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Thermal fluctuations have been shown to influence the thinning dynamics of planar
thin liquid films, bringing predicted rupture times closer to experiments. Most liquid
films in nature and industry are, however, non-planar. Thinning of such films not just
results from the interplay between stabilizing surface tension forces and destabilizing
van der Waals forces, but also from drainage due to curvature differences. This work
explores the influence of thermal fluctuations on the dynamics of thin non-planar
films subjected to drainage, with their dynamics governed by two parameters: the
strength of thermal fluctuations, θ , and the strength of drainage, κ . For strong drainage
(κ � κtr), we find that the film ruptures due to the formation of a local depression
called a dimple that appears at the connection between the curved and flat parts of
the film. For this dimple-dominated regime, the rupture time, tr, solely depends on κ ,
according to the earlier reported scaling, tr ∼ κ

−10/7. By contrast, for weak drainage
(κ � κtr), the film ruptures at a random location due to the spontaneous growth
of fluctuations originating from thermal fluctuations. In this fluctuations-dominated
regime, the rupture time solely depends on θ as tr ∼ −(1/ωmax) ln(

√
2θ)α, with

α = 1.15. This scaling is rationalized using linear stability theory, which yields ωmax

as the growth rate of the fastest-growing wave and α= 1. These insights on if, when
and how thermal fluctuations play a role are instrumental in predicting the dynamics
and rupture time of non-flat draining thin films.

Key words: thin films, breakup/coalescence

1. Introduction

The dynamics of thin planar liquid films on solid surfaces has been extensively
studied in the context of free-surface instabilities (Oron, Davis & Bankoff 1997;
Craster and Matar 2009). The stability of such films depends on the interplay between
surface tension on the one hand, that always stabilizes the film, and intermolecular
forces on the other hand, that may destabilize it. The evolution of unstable planar
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films starts from minute corrugations on the free interface originating from stochastic
thermal motion of molecules. In the absence of destabilizing intermolecular forces,
the film is stable and dynamically perturbed by corrugations of amplitude ∼

√
kBT/γ ,

with kB the Boltzmann constant, T the absolute temperature and γ the interfacial
tension (Aarts, Schmidt & Lekkerkerker 2004). For unstable films, these corrugations
spontaneously grow until the film ruptures. In the last decade, thermal fluctuations
have been explicitly incorporated into the thin film equation using a stochastic term,
bringing simulations (Grün, Mecke & Rauscher 2006) closer to experiments for planar
films (Becker et al. 2003).

Many films encountered in natural and industrial settings are, however, not planar.
Typically, highly curved regions exist at the edges immediately after film formation,
examples being the film between two foam bubbles, the wetting film between an
elongated bubble and the walls of a non-circular capillary, the curved edges of a soap
film supported on a wire frame, and the tear film on eye lids. These curved regions
impose a localized pressure gradient that drains the film towards the curved edges.
The dynamics of non-planar films is hence governed by two thinning mechanisms:
(1) capillary thinning, i.e. drainage due to curvature differences and (2) spontaneous
growth of fluctuations originating from thermal fluctuations. The interplay of these two
thinning mechanisms is the subject of this paper.

Theory on the dynamics of films solely governed by drainage (and not by the
spontaneous growth of fluctuations) goes back to Reynolds (1886), who modelled the
drainage of a planar film as spatially uniform thinning caused by a prescribed pressure
jump at the edge of the film. It is now known that non-planar films do not thin out
uniformly unless they are, in some sense, small (Platikanov 1964; Buevich & Lipkina
1975; Singh, Miller & Hirasaki 1997). Larger films develop a local depression called
a dimple near the film edge that eventually leads to rupture (Frankel & Mysels 1962).
Joye, Hirasaki & Miller (1992) determined a criterion for the thinning predominantly
due to the formation of a dimple by comparing the curvature of the dimple with that
of the meniscus. For many practical systems, this criterion gives us that films with
a radius larger than about 50 µm have dimples (Malhotra & Wasan 1987; Manev,
Tsekov & Radoev 1997). For such large films, our recent work (Kreutzer et al.
2018) provides a scaling rule for the rupture times of unstable films with the relative
strength of drainage and intermolecular forces as the key governing parameter. Here,
we focus on this large-film limit, where thinning is non-uniform and confined to a
dimple at the edge of the film.

How the dynamics of non-planar films alters when, on top of drainage, thinning
also occurs through the spontaneous growth of fluctuations is not yet fully understood.
Vrij (1966) and Scheludko (1967) attribute a crucial role to thermal fluctuations in the
spontaneous growth of unstable waves leading to rupture. One of the seminal papers
by Vrij (1966) postulates that a film initially thins uniformly while all fluctuations
are dampened until the stability flips as predicted from linear stability analysis. After
this flip, a wave with growing amplitude fits within the length of the film such that
the film ruptures at the trough of the wave. However, experimental observations
have noted significant fluctuations in film thickness already from the onset of
drainage, whether thermal (Radoev, Scheludko & Manev 1983) or hydrodynamic
(Manev et al. 1997) in origin. Manev et al. (1997) show in their experiments that
these fluctuations do not dampen out if they are large enough, and attribute this to the
large nonlinearities in the thin film equation. To account for the observed deviations
between experiments and Reynolds’ theory, several theories have been developed
that semi-empirically incorporate non-uniform thinning together with fluctuations
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in the description of planar film thinning (Sharma & Ruckenstein 1987; Tsekov &
Ruckenstein 1993; Manev et al. 1997; Manev & Nguyen 2005). Although these
theories are in reasonable agreement with experiments, they do not teach if and when
rupture occurs through the formation of a dimple or due to the spontaneous growth of
waves originating from thermal fluctuations, or are due to both. This lack of clarity is
also reflected in the more recent literature; some studies emphasize the relevance of
thermal fluctuations resulting in stochasticity in film rupture (Aarts & Lekkerkerker
2008; Rio & Biance 2014; Perumanath et al. 2019), whereas other studies argue that
the influence of this stochastic phenomenon is insignificant (Vakarelski et al. 2010;
Chan, Klaseboer & Manica 2011). Aarts & Lekkerkerker (2008) reported illustrative
experiments of interfaces with ultra-low interfacial tension, which visually reveal
the role of thermal fluctuations in inducing rupture. Rio & Biance (2014) in their
review compare the order of magnitude of the time scales of drainage and of the
spontaneous growth of thermal fluctuations, and suggest that stochastic rupture due
to thermal fluctuations is relevant in determining film rupture times. Perumanath
et al. (2019) show using molecular dynamics simulations that, in the absence of film
drainage, the onset of coalescence is a stochastic phenomenon triggered by thermal
fluctuations. In contrast, Vakarelski et al. (2010) and Chan et al. (2011) argue that
thermal fluctuations play no significant role in the rupture of films in parameter
ranges typical for the coalescence of droplets and bubbles.

The aim of this work is to systematically study the dynamics of thin liquid films
subjected to curvature-induced drainage for a wide parameter space in terms of
drainage strength and thermal noise strength and to resolve when one of the two
above-mentioned thinning mechanisms is dominant. The model geometry considered
in this numerical study is a semi-infinite planar film connected to a curved film of
constant curvature, known as a Plateau border. We incorporate thermal fluctuations at
the gas–liquid interface using a stochastic term in the thin film equation (Davidovitch,
Moro & Stone 2005; Grün et al. 2006), which allows us to study the effect of
different strengths of thermal noise. Contrary to large films of finite size, as for
the example found in Scheludko-cell experiments (e.g. Radoev et al. 1983; Manev,
Sazdanova & Wasan 1984; Coons et al. 2003) in which dimple formation and thinning
of the planar part of the film occur simultaneously leading to a complex dependency
of rupture time on film size, we consider this semi-infinite geometry which evolves
in the limit of full dimple formation, also known as marginal pinching (Aradian,
Raphael & de Gennes 2001). The selected geometry and a wide parameter space
in terms of drainage strength and thermal noise strength defines the problem in its
simplest form and allows us to resolve when, if and how thermal fluctuations are
relevant in dimpled film rupture.

2. Problem formulation

We study the evolution of non-flat thin liquid films with viscosity µ and surface
tension γ , with the spatio-temporal film thickness parameterized by h(x, t), as
shown in figure 1. The film is comprised of a curved part (−l1 6 x < 0), with a
curvature 1/r corresponding to a Plateau border, connected to a flat part (0 6 x 6 l2).
Considering the pressure in the gas phase to be uniform and setting it equal to zero,
the pressure p in the curved part of the liquid film, where intermolecular forces play
an insignificant role, is dictated primarily by the Laplace pressure and is equal to
p=−γ /r. Conversely, the pressure in the thin flat part is dictated by intermolecular
forces, which in this paper, are considered as attractive van der Waals forces, such that
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Initial film Upon rupture

Drainage-induced
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¡�(kBT/©)

x
y

l1 l2

(a) (b)

FIGURE 1. Schematic of a non-flat draining thin film subjected to thermal fluctuations,
with the film thickness parameterized by h(x, t). (a) The initial film shows a curved
part extending from −l1 6 x < 0 with the pressure given by the Laplace pressure,
p=−γ /r, with 1/r as the curvature imposed at the edge. This curved part is connected
to a flat part extending from 0 6 x 6 l2 with the pressure given by the van der Waals
component of the disjoining pressure, p=A/6πh3. Besides curvature-induced drainage, the
film is also subjected to thermal fluctuations of the free interface, resulting in thickness
variations of amplitude ∼

√
kBT/γ . The dashed line at x= l2 signifies the symmetry in the

system. (b) Shape upon rupture, highlighting that film thinning stems from two competing
mechanisms: (1) the formation of a localised dimple due to curvature-induced drainage and
(2) the spontaneous growth of waves originating from thermal fluctuations.

p=A/6πh3, with A< 0 being the Hamaker constant. The difference in pressure drains
the liquid from the flatter part of the film to the more curved part. On top of this
capillary thinning mechanism arising from curvature differences, a second thinning
mechanism arises from the interplay between stabilizing surface tension forces and
destabilizing van der Waals forces leading to the spontaneous growth of perturbations.
These perturbations originate from thermal fluctuations at the gas–liquid interface
causing corrugations of amplitude ∼

√
kBT/γ . Depending on the relative strength

between these two thinning mechanisms, the former may result in the formation of a
dimple at the connection between the flat and curved part, while the later may result
in the growth of unstable waves on the film interface.

The stochastic thin film equation that describes the evolution of non-planar
thin films subjected to thermal fluctuations can be derived by applying a long-
wave approximation on the incompressible Navier–Stokes equations with thermal
noise (Grün et al. 2006). This yields

∂h
∂t
=−

∂

∂x

(
γ

3µ
h3 ∂

3h
∂x3
+

A
6πµh

∂h
∂x

)
+
∂

∂x

(
1

3µ

√

3h3ξ(x, t)
)
, (2.1)

with the first term on the right-hand side arising from surface tension forces and
the second term from long-ranged attractive van der Waals forces. Together with
the transient term on the left-hand side, they comprise the well known deterministic
thin film equation (Oron et al. 1997; Batchelor 2000). The functional form of the
noise term, i.e. the third term on the right-hand side, has been independently derived
by Davidovitch et al. (2005) and Grün et al. (2006) using different approaches,
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with ξ(x, t) constituting spatio-temporal Gaussian white noise consistent with the
fluctuation-dissipation theorem. It possesses the following properties:

〈ξ(x, t)〉 = 0,
〈ξ(x, t)ξ(x′, t′)〉 = 2µkBTδ(x− x′)δ(t− t′),

}
(2.2)

with δ(x − x′) in units 1 m−2, resulting from the reduction of the two-dimensional
fluctuating hydrodynamics equations to one dimension (Grün et al. 2006; Diez,
González & Fernández 2016).

The initial film profile consists of a flat film connected to a parabola with constant
curvature (1/r), akin to a Plateau border. This yields the following initial condition:

h(x< 0, t= 0)= ho +
x2

2r
, and h(x > 0, t= 0)= ho. (2.3a,b)

As left far-field boundary conditions, we impose an interface shape with a constant
curvature similar to the system studied by Aradian et al. (2001). We impose the
boundary conditions at x=−l1, with l1 chosen such that the profile remains essentially
constant in time for x � 0, ensuring that the region of interest is connected to a
practically static far-field profile. Note that, as usually tacitly assumed for thin-film
dynamics between two far-field static profiles, the lubrication approximation needs to
only hold in the transition region in-between the far-field limits (Bretherton 1961). As
right far-field boundary condition, we have zero gradients in thickness and pressure
(at x = l2), such that the problem is mirror symmetric around x = l2. The boundary
conditions hence read

h(x=−l1, t)= ho +
x2

2r
,

∂2h
∂x2

(x=−l1, t)=
1
r
,

∂h
∂x
(x= l2, t)= 0,

∂3h
∂x3

(x= l2, t)= 0.

 (2.4)

Using a height scale h∗ = ho, an axial length scale x∗ = h2
0

√
2πγ /A and a time scale

t∗ = 12π2µγ h5
0/A

2, we obtain the dimensionless variables h̃ = h/h∗, x̃ = x/x∗ and
t̃= t/t∗ together with the following dimensionless equations

∂ h̃
∂ t̃
=−

∂

∂ x̃

(
h̃3 ∂

3h̃
∂ x̃3
+

1

h̃

∂ h̃
∂ x̃

)
+
√

2θ
∂

∂ x̃

(
h̃3/2ξ̃ (x̃, t̃)

)
, (2.5)

〈ξ̃ (x̃, t̃)〉 = 0,
〈ξ̃ (x̃, t̃)ξ̃ (x̃′, t̃′)〉 = δ(x̃− x̃′)δ(t̃− t̃′),

}
(2.6)

h̃(x̃< 0, t̃= 0)= 1+ κ x̃2, and h̃(x̃ > 0, t̃= 0)= 1, (2.7a,b)

h̃(x̃=−l̃1, t̃)= 1+ κ x̃2,
∂2h̃
∂ x̃2

(x̃=−l̃1, t̃)= 2κ,

∂ h̃
∂ x̃
(x̃= l̃2, t̃)= 0,

∂3h̃
∂ x̃3

(x̃= l̃2, t̃)= 0,

 (2.8)

where ξ was made dimensionless using ξ̃ = ξ/[γ (ho/x∗)3
√

2θ/3ho] and l1 and l2
using x∗. This analysis shows that, besides the two parameters characterizing the
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domain length (l̃1 and l̃2), the problem is fully governed by two dimensionless
control parameters, the strength of drainage, κ = πh3

oγ /Ar, and the strength of
thermal noise, θ = kBT/γ h2

o. The former describes the ratio between the imposed
Laplace pressure that induces drainage, and the initial disjoining pressure arising
from attractive van der Waals forces. The latter describes the square of the ratio
between the amplitude of interface corrugations due to thermal fluctuations (

√
kBT/γ )

and the initial film thickness (h0). We scan a wide range of values for κ (10−5
− 103)

and θ (4× 10−5
− 4× 10−2) with corresponding corrugations in thickness of O(

√
2θ).

While typical experimental values for κ are κ > 10−1 and for θ are 10−5–10−3, we
do not restrict ourselves to this parameter space but perform a full parametric study.

Having formulated the problem, we describe the domain considerations to capture
the relevant physics. The extent of l1 needs to be larger than the transition region in
which the curvature changes from practically zero at the flat part of the film to 1/r
in the Plateau border. The dimensional length of this transition region is estimated
to be ∼

√
hor (Breward & Howell 2002; Cantat et al. 2013), where ho is the initial

film thickness. This gives the lower limit, l1 �
√

hor. The upper limit to the extent
of l1 is dictated by the geometric constraint of the long-wave approximation, i.e.
∂xh � 1. More specifically, the curvature as defined by ∂2

x h/(1 + (∂xh)2)3/2 = 1/r
in the parabolic description of the Plateau border should be approximately equal to
∂2

x h≈ 1/r as assumed in the boundary condition, equation (2.4). Estimating ∂xh as x/r
from (2.3) and setting x= l1, this directly gives the upper limit, l1� r. Taken together,
√

1/2κ� l1�
√

r/2hoκ gives the lower and upper limit to l1 in dimensionless form.
The extent of l2 is chosen such that at least one fastest-growing wave, arising
from the interplay between the stabilizing surface tension forces and destabilizing
van der Waals forces, fits within the film, i.e. l2 > λmax, with the wavelength of
the fastest-growing wave (λmax) estimated in the next section. All parameters and
variables are made dimensionless from this point on and we therefore drop the tilde
in the rest of the paper.

We conclude this section by noting that the chosen geometry allows us to study
two types of systems: (1) the film between two two-dimensional bubbles with rigid
interfaces (as may be encountered in surfactant-rich systems) and (2) the film between
a surfactant-free bubble and a solid wall, as for example encountered between an
elongated bubble and the walls of a non-circular microchannel. In that case, a nearly
flat film in the central part of the channel connects to a meniscus at the corners of
the channel, with the curvature of the meniscus primarily imposed by the dimensions
of the channel (Wong, Radke & Morris 1995; Khodaparast et al. 2018). In the first
system, the free interface at y = h(x, t) is described by the commonly encountered
tangentially immobile boundary condition (Chan et al. 2011), i.e. no-slip, while a
symmetry boundary condition, i.e. no-shear, is used at y= 0. In the second system, the
free interface is described by a no-shear condition and the wall by a no-slip condition.
Although the boundary conditions for the velocity at the top and bottom of the domain
are reversed for these two systems, their dynamics is described by one and the same
thin film equation and the results presented throughout this paper are equally valid for
both types of system.

3. Linear stability analysis
As an input to our numerical implementation in choosing a film large enough to

accommodate a fastest-growing wave, we study how small perturbations develop on a
planar thin film using linear stability theory. We consider a film of initially uniform
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thickness h(x, t= 0)= 1, subjected to perturbation of amplitude ε� 1. Its response to
these perturbations, represented by waves of wavelength λ, wave number k=2π/λ and
growth rate ω, is found by substituting h(x, t)= h(x, t= 0)+ εeikx+ωt in the noise-free
equivalent of (2.5). In this analysis, h(x, t) was made dimensionless using h∗, λ using
x∗, k using 1/x∗, and ω using 1/t∗. Linearizing the resulting expression to O(ε) yields
the dimensionless dispersion relation

ω=−k2(k2
− 1). (3.1)

The film is unstable for all ks corresponding to ω> 0, and stable otherwise. The wave
that grows fastest and dominates the other waves has a wavenumber kmax=1/

√
2, with

corresponding wavelength λmax = 2π/kmax = 2
√

2π ≈ 8.8 and growth rate ωmax = 1/4.
The time, tr required for the film to rupture due to the spontaneous growth of the
perturbations is hence of order of magnitude, tr ∼ 1/ωmax= 4. How this time depends
on the magnitude of the initial perturbations is estimated by considering when the
magnitude of the perturbation due to the fastest-growing wave, i.e. εeωmaxtr , is of the
order of h(x, t= 0)= 1. As the initial perturbations originate from thermal noise, such
that ε can be approximated with the amplitude

√
2θ in (2.5), the time tr required for

the film to rupture due to the spontaneous growth of thermal fluctuations is hence of
order of magnitude

tr ≈ (1/ωmax) ln(
√

2θ)−1
=−4 ln(

√
2θ). (3.2)

4. Numerical implementation
We numerically solved the one-dimensional stochastic thin film equation (2.5) along

with its initial and boundary conditions (2.7–2.8) using a finite difference method.
We discretized the domain into an equidistant mesh of size, 1x, using a second-order
central differencing scheme for spatial discretization and an implicit–explicit time
differencing scheme of a constant time step size, 1t, with a theoretical order of
accuracy of O(1t0.5) (Lord, Powell & Shardlow 2014). The curved part extends from
−l1 6 x < 0 and the flat part from 0 6 x 6 l2, resulting in N = (l1 + l2)/1x + 1 grid
points.

We discuss the domain considerations based on the constraints described in § 2.
For the parabolic film profile at −l16x<0, we require

√
1/2κ � l1�

√
r/2hoκ . We

confirm that rupture times and rupture locations are insensitive to the chosen value
when chosen within this range. For κ 6 0.1, we used l1 = 300, while smaller values
were used for larger κ . For the flat part, we used l2 = 240, which is much larger
compared to the wavelength of the fastest-growing wave (λmax = 8.8), as determined
using a linear stability analysis. We note that, for large κ� 1, shorter l2 captures the
relevant physics as well, so long as at least one fastest-growing wave can be expressed
in it. For small κ� 1, we will show later that the results weakly depend on l2, even
though l2� λmax.

Time discretization of the stochastic thin film equation (2.5) is performed using
an implicit–explicit scheme, wherein the fourth-order term describing the capillary
forces is discretized implicitly. The terms describing the nonlinear van der Waals
forces and the stochastic noise are discretized explicitly. The mobility term in the
deterministic part (h3) is discretized as per the positivity-preserving scheme described
by Diez, Kondic & Bertozzi (2000). Such a scheme is not required in discretizing
the square root of the mobility term in the stochastic part (h3/2) (Grün et al. 2006),
and therefore we discretize it using a standard central differencing scheme.
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The stochastic term, ξ(x, t), is expanded as per separation of variables in the
Q-Wiener process, and further based on the lemmas given in Grün et al. (2006), as
follows:

ξ(x, t)=
∂W(x, t)
∂t

=

q→∞∑
q→−∞

χqβ̇q(t)gq(x)≈
q= N−1

2∑
q=− N−1

2

χqβ̇q(t)gq(x), (4.1)

β̇q ≈
1βq

1t
=
βq(tn+1)− βq(tn)

tn+1 − tn
=

N n
q

√
1t

1t
=

N n
q

√
1t
. (4.2)

where χq is a measure of spatial correlation (with χq = 1 for spatially uncorrelated
systems, as considered in this paper). β̇q corresponds to white-noise processes in
time, where the term βq(tn+1) − βq(tn) is normally distributed with variance given
by the time increment, 1t (Grün et al. 2006; Lord et al. 2014). Here N n

q are
computer-generated normally distributed random numbers (using the randn MATLAB
routine), which are approximately distributed with a mean of 0 and standard deviation
of 1. The term gq(x) corresponds to the set of orthonormal eigenfunctions (Grün
et al. 2006; Diez et al. 2016) according to

gq(x)=



√
2
L

sin
(

2πqx
L

)
, for q< 0,√

1
L
, for q= 0,√

2
L

cos
(

2πqx
L

)
, for q> 0,

(4.3)

with L the dimensionless domain size equal to l1 + l2. The resulting discrete noise
term equals

ξ(x, t)=
1
√
1t

q= N−1
2∑

q=− N−1
2

N n
q gq(x). (4.4)

We note here that in our finding an upwind discretization of the noise term, as
proposed in Grün et al. (2006), led to time step size dependent results of the rupture
times. Therefore we used a central differencing scheme to discretize the stochastic
term. Using 1x= 0.05 and 1t=1x2.75 for κ 6 10−1, and 1x= 0.005 and 1t=1x3.25

for κ > 10−1, the presented simulation results for rupture times are grid and time
step size independent within 5 %, as can be seen from figure 7 in the Appendix
for the smallest and the largest value of κ considered in this work. The number
of realizations for noise-inclusive simulations obtained for different values of the
governing parameters κ and θ is 400, with different seeds for every realization.
This yields a sampling error in mean and standard deviation of reported rupture
times below 1/

√
400 , 5 %, see figure 8 in the Appendix. Error bars in figures 5–7

represent one standard deviation.
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5. Results
5.1. Transition between thinning mechanisms

A signifying feature of draining thin films as compared to their non-draining
counterparts is the formation of a local depression. This so-called dimple (Joye et al.
1992; Aradian et al. 2001) results from the localized non-zero pressure gradient at
the location where the flat part of the film connects to the curved part (in this study,
at x= 0). We start with an estimate of the dimensionless curvature, κtr at which the
time scale for film rupture as a result of curvature-induced drainage is comparable
to the time scale for film rupture as a result of the growth of fluctuations due to
the interplay between surface tension and van der Waals forces. An estimate for
κtr is obtained by comparing the time scale for the dimple formation and that for
the growth of fluctuations. The former is calculated as tr ∼ 1.05κ−10/7 for κ � κtr

in Kreutzer et al. (2018) and the latter is calculated as tr ≈ −4 ln(
√

2θ) (see § 3),
independent of κ . Matching these two time scales, for realistic noise strengths of
θ = 10−5–10−3, gives κtr ≈ 0.1 at which the transition between the two thinning
mechanisms occurs.

We first analyse film rupture at κ ≈ κtr. Figure 2(a) shows the film evolution for
a (noise-free) deterministic simulation (θ = 0). The film profiles h(x, t) illustrate the
formation of a dimple at x ∼ 0, while the film remains flat far from the dimple.
Further characterizing the film dynamics based on the minimum film height, hmin(t),
as shown in the inset, we observe that its evolution consists of two stages: (i) an
early stage primarily governed by drainage, roughly between 1 > hmin & 0.8, with a
thinning rate that decreases in time as discussed in Aradian et al. (2001), and (ii) a
late stage governed by the disjoining pressure, for hmin . 0.8, with the thinning rate
rapidly increasing prior to rupture as discussed in Zhang & Lister (1999).

How the addition of thermal noise alters the film dynamics is shown in figure 2(b)
for a single realization of a noise-inclusive simulation with a noise strength θ = 0.001.
The film evolves with the formation of a dimple at x∼ 0, similar to what is seen in
figure 2(a) for the deterministic counterpart. However, it also illustrates the growth of
fluctuations, resulting in the formation of a wave in the flat portion of the film, thereby
indicating a competition between the two thinning mechanisms. The minimum film
height shown in the inset decreases similarly to the deterministic counterpart, but with
the noise superimposed over it. An additional consequence of the inclusion of noise is
the spread in film evolution as shown for 400 realizations in figure 2(c). The curves
show that most of the spread occurs in the early drainage stage. This is more clearly
seen from the three insets, which show histograms of the time required to reach the
three indicated minimum heights. These distributions appear normal and were used to
further characterize the spread in evolution by computing the standard deviation as
a function of hmin, as shown in figure 2(d). The rupture times, tr, of all realizations
were calculated as the time at which the minimum film height first reaches hmin(t =
tr)= 0.05. We note that the reported results for tr are insensitive to our chosen value
of 0.05, because of the rapid evolution prior to rupture. For the presented case with
κ = 0.1, we find tr = 3.11± 0.32 (mean ± standard deviation) for the noise-inclusive
simulation with θ = 0.001, with the mean value close to the noise-free (θ = 0) rupture
time, tr = 3.14.

5.2. Influence of thermal fluctuations on film rupture at far limits of κ
Having analysed film rupture for κ ≈ κtr, we now proceed to try to understand how
thermal fluctuations influence the film break-up in the limit of high (�κtr) and low
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FIGURE 2. Film dynamics for κ = 0.1, i.e. close to the transition curvature where the
time scale for rupture due to drainage is comparable to the time scale for rupture due to
the spontaneous growth of fluctuations. (a) Film evolution in space (zoomed here close
to x ∼ 0) and time (for t = 0, 1.37, 3.00, 3.14) for noise-free (deterministic) simulation
(θ = 0). (b) Single realisation of the noise-inclusive counterpart of (a) for θ = 0.001. The
insets in (a) and (b) show the time evolution of the minimum film height, hmin. (c) Film
evolution for 400 realizations of the same simulations as in (b), with the minimum film
heights being extrapolated from their last recorded (hmin . 0.05) values to 0. The insets
represent the distributions of times required to reach the three indicated heights, one in
early drainage-governed stage, a second at the late disjoining pressure-governed stage, and
a third at the crossover of these stages. (d) Standard deviation in the time required to reach
a given minimum height as obtained from the 400 realizations of (c).

(�κtr) κ , comparing these limits without (θ = 0) and with realistic (θ = 0.001) thermal
noise. For strong drainage (κ=50), we find that the film ruptures due to the formation
of a dimple, with the spatio-temporal film profiles being almost indistinguishable for
the noise-inclusive and noise-free case, see figures 3(a) and 3(b), respectively. This
negligible influence of thermal fluctuations is as expected, because the time scale for
dimple formation is much smaller compared to the time scale for the spontaneous
growth of fluctuations for κ � κtr, as explained before. In this dimple-dominated
regime, the resulting rupture time is insensitive to the addition of noise, with rupture
times tr = 2.5× 10−3

± 8.7× 10−5 for the noise-inclusive case and tr = 2.5× 10−3 for
the noise-free counterpart. Further characterization of the thinning dynamics in terms
of hmin shows that the height of the dimple initially decreases as hmin∼ t−1/2 for both
the noise-free and noise-inclusive case, see the insets in figures 3(a) and 3(b), in
agreement with earlier theoretical work (Aradian et al. 2001).
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FIGURE 3. Comparison between films with high (κ � κtr, dimple-dominated)
and low (κ � κtr, fluctuations-dominated) curvature, without (θ = 0) and with
realistic (θ = 0.001) noise. (a) Evolution of film heights in the dimple region
for κ = 50 for a deterministic simulation, at various dimensionless times
t = (0.01, 0.03, 0.08, 0.16, 0.28, 0.45, 0.75, 1.3, 2.1, 2.5) × 10−3 (also reported in
Kreutzer et al. (2018)); (b) evolution of film heights in the dimple region for κ = 50
for a single realization of a stochastic simulation, at various dimensionless times
t = (0.01, 0.02, 0.07, 0.14, 0.28, 0.5, 0.87, 1.4, 2.0, 2.3) × 10−3. (c) evolution of film
heights for κ = 0.001 for deterministic simulations, at various dimensionless times,
t = (7, 10, 13.6, 14.7, 15.2, 15.5, 15.55, 15.58, 15.6); (d) evolution of film heights for
κ = 0.001 for a single realization of a stochastic simulation at various dimensionless
times, t= (1.6, 3, 5.04, 5.7, 6.16, 6.27, 6.37). The insets in (a–d) show the corresponding
time evolutions of the minimum film height.

For weak drainage (κ = 0.001), rather than through the formation of a dimple, film
rupture is initiated by the growth of unstable waves on the planar portion of the
film, akin to what is observed for de-wetting of thin planar films (Grün et al. 2006;
Diez et al. 2016). In this fluctuations-dominated regime, the film evolution exhibits the
growth of a dominant unstable wave, which grows fastest close to x = 0 due to the
small dimple that still forms there which triggers the accelerated growth of the wave at
that location. For the noise-free case, rupture occurs at x≈−2.5 (figure 3c), i.e. within
half a wavelength of the fastest-growing wave (λmax=8.8) from x=0. The inset shows
an almost dormant initial evolution of the film, with little decrease in film height due
to drainage for (tr − t) > 5, followed by a rapid decrease in film height due to the
van der Waals forces. In this stage, the film height evolves with the earlier reported
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FIGURE 4. (Colour online) Comparison of rupture location between noise-free (θ = 0) and
noise-inclusive (θ = 0.001) evolutions as a function of curvature. The rupture locations for
the noise-inclusive evolutions are illustrated as individual data points for 100 out of 400
realizations. The rupture locations for θ = 0 and θ = 0.001 are shifted horizontally for
better visibility.

theoretical scaling, hmin∼ (tr− t)1/5 (Zhang & Lister 1999), see the inset of figure 3(c).
Interestingly, the addition of thermal noise to films exhibiting weak drainage results in
rupture locations away from x= 0, see figure 3(d). The film instability is initiated due
to the growth of an unstable dominant wave, like the noise-free evolution. However,
due to the presence of noise everywhere along the film, rupture can occur at any
of the valleys of the wave that grows fastest. Comparing the dynamics of the film
evolution for the noise-inclusive case with that of the noise-free case, we see no
dormant initial phase in the inset of figure 3(d). This is because the amplitude of the
corrugations resulting from thermal noise is orders of magnitude larger compared to
the initial perturbation in the noise-free case, where spontaneous growth of unstable
waves originates from the non-uniform initial shape of the film. This leads to shorter
rupture times for the noise-inclusive case yielding tr= 6.95± 0.68 versus tr= 15.6 for
noise-free case.

5.3. Influence of thermal fluctuations on rupture locations
Having established that the film ruptures through the formation of a dimple at x∼ 0
for strong drainage (κ � κtr) and through the spontaneous growth of fluctuations at
a random location for weak drainage (κ � κtr), we now further detail the influence
of thermal fluctuations on rupture location for the whole range of curvatures. Without
noise, the film ruptures through the formation of a dimple at xr ≈ 0 within one grid
point, see the crosses in figure 4. With noise, the film also ruptures at xr ≈ 0 for
strong drainage, while rupture occurs at a random location for weak drainage, with
xr being uniformly distributed over the flat portion of the film without any preference
for the location where the dimple would otherwise grow. The differences in rupture
locations between films with strong and weak drainage can be used to explain the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

59
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.595


1102 M. S. Shah, V. van Steijn, C. R. Kleijn and M. T. Kreutzer

101 10310-5 10-3 10-1 10-5 10-3 10-110-210-4

10-2

100

10-6

10-4

102

100

10-1

œ = 0
œ = 0.00004
œ = 0.0001 œ = 0.001
œ = 0.0004
œ = 0.001
œ = 0.004
œ = 0.01
œ = 0.04

Fluctuations-dominated

-10/7

Dimple-
dominated

-4 -2 0
ln(�2œ) (-)

4

2

0

ø m
ax

 t r
 (-

)
101 10410-5

˚trans

10-2

105

100

˚ (-)

˚ (-) œ (-)

t r 
(-

)

t r 
(-

)

˚ tr
 (-

)

-1
1

(a) (b)

˚ = 0

FIGURE 5. (Colour online) (a) Dependence of rupture time on drainage (κ) and noise
strength (θ ). Two clearly separated regimes are visible wherein film thinning is dominated
by dimple formation for high curvatures (κ� κtr) or by the growth of fluctuations for low
curvatures (κ� κtr). Inset: rupture times rescaled with 1/ωmax at κ = 1× 10−5 (highlighted
by the ellipse) for different noise strengths. The observed slope is close to −1 as indicated
by the triangle. We excluded the rupture time for the noise strength of θ = 0.04 in the fit,
because the fluctuations of the interface ∼

√
2θ are approximately 30 % of the initial film

thickness and the time for them to develop into the fastest-growing wave with ωmax= 1/4
is significantly longer than the film rupture time itself. (b) Transition curvature, κtr, from
dimple-dominated rupture to fluctuations-dominated rupture versus noise strength, with the
inset showing how κtr is calculated based on the film rupture times.

experimental observations of films being ruptured always at the rim (Frankel & Mysels
1962) or at random locations (Aarts & Lekkerkerker 2008). As expected, based on the
earlier presented analysis of time scales, figure 4 clearly illustrates that κtr≈ 0.1 marks
the transition between the dimple-dominated regime (κ � κtr) and the fluctuations-
dominated regime (κ � κtr). We note that for the lowest values of κ , the film not
only ruptures at the flat portion of the film, but also occasionally at the curved portion
(x< 0) in the Plateau border.

5.4. Influence of thermal fluctuations on rupture time
We now study how thermal fluctuations influence the rupture time for different
strengths of drainage. Figure 5(a) shows that the presence of noise does not
significantly affect the rupture time and its earlier reported scaling with curvature
(Kreutzer et al. 2018) for κ � κtr. By contrast, rupture times for κ � κtr depend
strongly on noise strength and not on drainage strength, with higher noise strength
resulting in shorter rupture times. Since the dominant thinning mechanism for low κ

is through the spontaneous growth of fluctuations and not through the formation of a
dimple, there is no fundamental mechanistic difference between non-planar films with
weak drainage κ � 1 and flat films without drainage κ = 0, with the rupture times
for low κ approaching those of flat films (with periodic boundary conditions). We
note here that the rupture times in the fluctuations-dominated regime depend weakly
on the choice of l2, see figure 6 in Appendix. This is easily understood from the
fact that, with increasing l2, the number of valleys of the dominant wave increases,
thereby increasing the probability for the fastest possible rupture. An estimate for
the rupture time for a truly semi-infinite film, i.e. l2 → ∞, is hence obtained by
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considering the minima of rupture times in a sufficiently large ensemble of evolutions
for the fluctuations-dominated regime.

How rupture times depend on noise strength for a given value of κ is next
examined. We rationalized that the rupture time scales with noise strength according to
ωmaxtr ∼ ln(

√
2θ)−1, see (3.2). This prediction agrees well with simulation results for

which we obtain ωmaxtr ∼ ln(
√

2θ)−1.15±0.04 for κ = 10−5, see the inset of figure 5(a).
We attribute this small difference primarily to the overprediction of the rupture time
by applying linear theory to a full nonlinear problem. Finally, figure 5(b) shows how
the transition curvature κtr, marking the transition from the dimple-dominated regime
to the fluctuations-dominated regime depends on noise strength, with κtr calculated as
shown in the inset. For realistic θ between 10−5 and 10−3, this transition only weakly
depends on θ , and the earlier estimated transition κtr = 0.1 provides a good estimate
for most experimentally relevant conditions.

6. Conclusions
We studied the evolution of draining non-planar thin films under the influence of

thermal fluctuations for the large-film limit, where drainage is confined to a dimple.
The central question answered in this paper is what role thermal fluctuations play in
determining lifetimes of such films. The two key parameters governing this problem
are the strength of drainage (κ) and the strength of thermal noise (θ ). For strong
drainage, κ � κtr, our simulations show that the film ruptures deterministically due
to rupture in the thinnest part of the dimple, regardless of κ and θ . The rupture
time then is as reported earlier (Kreutzer et al. 2018), leaving no room for thermal
fluctuations to grow and moderate the rupture process, in contrast to the concept
of thermally induced rupture from some critical moment onwards. By contrast, for
weak drainage, κ � κtr, the film ruptures through the spontaneous growth of waves
originating from thermal fluctuations. Rupture occurs at one of the valleys of the
dominant wave, anywhere along the planar portion of the film. The mean rupture
times are found to be independent of κ and are well predicted by linear stability
analysis as tr ≈ 1/ωmax ln(

√
2θ)−1. The transition between the dimple-dominated

regime (κ � κtr) and the fluctuations-dominated regime (κ � κtr) is around κtr = 0.1,
with a weak dependence on noise strength.

Our work explains if, when and why it is important to include thermal fluctuations
in the dynamics of draining thin films to predict where and when they rupture. We
reiterate that our work focuses on the large film limit. Experimental data sets obtained
in Scheludko cells (e.g. Radoev et al. 1983; Manev et al. 1984; Manev & Nguyen
2005) are for films in which drainage in the planar portion of the film occurs
simultaneously with dimpled thinning. A direct comparison to those experiments
requires including the film size as an additional parameter, which is beyond the scope
of the present paper.
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Appendix
Figure 6 shows how rupture times for the fluctuations-dominated (low κ) regime

depend on the extent of flat portion of the film, l2, with its mean and standard
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FIGURE 6. (Colour online) Dependence of rupture time on the extent of the flat portion
of the film, l2 for θ = 0.001 and κ = 10−5.
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FIGURE 7. (Colour online) Dependence of rupture time on grid and time step size for
noise-inclusive simulations (θ = 0.001) for (a) κ = 10−5 and (b) κ = 103. Error bars were
horizontally shifted for better visibility.

deviation decreasing by about 22 % and 84 %, respectively, when l2 is increased from
60 to 960. Figure 7 shows a grid and time step size dependency study, for κ = 10−5

and κ = 103. In the spirit of Grün et al. (2006), we used a time step 1t =1xα, for
which we determined the values of α empirically, varying α between 2.25 and 3 for
the fluctuations-dominated regime and between 3.25 and 4 for the dimple-dominated
regime. In the fluctuations-dominated regime, i.e. at low κ , the analysis shows that
a combination of a grid size of 1x = 0.05 and a time step size of 1t = 1x2.75

provides a rupture time within 5 % of the smallest grid and time step size used. For
the dimple-dominated (high κ) regime, a similar accuracy is obtained for 1x= 0.005
and 1t=1x3.25. Figure 8 shows how the mean and standard deviation of the rupture
time depend on the number of realisations, again for κ = 10−5 and κ = 103. It shows
that after about 300 realizations, the mean and the standard deviation are within 2 %
and 5 %, respectively, of the values obtained for all 400 realizations.
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function of the number of realizations randomly picked from a pool of 400 noise-inclusive
simulations (θ = 0.001) for κ = 10−5 (a,c) and κ = 103 (b,d). The dashed red lines indicate
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