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Abstract

We introduce a sequence of polynomials which are extensions of the classic Bernoulli polynomials. This
generalization is obtained by using the Bessel functions of the first kind. We use these polynomials to
evaluate explicitly a general class of series containing an entire function of exponential type.

1991 Mathematics subject classification (Amer. Math. Soc): primary 30D10, 33C1O, 12E10.

1. Introduction

We denote by £r(<50) the class of all entire functions of exponential type r (T > 0)

such that f(x) = O(\x\~s), as x —>• ±oo, for some S > So. The indicator function of

an entire function of exponential type is defined as

(1) hf{9) : = l i m s u p l n | ^ ( r g ) [ , -n < 9 < n.
r-*oo f

The following results are proved in [4].

THEOREM A. Given an integer n > 2, let f e Er (1 - n) be such that hf (n/2) < 0.

We have, for a > r and 0 < x < 1 — r / a ,
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Here Bj(x) is the jth Bernoulli polynomial defined by the generating function

zexz °° z"

It is well known [1, p. 267] that

n\

which is a very special case of (2).

THEOREM B. Given an integer n > 2, let f € Ex (1 — n). We have, for a > 2T
0 < x < 1 - 2T/CT,

(5)

The special cases a = x of (2) and a = 2r of (5) have been investigated previously
in [3]. The numbers 5,(0) = Bj are the Bernoulli numbers.

In this paper we generalize (2) and (5). In order to do that, we construct a sequence
of polynomials which are direct extensions of Bernoulli (and Euler) polynomials.
These generalized Bernoulli polynomials turn out to have some properties similar to
the classical ones.

2. Generalized Bernoulli polynomials

Let#a(z) := 2T(a +1) Ja(z)/za, where Ja{z) = £,oo
=0(-l)V<:+7(22*+%!r(a +

k + 1)) is the Bessel function of the first kind of order a. The function Ja(z)/za is
an even entire function of exponential type one. We assume that a is not a negative
integer. The zeros jk = jk(cc) of Ja(z)/za may then be ordered in such a way that
;-* = -jk and 0 < |;, | < 1721 < . . . .

We define a sequence of polynomials Bna(x) by the generating function

-(x-l/2)z oo „

(6) — r ^ 7 = J2B"Ax)~., \z\ < 2\hI-

It is clear from (6) that Bna(x) is a rational fraction in a. We call the polynomials
Bn,a(x) the a-Bernoulli polynomials and Bna(0) =: Bna the a-Bernoulli numbers.

https://doi.org/10.1017/S1446788700039185 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039185


[3] Representation formulas and Bernoulli polynomials 309

Equation (6) reduces to (3) for a = 1/2 since J\/2(z) = -J2/nz sin(z). In the case
a = —1/2 we have y_i/2(z) = s/2/nzcos(z) and (6) becomes

2ex

(7)

So, Bn.-\/2(x) = En(x) is the Euler polynomial of degree n. For a = 3/2, Equation
(6) reduces to

For an arbitrary a (not a negative integer) we have BOa(x) = 1, Bla(x) = x — 1/2,
*2.aOO = (* - 1/2)2 - l/8(a + 1), B3,a(jc) = (JC - 1/2)3 - 3(* - l/2)/8(a + 1), so
that B0,a = 1, Bla = -1 /2 , B2,a = (2a + l)/8(a + 1), BXa = (1 - 2o)/16(a + 1).

REMARK 1. It follows from the asymptotic relation [7, p. 225]

Uz) 1 e"
a -+ oo (real),za sFh^L (2a)"'

that

(9) lim BnM(x) = (x- 1/2)".
a—*oo

The following result contains some basic properties of the a-Bernoulli polynomials
and numbers. We omit the details of the proof since it follows exactly the same line
as in the case a = 1/2 (see [ 1 ] or any of the numerous books on the subject).

PROPOSITION. For any complex number a (not a negative integer), we have

(10)
B'na(x)=nBn^,a(x), n = 1 , 2 , 3 , . . .

(11)
Bn.M -x) = (-l)"BnAx), n = 0, 1, 2 , . . .

(Inparticular, Bn.a(l) = (-l)"Bn,a and B2m+Ua(\/2) = 0, m = 0, 1, 2 , . . . )

(12)

Bn,a(x + y) = J 2 ( n ) BJ^y)x"~^ « = o, I , 2 , . . .

(Inparticular, Bna(x) = ^ ( . I Bj.ax"~J•)
y=0 \J /
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REMARK 2. The third part of the proposition contains, as a limiting case, the bi-
nomial formula. Indeed, if we let a -> oo in (12) then we obtain, in view of (9),

(x+y- i/2)n = E ; = 0 (•) (y - i/2y X*-K

Our first theorem is the extended version of (4).

THEOREM 1. Let n be a non-negative integer and a a complex number such that
Re(a) < n - 1/2, a ^ - 1 , - 2 , . . . . We have, for 0 < x < 1,

COROLLARY 1.1. Lef m be a non-negative integer and a a complex number such
thatRe(a) < 2m - 1/2, a ^ - 1 , - 2 , . . . . W?/iave,/orO < JC < 1,

.... _ , , _ 2(-ir
(14) B2m,a(^) - 2ar(a

COROLLARY 1.2. Let m be a non-negative integer and a a complex number such
that Re(a) < 2m + 1/2, a ^ - 1 , -2,.... We have, for 0 < x < 1,

, , (-Dm+1(2m
( 5 ) (Jc)

k=l

Equations (14) and (15) follow from (13) and the relation [7, p. 75, Formula (1)]
J'a(zel7") = eia~y)lni J'a{z), for integral /. Equation (14) may also be deduced from
(15) and (10).

PROOF OF THEOREM 1. Given g e ET(Re(a) + 1/2) we have [5], for all z,

g(z) =

If / e £2r(Re(a) + 1/2) and hf(n/2) < 0 then the function g(z) := e"'TZf{z) is
an element of £r(Re(or) + 1/2); this result is a consequence of [2, Theorem 6.2.4].
Applying (16) we obtain, for all z,

(17)

In (17), let T = 1 and f(z) = elixz, 0 < x < 1. This gives us

J (7
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forRe(a) < —1/2, whence

(19)
n\ \ Uz)

~ e(2x-l)ijt

7 = n *?-» Jk J«(JlUk)

forRe(a) < n - 1/2.
On the other hand, it follows directly from (6) that

(20)

Jz=O

which gives the result by comparison with (19).

3. Representation formulas

The results given in this section contain Theorem A and B as the special case
a = 1/2.

THEOREM 2. Let n be a non-negative integer and a a complex number such that
Re(a) < n - 1/2, a ^ - 1 , - 2 , . . . . For all f e £'r(Re(a) + 1/2 - ri) such that
hf(n/2) < 0, we have, for a > x and 0 < x < 1 — x/cr,

y

PROOF. We first prove the result for a = r. In view of the theorem of Paley and
Wiener [2, p. 103], the entire function / is of exponential type r and belongs to
L2(—oo, oo) if and only if

J—v
(22) f(z) = I eu'<P(t)dt,

where (p € L2(—x,x). If hf(n/2) < 0 then the representation (22) takes the form
(see [6, p. 387])

(23) f(z) = / ela<Kt)dt,
Jo
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where </> e L2(0, r). In that case, we have

00 r /r\ • / \ 00 i /.T

} n = > .n , / e"h"r<j
kTi jk

 e'JkJaUk) tri h e'JkJaUk) Jo

= - 2 T ( a + 1 ) ^ - f BnM{t/x)<t>{t)dt,
n\ Jo

by Theorem 1. The interchange in the order of summation and integration is easily
justifiable for Re(a) < n — 1/2. Using (12) with x = t/x, y = 0, we may thus write

= - 2 T ( o

by (23). Hence,

( 2 4 ) n-{T/2) t f(2jk/T)
(24) h
Thus, Equation (21) is proved for a — x whenever / belongs to L2(—oo, oo). If /
does not belong to L2(—oo, oo) then we need only apply (24) to a function of the form
fc(z) :— ((e'" — l)/iez)N f(z), e > 0, for some positive integer N, and let e -»• 0.
The passage to the limit is easily justifiable.

We now prove the general result. We have, using (12) with y = 0,

;=0

;=0 t=0

E E L n
+i

E ( " ) ^>(/CT); (^JtU'/(u'))("";) (^ = 0),

by Leibniz's formula. The relation (t";)(*);) = (")(7;) has also been used. We
apply (24) where f(z) is replaced by eiaxz f{z), x > 0, which is of exponential type
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< a if x < 1 — x/a. We obtain

(25)

which is the general result.

As a consequence of Theorem 2, we are now able to prove

THEOREM 3. Let n be a non-negative integer and a a complex number such that
Re(a) <n-l/2,a ^-I,-2,.... Forall f € £r(Re(a) + 1/2 - n), we have, for
a > 2x andO < x < 1 - 2x/a,

(26)

PROOF. We apply Theorem 2, where x is replaced by 2r, to the function g{z) :=
eizzf{z)\ we have hg(n/2) < 0 since [2, Theorem 5.4.1] /^(fl) <x,-n<0<n.
We obtain, using Leibniz's formula,

-n\(o/2)n ^ emx+T/a)-l)iJ'f(2jk/a)

2T(a + 1) £ i ir"+XJLUk)

t=0 j=0

*=0 ;=0
n

\—v /ft \
— > I I R L (

t=o K

where the last step uses the addition formula (12). The result follows by replacing k

by (n - k).

REMARK 3. Theorem 1 is a special case of both Theorems 2 and 3 where a —• oo
or/(z) = l.
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4. Other remarks and examples

4.1. We take, in Theorem 3, a = 2x and f(z) = Ja(rz)/(Tz)a. The resulting
formula reduces to a trivial identity if «is odd since S2;+i,a( 1/2) = 0,j = 0, 1, 2,
However, if n = 2m is even then we are led to the recurrence relation

V" 2 " g a t - ' ( 1 / 2 ) n i t
> O m l 2(2*)!(m - ifc)!r(a +m-k

which is useful to compute B2m,a(\/2). Note that (27), being obtained as a consequence
of Theorem 3, is first valid only for Re(a) < 2m — 1/2. This relation is in fact
valid for all a ^ - 1 , - 2 , . . . since its left-hand member is a rational fraction in
a. As a consequence of (27) we obtain B2,a(l/2) = - l / 8 ( a + 1), B4,o(l/2) =
3(a+3)/64(a+l)2(a+2), B6,a(l/2) = -15(a2+8a+19)/512(a+l)3(a+2)(a+3),
and so on. The relation £„,„(.*) = £"=,, (")S7,a(l/2) (JC - 1/2)"~J may then be used
to compute the a-Bernoulli polynomials explicitly.

4.2. Assume that a > — 1 is real. The zeros of Ja (z)/za are then real and simple [7,
p. 479]. It follows from Theorem 1 that, for 0 < x < 1, x ^ (21 + n + l)n/4ji + 1/2,
for integral I,

—n\ (e(2x~l)ij< + (—l)ne~ax~1)iJl)
(28) Bna{x)~

as n —> oo. For a = l/2(ji — it) the asymptotic relation (28) gives

(29) Bn(x) ~ -^~ (e2"" + (ire-2"'), n -+ cx>,

which makes sense for all 0 < x < 1 except for x = 1/4, 3/4 if n is even. The
relation (29) reduces itself to the well-known [1, p. 267] asymptotic relation

D ( r ( )
B^ ^ - ^ , m ^ oo,

in the particular case x = 0.

4.3. Let a = 3/2 and x = 0 in (13). We obtain, for n > 3,

( } -3/2
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[9] Representation formulas and Bernoulli polynomials 315

where tan(jk) = jk since [7, p. 54, Formula (3)] J3/2(z) = *J2/nz(sin(z)/z-cos(z)).
It follows that

if n is even, while

if n is odd. If n is even then (n + 1) is odd and the summation in (33) is the same as
in (32). Thus, if we replace n by (n + 1) in (33) and compare with (32), we obtain

(34) Bn+u/2 = - Bn,3/2, n > 4, even.

Also, since J5/2(z) = ^2/nz(O/z2 — 1) sin(z) — 3 cos(z)/z) by Formula (2) of [7,
p. 53], we have

—n!
(35) Bn,5/2 =

where tan(y'<.) = 3^/(3 - ft), and we deduce similarly that

(36) 12Bn+1,5/2 = -6(n + l)Bn,5/2 - (n + l)nBn_h5/2,

for all even integers n > 6.
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