M. RUUSALEPP Tartu Astrophysical Observatory, Estonia, USSR

For a grid of rotating hot stars the computed line widths at the half maximum depth for the lines HeI λ 4471 and MgII λ 4481 are given. Based on the correspondent observational data the inclination of the rotational axes i and the reduced rotational velocity w have been found for 19 B and Be stars. Key words: stellar rotation - line profiles.

To make it possible to specify the rotational state of a star we must start by calculating some line profiles for a grid of stars, which are differently oriented and rotate at different angular velocities. As the fit features for such a task we have chosen the HeI line at λ 4471 Å and MgII line at 4481 Å.

Calculated model line profiles for those lines we have taken from a paper by Stoeckley and Mihalas (1973), where a grid of intensity profiles for nonrotating stars is given for six effective temperatures, T_{eff} , from 15000 K to 27500 K and for ten values of the surface projection cosines, μ , from 1.0 to 0.1. Taking the limb darkening into account a grid of rotationally broadened profiles for these two lines was computed assuming that the shape of the stellar surface is given by the Roche model, the von Zeipel theorem for the effective temperature distribution holds and the star rotates as a solid body.

For a nonrotating star we have taken the surface gravity, g, to be 10^4 cm/s^2 , and the effective temperature values 27500 K and 22500 K. Model profiles were calculated for 4 values of the inclination of the rotational axes i and for 8 values of the reduced angular velocity w, defined

303

M. Jaschek and H.-G. Groth (eds.), Be Stars, 303-310. Copyright © 1982 by the IAU. as the ratio of the angular velocity to the critical angular velocity. The calculated half-widths (the line width at half maximum depth) are given in Table 1 and Fig. 1.

For both spectral lines used by us each value of the half-width measured from observations gives us a dependence of i versus w as a curve and an intersection of these curves defines the values of i and w. Such intersecting curves are given in Fig. 2 for nine stars. The observed values for half-widths have been taken from a paper by A. Slettebak et al. (1975). The error box for i and w has been singled out by taking the error of the half-widths to be \pm 0.1 A. The extreme values for i and w thus obtained are given in Table 2, where we have compiled the main results of our study for 19 B and Be stars. An example of finding the error box for β Lup is given in Fig. 3.

In Fig. 4 the mean values of i and w are given for the stars under study. These values do not show any clustering or any peculiar distribution which might indicate systematic errors in the measurements analysis.

In our study we have followed the paper by Hutchings et al. (1977), where it was shown that i and w can be determined for rotating stars by finding the ratio of the halfwidths of the UV and the visual spectral lines. Among those 14 stars, unfortunately, none coincided with the stars studied by us.

If i, w and V_{\perp} (the critical velocity at the stellar equations) are known, we can determine V sin i by V sin i = V_C w sin i. The value obtained depends on the atopted value of V_{c} . The values of V_{c} used by us were taken from a handbook by Allen (1973). The calculated values of V sin i are given in Table 2, where also the values of V sin i, found by Boyarchuk and Kopylov (1964), by Uesugi and Fukuda (1970) and by Slettebak et al. (1975) are presented. The results of the last two catalogues are compared with our results on Fig. 5. There is a tendency for our values to run slightly higher than those of Slettebak et al. In addition, the results of Stoeckley (1968), namely that for η U Ma holds $i = 50^{\circ} \div 90^{\circ}$ and for 48 Per holds $i = 30^{\circ} \div 50^{\circ}$ overlap with our results. To use in full the rotationally distorted spectral lines for finding the values of i, w and V_{c} , more spectral line profiles, including those of UV region, are to be used.

I express sincere thanks to Dr. A. Sapar for useful suggestions, comments and help in formulation of the English version of present report.

LINE PROFILES OF ROTATING STARS

				i		
w	Lines	0 ⁰	30 ⁰	60 ⁰	90 ⁰	
		T _{eff} =	27500 ⁰	log g =	4.0	
0.2	HeI MgII	1.40 0.45	1.50 0.65	1.80 1.00	2.00 1.25	
0.3	HeI MgII	1.40 0.45	2.40 1.10	3.00 1.50	3.20 1.75	
0.4	HeI MgII	1.40 0.45	3.00 1.42	3.60 2.10	4.00 2.50	
0.5	HeI MgII	1.40 0.45	3.40 1.80	4.25 2.75	4.80 3.35	
0.6	HeI MgII	1.40 0.45	3.70 2.30	4.70 3.65	5.40 4.25	
0.7	HeI MgII	1.30 0.50	4.00 2.75	5.20 4.35	6.00 5.00	
0.8	HeI MgII	1.30 0.50	4.20 3.35	5.60 5.00	6.40 5.60	
0.9	HeI MgII	1.30 0.50	4.40 3.95	5.80 5.50	6.60 6.10	
		^T eff "	22500 ⁰	log g =	4.0	
0.2	HeI MgII	1.00 0.50	1.20 0.60	1.80 0.95	2.25 1.20	
0.3	HeI MgII	1.00 0.50	1.60 0.90	2.80 1.35	3.20 1.80	
0.4	HeI MgII	1.00 0.50	2.20 1.30	3.40 2.10	3.85 2.50	
0.5	HeI MgII	1.00 0.50	2.80 1.85	3.80 2.90	4.25 3.45	
0.6	HeI MgII	1.00 0.50	3.20 2.45	4.20 3.70	4.75 4.30	
0.7	HeI MgII	1.00 0.50	3.40 3.30	4.60 4.50	5.20 5.10	
0.8	HeI MgII	1.00 0.50	3.60 4.25	4.80 5.30	5.60 5.90	
0.9	HeI MgII	1.00 0.50	3.90 5.10	5.10 6.00	5.90 6.60	

<u>Table 1</u>: Computed half-widths of MgII λ 4481 and HeI λ 4471 lines

							,				
	НD	Sp.	HeI	MgII	-	/ sin i (k	m/s)*			Э	
		- J-	(Å)	(Å)	s.	в.		к.	4	5	
	68980	B1.5IIIe	3.37	2.10	115	166	167	90-113	14 ⁰ -25 ⁰	0.58-0.85	
	144218	B2 V	2.62	1.21	50	85	84	81- 96	21 ⁰ -28 ⁰	0.36-0.40	
	132058	B2 V	3.34	3.00	100	130	130	167-200	27 ⁰ -34 ⁰	0.63-0.70	
	120307	B2 V	2.70	1.75	70	170	94	130-155	27 ⁰ -40 ⁰	0.40-0.50	
	65575	B2 V	1.85	1.31	50	100	98	38- 63	5°-10°	0.60-0.76	
	109668	B2 IV-V	4.14	3.51	110	215	198	191-233	22 ⁰ -30 ⁰	0.80-0.90	
	121790	B2 IV-V	4.18	3.26	125	150	153	203-231	25°-35°	0.70-0.85	
	121743	B2 IV-V	3.08	2.03	80	180	115	154-183	40°-54°	0.41-0.47	
	37490	B2 IIIe	4.43	4.14	160	204	195	192-206	54°-71°	0.62-0.68	
	35468	B2 III	2.27	1.30	50	61	64	64-78	23 ⁰ -39 ⁰	0.35-0.47	
	148703	B2 III	3.23	1.55	75	<i>LT</i>	83	93:	50 ⁰	0.35	
	41753	B3 V	1.99	1.03	40	40	42	94-104	30 ⁰ -34 ⁰	0.35-0.36	
	74280	B3 V	3.55	2.33	100	130	132	134-146	20 ⁰ -23 ⁰	0.67-0.80	
	68243	B3 V	3.82	3.72	06	158	160	215-243	34 ⁰ -42 ⁰	0.68-0.72	
	120315	B3 V	4.85	4.00	150	215	216	261-300	41 ⁰ -60 ⁰	0.60-0.81	
	116087	B3 V	5.75	4.89	190	ł	ı	366-389	66°-76°	0.71-0.77	
	102776	B3 Ve	5.93	5.43	205	ı	270	412-436	60°-73°	0.82-0.90	
	25940	B3 Vpe	4.71	4.03	250	210	217	254-277	34 ⁰ -40 ⁰	0.76-0.89	
	45813	B4 V	3.60	2.86	110	ı	138	183-215	36 ⁰ -49 ⁰	0.52-0.60	
L 🛪 🛛	et al.,	B Boyarchuk	and Kopy	'lov, U	Uesugi a	ınd Fukuda	, R	Ruusalepp			I.

i, w and V sin i values for program stars Table 2:

306

https://doi.org/10.1017/S0074180900037979 Published online by Cambridge University Press

LINE PROFILES OF ROTATING STARS

M. RUUSALEPP

REFERENCES:

Allen, C.W.: 1973, Astrophysical Quantities
Boyarchuk, A.A. and Kopylov, I.M.: 1964, Publ. Crimean Ap. Obs. <u>31</u>,44
Hutchings, J.B. and Stoeckley, T.R.: 1977, PASP, <u>89</u>,19
Slettebak, A., Collins, G.W. II, Boyce, P.B., White, N.M. and Parkinson, T.D.: 1975, Ap. J. Suppl. <u>29</u>,137
Stoeckley, T.R.: 1968, Mon. Not. R. Astr. Soc. <u>140</u>,121
Stoeckley, T.R. and Mihalas, D.: 1973, NCAR-TN/STR 84
Uesugi, A. and Fukuda, I.: 1970, Contr. Inst. Ap. and Kwasan Obs., Univ. of Kyoto, No. 189 DISCUSSION

Sonneborn: What are the errors in your determinations of i and ω ?

<u>Ruusalepp</u>: The error is dependent on the star and on the observed half-widths of the spectral lines. The characteristic values of the errors are $\pm 10^{\circ}$ for i and $\pm .1$ for ω/ω_{c} .

Endal: From the viewpoint of someone who models rotating stars, the indeterminacy of the sin i factor in observations is very aggravating. I believe that any investigation into measuring v and sin i separately should be strongly encouraged.

<u>Marlborough</u>: Have you compared your results for i and ω/ω_c with those published by Hutchings and collaborators?

<u>Ruusalepp</u>: Among the sample of stars under examination there were no stars which coincide with stars studied in that paper.

310