previous works [9, 24, 27].

The norm relation and heights. Denote by Ns the norm fromHs,w toH0,w, set L
′ :=

L(χ), and let p′ ⊂ OL′ be the maximal ideal. By the norm relation of Proposition 4.1.4,
the aforementioned compatibility [9, (4.1.6)], and the integrality result of [9, Proposition

4.3.2],9〈
Z̃a
s(φ∞)[1]U,Tιp(σ

∨)tU tχ
〉
0,w

=
〈
TrHs/H0

(Da
s),Tιp(σ
∨)tU tχ

〉
0,w

=Ns

(〈
Da
s,Tιp(σ

∨)tU tχ
〉
s,w

)
∈ p′−(d00+d0+d1,s+d2,s)Ns

(
H×

s,w⊗̂OL′

) (4.4.2)

for some integers di,(s) ≥ 0 that we now define and study.

Boundedness of denominators. Set

V ′ := πU
A∨ ⊗M VpA

∨(χ−1)⊂ V := VpJU ⊗Qp
L′

9When comparing with the similar argument of [9, §9.2, proof of Proposition 9.2.1], our field
Hs should be assimilated to the H ′

s there.
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considered as GEw
-modules; let V ′′ be its direct complement in the decomposition of V

in [9, (9.2.4)], and let 0→ V ′+ → V ′ → V ′− → 0 be the ordinary filtration analogous to

formula (1.2.6). If ? ∈ {′,′′,′+}, define T ? := TpJU ⊗Zp
OL′ ∩V ?, and let T ′− = T ′/T ′+.

Then the integers di,(s) are defined as follows:

– d00 accounts for the denominators of the divisors, and it can be taken to be

independent of s by Proposition 4.1.4.

– d0 is such that p′d0T ⊂ T ′⊕T ′′.

– d1,s := lengthOL′H
1 (Hs,w,T

′′∗(1))tors.

– d2,s := lengthOL′H
1
f (Hs,w,T

′)/N∞H1
f (Hs,w,T

′), where N∞ denotes the universal

norms ([23, §6], [9, §4.3]) with respect to the infinite abelian extension of Hs,w cut
out by the closure in G ab

Hs,w
⊃H×

s,w of

Ker

[
H×

s,w

NHs,w/Fv−→ F×
v → ΓF ⊗̂L

]
.

Proposition 4.4.1. Suppose that VpA is potentially crystalline as a representation of
GFv

; then the sequences of integers (d1,s) and (d2,s) are bounded.

We will use the following vanishing result, in which L denotes an algebraic closure of

L′:

Lemma 4.4.2. Set Γ∞ := Gal(H∞,w/Ew) ∼= E×\E×
A∞/UvU◦

F,v. For all Hodge–Tate

characters ψ : GEw
→ L

×
factoring through Γ∞, and for any

V ? ∈
{
V ,V ′′∗(1),V ′+,∗(1),V ′−},

we have

H0
(
Ew,V

?(ψ)
)
= 0.

Proof. The proof is largely similar to that of [9, Lemma 9.2.4], to which we refer for the

background on the p-adic Hodge theory of characters.

We have

H0
(
Ew,V

?
)
=Dcrys

(
V ?(ψ)

)ϕ=1
,

where ϕ is the crystalline Frobenius, and it suffices to prove that Dcrys

(
V ?(ψ)

)ϕd=1
= 0

for d = [Ew : Ew,0], where Ew,0 is the maximal unramified extension of Qp contained in

Ew. As V ′ has been assumed potentially crystalline, it is pure of weight −1, hence so

are all the subquotients of V ′ and V ′∗(1). In particular, ϕd acts with negative weights on
Dcrys

(
V ?
)
for V ? = V ′+,∗(1),V ′−; by [22, Theorem 5.3], this last assertion is also true of

V ? = V ∼= V ∗(1) and its subquotients such as V ? = V ′′∗(1). Therefore, it suffices to show

that ϕd acts with weight 0 on Dcrys(ψ
m) for m such that ψm is crystalline.

https://doi.org/10.1017/S1474748021000608 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000608


The p-adic Gross–Zagier Formula at Nonsplit Primes 2233

Since ψ is trivial on U◦
F , the Hodge–Tate weights (nτ )τ∈Hom(Ew,L) satisfy nτ +nτc = 0,

where c is the complex conjugation of Ew/Fv. The action of ϕd on Dcrys(ψ
m) is by

ψ ◦ recE,w(�w)
−m ·

∏
τ∈Hom(Ew,L)

�mnτ
w ,

(4.4.3)

where �w ∈ Ew is any uniformizer. Choose �w so that �
e(Ew/Fv)
w =�v is a uniformizer

in Fv. Then �c
w = ±�w, so that the second factor in expression (4.4.3) is ±1. On the

other hand, the subgroup F×\F×
A∞/U◦

F,v

(
Uv ∩F×

A∞
)
⊂ Γ∞ is finite, hence �v and �w

have finite order in Γ∞. It follows that the first factor in expression (4.4.3) is a root of

unity too, hence ϕd acts with weight 0 on Dcrys(ψ
m).

Proof of Proposition 4.4.1. By the long exact sequence attached to

0→ T ′′∗(1)→ V ′′∗(1)→ T ′′∗(1)⊗L′/OL′ → 0

and the vanishing of H0 (Hs,w,V
′∗(1)) (which follows from Lemma 4.4.2), we have

H1 (Hs,w,T
′′∗(1))tors

∼=H0
(
Hs,w,T

′′∗(1)⊗OL′ L
′/OL′

)
=H0 (Ew,T

′′∗(1)⊗OL
OL [Gal(Hs,w/Ew)]⊗OL

L′/OL′) .

By [23, Theorems 6.6, 6.9] (or strictly speaking, a slightly generalized form thereof which
still holds true by the arguments in [9, proof of Proposition 4.3.2]) and the vanishing of

H0 (Hs,w,V
′+,∗(1)⊕V ′−) (which follows from Lemma 4.4.2), we have

d2,s ≤ lengthOL′H
0
(
Hs,w,T

′+,∗(1)⊗OL′ L
′/OL′

)
+lengthOL′H

0
(
Hs,w,T

′−⊗OL′ L
′/OL′

)
= lengthOL′H

0
(
Ew,
(
T ′+,∗(1)⊕T ′−)⊗OL

OL [Gal(Hs,w/Ew)]⊗OL
L′/OL′

)
.

Then the boundedness of d1,s and d2,s follows as in [27, proof of Proposition 8.10] from

the vanishing of

H0
(
H∞,w,V

?
)
⊂

⊕
ψ : Γ∞→L

×
Hodge–Tate

H0
(
Ew,V

?(ψ)
)

for V ? ∈ {V ′′∗(1),V ′+,∗(1),V ′}, which is a consequence of Lemma 4.4.2. �

Completion of the proofs. We are ready to reduce our decay statement for local
heights to the decay statement for intersection multiplicities proved in §4.3.

Lemma 4.4.3. For all s′ ≤ s, the restriction of the w-adic valuation yields an isomor-

phism of OL′-modules

w : Ns

(
H×

s,w⊗̂OL′

)
/qs

′ ·
(
H×

0,w⊗̂OL′

)
→ OL′/qs

′
OL′ .

Proof. We drop all subscripts w. Recall that the extension Hs/H0 is totally ramified of

degree qs. Let �s ∈ OHs
be a uniformizer; then ω0 :=Ns(�s) is a uniformizer of H0. For

∗= 0,s we have the decompositions

H×
∗ ⊗̂OL′ = O×

H∗
⊗̂OL′ ⊕�∗⊗OL′ .

https://doi.org/10.1017/S1474748021000608 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000608


2234 D. Disegni

The map Ns respects the decompositions and, by local class field theory, has image

qs ·
(
O×

H0
⊗̂OL′

)
⊕�0⊗OL′ .

The valuation map annihilates the first summand and sends the second one isomorphically

to OL′ . The result follows.

Proof of Proposition 3.6.3. By the comparison of the valuation component of local

heights with arithmetic intersections in [9, Proposition 4.3.1], applied to the curve XU,H0
,

the image of the left-hand side of equation (4.4.2) under w is

m
(
Z̃a
s(φ∞)U [1],Tιp(σ

∨)tU tχ
)
. (4.4.4)

By Corollary 4.3.4 applied to D=Tιp(σ
∨)tU tχ, the right-hand side of expression (4.4.4) is

O
(
qsF,v

)
. By equation (4.4.2), Proposition 4.4.1, and Lemma 4.4.3, we deduce the desired

decay statement (4.4.1).

Summary We have just completed the proof of Proposition 3.6.3. It implies Proposition

3.6.2, which together with Theorem 3.6.1 implies the kernel identity of Theorem 3.4.3. By

Lemma 3.4.4, that implies Theorem 2.2.1, which is in turn an equivalent form of Theorem

B by Lemma 2.2.2.

Appendix A. Local integrals

Throughout this appendix, v denotes a place of F above p unless specified otherwise. We

use some of the notation introduced in §3.1, in particular the Weil representation r (see

[9, §3.1] or [29] for the formulas defining it).

A.1. Interpolation factors

We relate the interpolation factors of the p-adic L-function of this paper with those from
[9].

Lemma A.1.1. Let ξ : E×
w →C× and ψ : Ew →C× be characters, with ψ �= 1. Let dt be

a Haar measure on E×
w . Then∫

E×
w

ξ(t)ψ(t)dt=
dt

dψt
· ξ(−1) ·γ(ξ,ψ)−1.

The left-hand side is to be understood in the sense of analytic continuation from
characters ξ|·|s for �(s)� 0.

Proof. We may fix dt = dψt. Then the result follows from the functional equation for
GL1 [3, (23.4.4)]:

Z(φ,ξ) = γ(ξ,ψ)−1Z
(
φ̂,ξ−1| |

)
, (A.1.1)
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where for a Schwartz function φ on Ew,

Z(φ,ξ) :=

∫
E×

w

φ(t)ξ(t)dψt, φ̂(t) :=

∫
Ew

φ(x)ψ(xt)dψx.

Namely, we insert in equation (A.1.1) the function

φ̂ := δ−1+
n
v OF

:= vol(1+�n
v OF,v,dψt)

−1
1−1+
v

nOF,v
, n≥ 1,

approximating a delta function at t = −1. Then by Fourier inversion, φ(t) =
ˆ̂
φ(−t) =

δ1+
n
v OF

∗ψ(t), which if n is sufficiently large (depending on the conductor of ξ) has the
same integral against ξ as ψ(t).

Proposition A.1.2. The ratio C
(
χ′
p

)
defined in formula (2.1.3) is a constant C ∈ L

independent of χ′
p.

Proof. By the definition of ep
(
V(A,χ′)

)
and a comparison of [9, Lemma A.1.1] with Lemma

A.1.1 applied to
∏

w|vχ
′
wαv|·|v ◦ qw, we have

C
(
χ′
p

)
=
∏
v|p

γ
(
ad
(
Wv(1)

++
)
,ψv

)−1 ∈ L.

A.2. Toric period at p

We compare the toric period at a p-adic place with the interpolation factor. Denote by

Pv ⊂GL2(Fv) the upper triangular Borel subgroup.

Lemma A.2.1. The quotient space K1
1 (�

r′)\GL2(Fv)/Pv admits the set of representa-

tives

n−(c) :=

{
(1c 1) if c �=∞,(

1
−1

)
if c=∞,

c ∈ OF,v/�
r′OF,v ∪{∞}.

Proposition A.2.2. Let χ ∈ Y l.c. be a finite-order character, let r be sufficiently large

(that is, satisfying the v-component of Assumption 3.4.2), let Wv be as in formula (3.1.1),
and let φv = φv,r be as in formula (3.1.4).

Let πv = σv and let ( , )v : πv×π∨
v → L be a duality pairing satisfying the compatibility

of [9, (5.1.2)] with the local Shimizu lift.10 Finally, let Z◦
v (αv,χv) be the interpolation

factor of the p-adic L-function of [9, Theorem A].

Then for all sufficiently large r′ > r,

Q(,),v,d◦tv

(
θv

(
Wv,α|·|v(�v)

−r′vw−1
r′,vφv

)
,χv

)
= |d|2v|D|v ·L(1,ηv)−1 ·Z◦

v (αv,χv),

where Q(,),v,d◦tv uses the measure d◦tv = |d|−1/2
v |D|−1/2

v dt.

10There, the pairing ( , )v is denoted by Fv.
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Proof. We drop all subscripts v, and assume as usual that ψ is our fixed character of
level d−1. Let

Q�
(,)(f1,f2,χv) =

∫
E×/F×

χ(t)(π(t)f1,f2)dt, (A.2.1)

where dt is the usual Haar measure on E×/F×, giving volume |d|1/2|D|1/2 to O×
E /O×

F .
By the definitions and [9, Lemma A.1.1] (which expresses Z◦ as a normalized integral),

it suffices to show that

Q�
(
θ
(
W,α|·|(�)−r′w−1

r′ φ
)
,χ
)
= |d|3/2|D| ·L(1,η)−1 ·

∫
E×

α| · | ◦ q(t)χ(t)ψE(t)dt.

By [9, Lemma 5.1.1] (which spells out a consequence of the normalization of the local

Shimizu lifting) and Lemma A.2.1, we can write

Q� :=Q
(
θ
(
W,α|·|(�)−r′w−1

r′ φr

)
,χv

)
=

∑
c∈P1(OF /
r′)

Q�(c),

where for each c,

Q�(c) := |d|−3/2 ·α| |(�)−r

∫
F×

W
(
(y 1)n

−(c)
)

∫
T (F )

χ(t)

∫
P(
r′)\K1

1(
r′)
|y|r
(
n−(c)kw−1

r

)
φ
(
yt−1,y−1q(t)

)
dkdt

d×y

|y| .

Here P (�r′) = P ∩K1
1 (�

r′).

It is easy to see that Q�(∞) = 0 (observe that φ2,r(0) = 0). For c �=∞, we have

n−(c)w−1
r′ = w−1

r′

(
1 −c�−r′

1

)
,

and when x= (x1,x2) with x2 = 0,

r
(
n−(c)w−1

r′
)
φ(x,u) =

∫
V

ψE(ux1ξ1)ψ(−ucq(ξ))φr

(
ξ,�r′u

)
dξ.

On the support of the integrand, we have v(u) =�−r′ and v(q(ξ))≥ r, by the definition

of φr. If v(c)< r′− r−v(d), the integration in dξ2 gives 0; hence Q�(c) = 0 in that case.

Suppose from now on that v(c)≥ r′− r−v(d). Then ψ(−ucq(ξ)) = 1 and

r
(
n−(c)w−1

r′
)
φ(x,u) = |d|3|D|L(1,η)−1|�|rψE,r

(
�−r′x1

)
δ1,UF ,r(�

ru),

where ψE,r := vol(OE)
−1 · δ1,UT,r

∗ ψE , and we have noted that φ̂2,r(0) = e−1|d| ·
vol
(
q−1(−1+�rOF )∩OV2

)
= |�|r|d|3|D|1/2L(1,η)−1.
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If r′ is sufficiently large, the Whittaker function W is invariant under n−(c). Then

Q�(c) = |d|3/2|D|L(1,η)−1 · lvert�|r−r′α(�)−r′ · |d|1/2ζF,v(1)
−1

·
∫
F×

W ((y 1))

∫
T (F )

χ(t)ψE,r

(
�−r′x1

)
δ1,UF,r

(
�r′y−1q(t)

)
dtd×y,

where |�|−r′ |d|1/2ζF,v(1)
−1 appears as vol(P (�r′)\K1

1 (�
r′)).

Integrating in d×y and summing the foregoing over the q
r+v(d)
F = |d|−1|�|−r contribut-

ing values of c, we find

Q� = |d|3/2|D| ·L(1,η)−1 ·
∫
E×

χ(t)α| | ◦ q(t)ψE(t)dt,

as desired.

Corollary A.2.3. If χp is not exceptional – that is, ep
(
V(A,χ)

)
�=0 – then the quaternion

algebra B over A satisfying H(πB,χ) �= 0 is indefinite at all primes v | p.

Proof. By Propositions A.2.2 and A.1.2, if χp is not exceptional, then for all v | p the

functional Qv ∈H
(
πM2(Fv),χv

)
⊗H
(
π∨
M2(Fv)

,χ−1
v

)
is not identically zero.

Appendix B. Errata to [9]

The salient mistakes are the following: the statement of the main theorem is off by a factor
of 2; the proof given needs a further assumption, (no stronger than) that VpA is potentially

crystalline at all v | p (however, the theorem still holds true without the assumption;

compare Remark 1.2.1); and the Schwartz function φ2,p given by the local Siegel–Weil
formula at p needs to be different from the Schwartz function used to construct the

Eisenstein family.

References in italics are directed to [9], and references in roman letters to the present
paper.

– Theorem A. It should be Lp,α(σE) ∈ O(Y ′)b (with the interpolation property being

correct for the choice of additive character ψp as in Theorem A). For a correct

discussion of the ring of rationality of Lp,α(σE), within the context of a generalized
construction, see [12, Corollary 4.5.4].

– Theorem B. The constant factor should be cE and not cE/2 (the latter is,

according to (1.1.3), the constant factor of the Gross–Zagier formula in Archimedean

coefficients).11 The mistake is introduced in the proof of Proposition 5.4.3 (see later).
The proof works under the further assumption that VpA is potentially crystalline

at all v | p (see the correction to Proposition 9.2.1 ).

– Theorem C. Similarly, the constant factor should be cE/2 in part 3, and cE in part 4.

11The heuristic reason for the difference is that the direct analogue of s �→ L(1/2+s,σE,χ) is
χF �→ Lp (σE)

(
χ ·χF ◦NE/F

)
, whose derivative at χF = 1 is twice our dFLp (σE)(χ), as the

tangent map to χF �→ χ′ = χ ·χF ◦NE/F �→ ω−1 ·χ′
|A× is multiplication by 2.
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– §2.1. The space of p-adic modular forms is the closure of M2

(
KpK1

1 (p
∞)p
)
, not

M2

(
KpK1(p∞)p

)
.

– Proposition 2.4.4.1. The multiplier in equation (2.4.3) should be α|·|(�−r) =∏
v|pαv|·|v (�−r

v ), and the statement holds for forms in M2

(
KpK1

1 (p
r)p
)
. Similarly,

the definition of R◦
r,v in Proposition 3.5.1 should have an extra |�v|−r. The result

of Proposition A.2.2, as modified later, holds true for this definition of R◦
r,v (there,

a complementary mistake appears between the third-last and second-last displayed

equations in the proof).

– Lemma 3.2.2. A factor η(y) is missing in the right-hand side of the formula.

– Proposition 3.2.3.2. The proposition should be corrected as follows: Let v | p and let
φ2,v = φ◦

2,v be as in formula (3.1.4) (of the present paper). Then

W ◦
a,r,v(1,u,χF ) =

{
|dv|3/2|Dv|1/2χF,v(−1) if v(a)≥ 0 and v(u) = 0,

0 otherwise.

– Equation (3.7.1). The right-hand side should have an extra factor of
∏

v|p|d|2v|D|v
owing to the correction to Proposition A.2.2.

– Lemma 5.3.1. The left-hand side of the last equation in the statement should be
〈f ′

1(P1),f
′
2(P2)〉J,∗.

– Proof of Proposition 5.4.3. The second-last displayed equation should have the factor

of 2 on the right hand side, not the left hand side:

2�ϕp,α

(
Z̃(φ∞,χ)

)
= |DF |1/2|DE |1/2L(1,η)

〈
Talg,ιp

(
θιp
(
ϕ,α(�)−rw−1

r φ
))

Pχ,P
−1
χ

〉
.

Then the argument shows that first,〈
Talg,ιp(f1⊗f2)Pχ,Pχ−1

〉
J

=
ζ∞F (2)

(π2/2)
[F :Q] |DE |1/2L(1,η)

∏
v|p

Z◦
v (αv,χv)

−1 ·dFLp,α (σA,E)(χ) ·Q(f1,f2,χ)

(without an incorrect factor of 2 introduced in the denominator of the right-hand

side of (5.4.1) there); and second, that this equation is equivalent to Theorem B as

corrected.
An extra factor

∏
v|p|d|2v|D|v should be inserted in the right-hand sides of the

last and fourth-last displayed equations; compare the corrections to (3.7.1) and

Proposition A.3.1.

– Proposition 7.1.1(b). It should be replaced by Proposition 3.5.1(b) and (c).

– §7.2, third paragraph. The coefficient in the second displayed equation should have

|DE |1/2, not |DE/F |1/2, in the denominator.

– Lemma 9.1.1. This is corrected by Lemma 4.1.1 (this does not significantly affect the
rest).

– Lemma 9.1.5. The extension H∞ is contained in a relative Lubin–Tate extension.

This is the only property used.
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– Proposition 9.2.1. The assumption that VpA is potentially crystalline at all v | p should
be added. The bounded dependence on s of the integer d2 = d2,s was not addressed; it

holds true by the proofs of Proposition 4.4.1 and Lemma 4.4.2, which work verbatim
in the split case (under the comparison given in footnote 8 of §4.4). The definition of

d1,s contains an extra ⊗OL
L/OL.

– Lemma 9.2.4. The statement should be that H0
(
H̃ ′

∞,w,VpJ
∗
U (1)
)

vanishes, and it

this group that should appear in the left-hand side of the first displayed equation in

the proof.

– Lemma A.2.1. The list of representatives is missing the element n−(∞) =
(

0 1
−1 0

)
(compare Lemma A.2.1).

– Proposition A.2.2. The statement should be

R�
r,v (Wv,φv,χ

′
v
ι) = |d|2v|D|v ·Z◦

v (χ
′
v) := |d|2v|D|v ·

ζF,v(2)L(1,ηv)
2

L
(
1/2,σι

E,v,χ
′
v

)∏
w|v

Zw (χ′
w).

The factor |d|2v|D|v missing from [9] should first appear in the right-hand side of the

displayed formula for r
(
w−1

r

)
φ(x,u) in the middle of the proof.

– Proposition A.3.1. It should be replaced by Proposition A.2.2.
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[6] H. Carayol, Sur la mauvaise réduction des courbes de Shimura, Compos. Math. 59(2)
(1986), 151–230.

[7] J. Coates, Motivic p-adic L-functions, in L-Functions and Arithmetic (Durham, 1989),
London Mathematical Society Lecture Note Series, 153, pp. 141–172 (Cambridge Univer-
sity Press, Cambridge, UK, 1991).

[8] D. Disegni, p-adic heights of Heegner points on Shimura curves, Algebra Number Theory
9(7) (2015), 1571–1646.

[9] D. Disegni, The p-adic Gross–Zagier formula on Shimura curves, Compos. Math. 153(10)
(2017), 1987–2074.

https://doi.org/10.1017/S1474748021000608 Published online by Cambridge University Press

https://arxiv.org/pdf/1811.08216.pdf
https://doi.org/10.1017/S1474748021000608


2240 D. Disegni

[10] D. Disegni, On the p-adic Birch and Swinnerton-Dyer conjecture for elliptic curves over
number fields, Kyoto J. Math. 60(2) (2020), 473–510.

[11] D. Disegni, ‘p-adic equidistribution of CM points’, Preprint, 2021,
https://disegni-daniel.perso.math.cnrs.fr/equi.pdf.

[12] D. Disegni, ‘p-adic L-functions for GL2 × GU(1)’, Preprint, 2021,
https://disegni-daniel.perso.math.cnrs.fr/pLF-GL2.pdf.

[13] D. Disegni, ‘The universal p-adic Gross–Zagier formula’, Preprint, 2021,
https://disegni-daniel.perso.math.cnrs.fr/univ.pdf.

[14] J.-M. Fontaine, Représentations l-adiques potentiellement semi-stables, Astérisque 223
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