THE SPECTRAL MAPPING PROPERTY FOR *p*-MULTIPLIER OPERATORS ON COMPACT ABELIAN GROUPS

WERNER J. RICKER

(Received 1 July 2003; revised 9 January 2004)

Communicated by G. Willis

Abstract

Let G be a compact abelian group and $1 . It is known that the spectrum <math>\sigma(T_{\psi})$, of a Fourier p-multiplier operator T_{ψ} acting in $L^{p}(G)$, may fail to coincide with its natural spectrum $\overline{\psi(\Gamma)}$ if $p \neq 2$; here Γ is the dual group to G and the bar denotes closure in \mathbb{C} . Criteria are presented, based on geometric, topological and/or algebraic properties of the compact set $\sigma(T_{\psi})$, which are sufficient to ensure that the equality $\sigma(T_{\psi}) = \overline{\psi(\Gamma)}$ holds.

2000 Mathematics subject classification: primary 43A22, 47A10.

1. Introduction

Let G be a compact abelian group with (discrete) dual group Γ . The Fourier transform

$$\hat{f}(\gamma) := \int_G f(g) \langle -g, \gamma \rangle \, dg, \quad \gamma \in \Gamma$$

is defined for all $f \in L^1(G)$. According to Hausdorff-Young's inequality, the Fourier transform map $f \mapsto \hat{f}$ is linear and continuous from $L^p(G)$ into $\ell^{p'}(\Gamma)$, where 1/p + 1/p' = 1 and $1 \leq p \leq 2$. In the above formula for \hat{f} , replacing f(g)dgwith $d\mu(g)$ gives the definition of the *Fourier-Stieltjes transform* $\hat{\mu} : \Gamma \to \mathbb{C}$ for any finite regular Borel measure μ on G. An element T from $\mathcal{L}(L^p(G))$, the Banach algebra of all continuous linear operators from $L^p(G)$ into itself, is called a (*Fourier*) *p-multiplier operator* if it commutes with each *translation operator* τ_h , for $h \in G$, where $\tau_h f : g \mapsto f(g - h)$. Equivalently, there exists $\psi \in \ell^{\infty}(\Gamma)$, necessarily

^{© 2005} Australian Mathematical Society 1446-7887/05 \$A2.00 + 0.00

unique, such that $\widehat{Tf} = \psi \widehat{f}$ for $f \in L^2 \cap L^p(G)$. The function $\psi : \Gamma \to \mathbb{C}$ is called a *p*-multiplier for G and the corresponding operator T is denoted by T_{ψ} ; the *p*-dependence of T_{ψ} is suppressed since *p* will always be clearly identified. The space of all *p*-multipliers for G is denoted by $\mathscr{M}^p(G) \subseteq \ell^{\infty}(\Gamma)$ and the space of all *p*-multiplier operators by $O_p(G) \subseteq \mathscr{L}(L^p(G))$. The inequality

$$\|\psi\|_{\ell^{\infty}(\Gamma)} \le \|T_{\psi}\|_{\mathscr{L}(L^{p}(G))}, \quad \psi \in \mathscr{M}^{p}(G)$$

is well known. If we equip $\mathscr{M}^{p}(G)$ with the norm $|||\psi|||_{p} := ||T_{\psi}||_{\mathscr{L}(L^{p}(G))}$, then $\mathscr{M}^{p}(G)$ is a unital commutative semisimple Banach algebra for pointwise multiplication. For each $\psi \in \mathscr{M}^{p}(G)$, the functions $\operatorname{Re}(\psi)$, $\operatorname{Im}(\psi)$ and $\overline{\psi}$ (the complex conjugate of ψ) also belong to $\mathscr{M}^{p}(G)$ with $\psi \mapsto \overline{\psi}$ being an isometric involution on $\mathscr{M}^{p}(G)$. Since $\mathscr{M}^{p}(G)$ is isometrically isomorphic to $\mathscr{M}^{p'}(G)$ we will restrict attention to $1 . It is known that <math>\hat{\mu} \in \mathscr{M}^{p}(G)$ for every $1 \le p < \infty$ and every finite regular Borel measure μ on G. As a general reference for p-multipliers, see [9].

The spectrum $\sigma(T)$, of an operator $T \in \mathcal{L}(L^p(G))$, is defined by

$$\sigma(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible in } \mathscr{L}(L^p(G))\}.$$

For elements $T_{\psi} \in O_p(G)$, a basic fact is that

(1)
$$\overline{\psi(\Gamma)} \subseteq \sigma(T_{\psi}),$$

for every $1 \le p < \infty$, [13, Lemma 2.1], where the bar denotes closure in \mathbb{C} . Fundamental work of Igari [7] and Zafran [14] established that (1) fails to be an equality in general, even for such a 'nice' group as $G = \mathbb{T}$ (the circle group) and for every $1 . Indeed, there even exist elements <math>\psi \in \mathcal{M}^p(\mathbb{T}) \cap c_0(\mathbb{Z})$ which fail to satisfy (1).

We will say that $\psi \in \mathcal{M}^{p}(G)$ satisfies the spectral mapping property if (1) is an equality. The class of decomposable operators (in an arbitrary Banach space) was introduced by Foiaş [5]; see also [2]. In [1], Albrecht made a detailed study of decomposability for the particular class of p-multiplier operators acting in lca groups; see also [4]. Using a functional calculus approach and local spectral theory he showed that the class of decomposable p-multiplier operators is rather extensive and, most importantly, that all such operators must satisfy the spectral mapping property, [1, Lemma 3.2].

The purpose of this note is to present criteria of a rather different nature, which ensure the spectral mapping property. The criteria are based directly on geometric, topological and/or algebraic properties of the spectrum itself. Given a compact set $K \subseteq \mathbb{C}$, let $\mathscr{I}(K)$ denote the set of all *isolated points* of K. We can now state the main result.

THEOREM 1.1. Let G be a compact abelian group, $1 and <math>\psi \in \mathcal{M}^p(G)$.

- (i) ψ satisfies the spectral mapping property if and only if $\overline{\psi}$ does.
- (ii) If $\sigma(T_{\psi}) = \overline{\mathscr{I}(\sigma(T_{\psi}))}$, then ψ satisfies the spectral mapping property.

(iii) Suppose that $\sigma(T_{\psi})$ is totally disconnected. Then T_{ψ} is decomposable and hence, satisfies the spectral mapping property. This is the case if either:

- (a) $\sigma(T_{\psi})$ is countable.
- (b) $\sigma(T_{\psi})$ is independent, as a subset of the abelian group \mathbb{R}^2 .
- (c) $\sigma(T_{\psi})$ is a Kronecker set.

(iv) If $\overline{\psi(\Gamma)}$ is totally disconnected, then T_{ψ} satisfies the spectral mapping property if and only if T_{ψ} is decomposable.

(v) Let μ be a finite regular Borel measure on G such that $\overline{\hat{\mu}(\Gamma)}$ has capacity zero. Then $\hat{\mu}$ satisfies the spectral mapping property.

(vi) The following statements are equivalent:

- (a) T_{ψ} fails the spectral mapping property.
- (b) $\sigma(T_{\psi}) \setminus \overline{\psi(\Gamma)}$ is an uncountable set.
- (c) $\overline{\sigma(T_{\psi}) \setminus \overline{\psi(\Gamma)}}$ is a non-empty perfect set.

The proof is via a series of steps.

For $T \in \mathcal{L}(L^p(G))$, let $\sigma_{pt}(T)$, $\sigma_r(T)$ and $\sigma_c(T)$ denote the *point*, *residual* and *continuous spectra* of T, respectively, in which case the three sets are pairwise disjoint and have union equal to $\sigma(T)$, [3, page 580].

LEMMA 1.2. Let $1 and <math>\psi \in \mathcal{M}^p(G)$. Then

(2) $\sigma_c(T_{\overline{\psi}}) = \{\overline{\lambda} : \lambda \in \sigma_c(T_{\psi})\}$

and also

(3)
$$\sigma_{pt}(T_{\overline{\psi}}) = \{\overline{\lambda} : \lambda \in \sigma_{pt}(T_{\psi})\} = \overline{\psi}(\Gamma).$$

In particular,

(4)
$$\sigma(T_{\overline{\psi}}) = \{\overline{\lambda} : \lambda \in \sigma(T_{\psi})\}.$$

PROOF. For any $\varphi \in \mathcal{M}^p(G)$, it is routine to check that T_{φ} is injective if and only if $0 \notin \varphi(\Gamma)$. It follows easily that

(5)
$$\sigma_{pt}(T_{\varphi}) = \varphi(\Gamma), \quad \varphi \in \mathscr{M}^{p}(G).$$

Putting φ equal to ψ and $\overline{\psi}$ in (5), we can deduce (3).

Suppose that $\lambda \in \sigma_c(T_{\psi})$. Then (5) implies that $\lambda \notin \psi(\Gamma)$ and hence, $\overline{\lambda} \notin \overline{\psi}(\Gamma)$. For each $\gamma \in \Gamma$, the function $f_{\gamma} : g \mapsto \langle g, \gamma \rangle \cdot (\overline{\psi(\gamma)} - \overline{\lambda})^{-1}$, for $g \in G$, belongs to $L^p(G)$ and satisfies $(T_{\overline{\psi}} - \overline{\lambda}I)f_{\gamma} = h_{\gamma}$, where $h_{\gamma}(g) := \langle g, \gamma \rangle$, for $g \in G$. This Werner J. Ricker

shows that all trigonometric polynomials belong to the range of $T_{\overline{\psi}} - \overline{\lambda}I$ and hence, that this range is dense in $L^p(G)$. Accordingly, $\overline{\lambda} \in \sigma_c(T_{\overline{\psi}})$ which shows that the right-hand side of (2) is contained in $\sigma_c(T_{\overline{\psi}})$. The reverse inclusion is established similarly.

Since
$$\sigma_r(T_{\psi}) = \emptyset = \sigma_r(T_{\overline{\psi}})$$
, [13, Lemma 2.4], (4) follows.

Given any $\psi \in \mathcal{M}^p(G)$ it is routine to verify that

$$\{\overline{\lambda}:\lambda\in\overline{\psi(\Gamma)}\}=\{\mu:\mu\in\overline{\overline{\psi}(\Gamma)}\}.$$

This observation, together with Lemma 1.2, imply (i) of Theorem 1.1.

To establish Theorem 1.1 (ii) we require the fact that every isolated point of $\sigma(T_{\psi})$ belongs to $\sigma_{pt}(T_{\psi})$. But, since all elements of $\mathcal{M}^{p}(G)$ are *continuous* on the discrete space Γ , this follows from [13, Theorem 2.3]. In view of (5), we can conclude that

(6) $\mathscr{I}(\sigma(T_{\psi})) \subseteq \psi(\Gamma) \subseteq \sigma(T_{\psi}), \quad \psi \in \mathscr{M}^{p}(G).$

Under the particular hypothesis that $\overline{\mathscr{I}(\sigma(T_{\psi}))} = \sigma(T_{\psi})$, we see from (6) that ψ satisfies the spectral mapping property. This completes the proof of part (ii).

REMARK. It is straightforward to exhibit compact sets $K \subseteq \mathbb{C}$ which satisfy $\overline{\mathscr{I}(K)} = K$, but K is not totally disconnected. So, (ii) of Theorem 1.1 does not follow from part (iii). Of course, there also exist totally disconnected, compact sets K for which $\overline{\mathscr{I}(K)} \neq K$ (for example, the Cantor set, where $\mathscr{I}(K) = \emptyset$).

Concerning the proof of Theorem 1.1 (iii), it is known that decomposability of T_{ψ} always follows from the total disconnectedness of $\sigma(T_{\psi})$; see the proof of [10, Lemma 2.2] which also applies to arbitrary compact abelian groups G.

For the definition of a subset of $\mathbb{R}^2 \simeq \mathbb{C}$ being an *independent set* (an algebraic notion) or a *Kronecker set*, we refer to [11, Chapter 5]. Compact, independent subsets of \mathbb{R}^2 are always totally disconnected, [11, Theorem 5.2.9], and every Kronecker set is independent, [11, Theorem 5.1.4]. So, (b) and (c) of part (iii) are valid. To verify (a), let C be a connected subset of $\sigma(T_{\psi})$. Since metric spaces are completely regular and C is countable, it follows that C is actually a singleton set, [8, page 129]. So, $\sigma(T_{\psi})$ is totally disconnected whenever it is countable. This completes the proof of part (iii).

For part (iv), we have seen that decomposability of T_{ψ} always implies the spectral mapping property, even if $\overline{\psi(\Gamma)}$ is not totally disconnected. On the other hand, the spectral mapping property means that $\sigma(T_{\psi}) = \overline{\psi(\Gamma)}$ and so $\sigma(T_{\psi})$ is totally disconnected whenever $\overline{\psi(\Gamma)}$ is totally disconnected. Then part (iii) yields the decomposability of T_{ψ} .

p-multiplier operators

For the notion of *capacity*, which is relevant to (v), we refer to [12] and the references therein. When p = 2, it is known that $\sigma(T_{\hat{\mu}}) = \hat{\mu}(\Gamma)$, [14, page 357]. This observation, together with [12, Corollary 2.2], establishes (v). For related criteria which also imply the spectral mapping property see [6, Section 4].

REMARK. If Γ is discrete and countable (that is, G is metrizable) and μ is a finite regular Borel measure on G with $\hat{\mu} \in c_0(\Gamma)$, then $\overline{\hat{\mu}(\Gamma)}$ is countable and hence, has capacity zero. It follows from (v) of Theorem 1.1 that $\hat{\mu}$ satisfies the spectral mapping property for all $1 ; see also [12, page 309]. The condition <math>\hat{\mu} \in c_0(\Gamma)$ is not necessary for this conclusion to hold, [12, Examples 2 and 3]. There also exist μ (even on T) which satisfy the spectral mapping property for all $1 but, <math>\hat{\mu}(\Gamma)$ is uncountable, [12, pages 310–312].

Finally, part (vi) of Theorem 1.1 follows from (6) and the following result (with the choice $J := \overline{\psi(\Gamma)}$ and $K := \sigma(T_{\psi})$).

LEMMA 1.3. Let $K \subseteq \mathbb{C}$ be non-empty and compact.

(i) $\mathscr{I}(K)$ is a countable set, possibly empty.

(ii) K is countable if and only if the set $\mathscr{A}(K)$ of all accumulation points of K is countable.

(iii) Let J be a closed subset of K with $\mathscr{I}(K) \subseteq J$. Then either J = K or $\overline{K \setminus J}$ is a non-empty perfect set (that is, $\overline{K \setminus J} = \mathscr{A}(\overline{K \setminus J})$). If $J \neq K$, then $K \setminus J$ (hence, also $\overline{K \setminus J}$) is uncountable.

PROOF. (i) K is a separable metric space and so has a countable base for its topology. Since each set $\{x\}$, for $x \in \mathscr{I}(K)$, belongs to this base, it follows that $\mathscr{I}(K)$ is countable.

(ii) Since K is the disjoint union of $\mathscr{I}(K)$ and $\mathscr{A}(K)$, (ii) follows from (i).

(iii) Suppose that $\overline{K \setminus J} \neq \emptyset$ and let $x \in \overline{K \setminus J}$.

If $x \notin K \setminus J$, then $x \in \mathscr{A}(K \setminus J) \subseteq \mathscr{A}(\overline{K \setminus J})$.

If $x \in K \setminus J$, then $K \setminus J$ being open in K ensures the existence of a ball B_x (centre x and positive radius) which is open in K and satisfies $B_x \subseteq K \setminus J$. Since $\mathscr{I}(K) \subseteq J$ it follows that $x \in \mathscr{A}(K)$. Choose any sequence $\{x_n\}_{n=1}^{\infty}$ in $K \setminus \{x\}$ which converges to x. Then all but finitely many of the x_n must belong to B_x . Remove these finitely many points leaves a sequence in $(K \setminus J) \setminus \{x\}$ which converges to x. Accordingly, $x \in \mathscr{A}(K \setminus J) \subseteq \mathscr{A}(\overline{K \setminus J})$.

This establishes that $\overline{K \setminus J}$ is a perfect set whenever $J \neq K$.

Suppose now that $J \neq K$. The set $K \setminus J$ is open in K and each singleton set $\{x\}$, for $x \in K \setminus J$, is nowhere dense in K (because $\mathscr{I}(K) \subseteq J$). So, if $K \setminus J$ is countable, then it is of first category in K. By Baire's Theorem $J = K \setminus (K \setminus J)$ would be dense

in K, that is, $K = \overline{J} (= J)$ contrary to the assumption that $J \neq K$. Hence, $K \setminus J$ is uncountable.

As a concluding remark, we point out that Theorem 1.1 (vi) is an extension of a result of Zafran, [13, Lemma 2.6], proved for $\psi \in \mathcal{M}^p(G) \cap c_0(\Gamma)$. Our result shows that the condition $\psi \in c_0(\Gamma)$ can be omitted.

References

- E. Albrecht, 'Decomposable systems of operators in harmonic analysis', in: *Toeplitz Memorial Conference in Operator Theory* (ed. I. Gohberg), Oper. Theory Adv. Appl. 4 (Birkhäuser, Basel, 1982) pp. 19–35.
- [2] I. Colojoară and C. Foiaş, *Theory of generalized spectral operators* (Gordon and Breach, New York, 1968).
- [3] N. Dunford and J. T. Schwartz, Linear operators I: General theory (Interscience, New York, 1964).
- [4] J. Eschmeier, 'Operator decomposability and weakly continuous representations of locally compact abelian groups', J. Operator Theory 7 (1982), 201–208.
- [5] C. Foiaş, 'Spectral maximal spaces and decomposable operators', Arch. Math. (Basel) 14 (1963), 341-349.
- [6] C. C. Graham, K. E. Hare and D. L. Ritter, 'The size of L^p-improving measures', J. Funct. Anal. 84 (1989), 472–495.
- [7] S. Igari, 'Functions of L^p multipliers', *Tôhoku Math. J.* 21 (1969), 304–320.
- [8] K. Kuratowski, Topology II (PWN-Polish Scientific Publ., Warszawa, 1968).
- [9] R. Larsen, An introduction to the theory of multipliers (Springer, Berlin, 1971).
- [10] G. Mockenhaupt and W.J. Ricker, 'Fuglede's theorem, the bicommutant theorem and p-multiplier operators for the circle', J. Operator Theory 49 (2003), 295–310.
- [11] W. Rudin, Fourier analysis on groups (McGraw-Hill, New York, 1973).
- [12] P. Sarnak, 'Spectra of singular measures as multipliers on L^{p} ', J. Funct. Anal. 37 (1980), 302–317.
- [13] M. Zafran, 'On the spectra of multipliers', Pacific J. Math. 47 (1973), 609-626.
- [14] _____, 'The spectra of multiplier transformations on the L_p -spaces', Ann. of Math. (2) 103 (1976), 355–374.

Math.-Geogr. Fakultät

Katholische Universität Eichstätt-Ingolstadt

D-85072 Eichstätt

Germany

e-mail: werner.ricker@ku-eichstaett.de