Robotica (2023), 41, pp. 1590-1616
doi:10.1017/S0263574723000012

B® CAMBRIDGE
&2 UNIVERSITY PRESS

RESEARCH ARTICLE

Unified robot and inertial sensor self-calibration

James M. Ferguson!* @, Tayfun Efe Ertop!, S. Duke Herrell ITI> and Robert J. Webster IIT!

! Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA and 2Department of Urologic Surgery,
Vanderbilt University Medical Center, Nashville, TN, USA
*Corresponding author. E-mail: james.m.ferguson @vanderbilt.edu

Received: 30 October 2022; Accepted: 1 December 2022; First published online: 16 February 2023

Keywords: robot calibration, inertial sensor calibration, Bayesian inference, continuous-time batch estimation, optimal
trajectory planning

Abstract

Robots and inertial measurement units (IMUs) are typically calibrated independently. IMUs are placed in purpose-
built, expensive automated test rigs. Robot poses are typically measured using highly accurate (and thus expensive)
tracking systems. In this paper, we present a quick, easy, and inexpensive new approach to calibrate both simul-
taneously, simply by attaching the IMU anywhere on the robot’s end-effector and moving the robot continuously
through space. Our approach provides a fast and inexpensive alternative to both robot and IMU calibration, without
any external measurement systems. We accomplish this using continuous-time batch estimation, providing statisti-
cally optimal solutions. Under Gaussian assumptions, we show that this becomes a nonlinear least-squares problem
and analyze the structure of the associated Jacobian. Our methods are validated both numerically and experimentally
and compared to standard individual robot and IMU calibration methods.

1. Introduction

Both robots and inertial measurement units (IMUs) must be calibrated to perform accurately in a host of
applications. Traditionally, they are calibrated independently using highly accurate, often cumbersome,
and typically expensive dedicated systems. The motivation for our work is to eliminate all external
measurement systems and calibrate the robot and IMU simultaneously simply by attaching the IMU to
the robot’s end-effector and moving the robot around continuously throughout its workspace.

Robot calibration itself is the process of estimating updates to the robot’s kinematic model param-
eters, based on a set of observations of the end-effector pose. Calibration’s ability to make substantial
improvements to robot accuracy is supported by a rich and mature body of literature [1-5].

Widely used in mobile and aerial robotics applications, IMUs provide real-time measurements
of the kinematic state of a system useful for online estimation and feedback control. Their micro-
electro-mechanical systems (MEMS) typically include some combination of triaxial accelerometers,
gyroscopes, and magnetometers. These systems are compact and manufactured as a single integrated
circuit, making them inexpensive and integrable into the majority of robotic systems. However, the
MEMS sensors in IMUs present a set of intrinsic parameters that must be calibrated. Nonzero sensor
biases, nonunit scale factors, and sensor axis misalignments should all be identified prior to IMU use
[6-9]. Furthermore, the spatial relationships (i.e. the rotation and translation) between the IMU and the
robot’s coordinate system must be determined prior to use in real-time robot estimation or monitoring
applications.

Data collection for IMU calibration is often less straightforward than for robot calibration. This is
because — neglecting the potential triaxial magnetometer — IMU calibration typically consists of two
subproblems: accelerometer and gyroscope calibration. In a laboratory setting, the standard methodol-
ogy for calibration of IMUs requires mounting the IMU on a leveled turntable [10]. The turntable is then
commanded to a precise angular rate, and the IMU sensors are sampled. Comparing the gyroscope and

© The Author(s), 2023. Published by Cambridge University Press.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012
https://orcid.org/0000-0002-8436-2804
https://doi.org/10.1017/S0263574723000012

Robotica 1591

accelerometer outputs to known values based on the speed of the leveled turntable and Earth’s gravity
enables calibration.

Calibration methods have been proposed that do not require a turntable, for example, based on using
the Earth’s angular velocity or gravity [6, 9]. These methods, while promising, are less accurate than
turntable methods and are often unable to calibrate the gyroscope parameters due to numerical issues.
Thus, “expensive mechanical platforms are often inevitable” [11] for IMU calibration. IMU parameters
also drift over time and must be periodically re-calibrated [10], making availability and use of dedicated
turntable solutions undesirable. This is especially undesirable in robotics applications since this would
require removal of the IMU, mounting on a turntable for calibration, and reinstallation into the robot
system.

By combining the IMU and robot calibration together, we eliminate the need for such specialized
and time-consuming calibration steps for each system individually. Furthermore, our method completely
eliminates additional calibration steps for the extrinsic IMU parameters (e.g. determining the pose of
the IMU relative to the robot). This is all accomplished in one fast calibration step with no external
equipment.

In this paper, we propose a new method to estimate the many parameters involved when mount-
ing an IMU onto a serial robot’s end-effector without any external equipment (i.e. “self-calibration”).
The robot’s joint position sensors and data output from the IMU are sampled while the robot moves
continuously. The resulting time series is used to infer the following sets of parameters: (i) robot kine-
matic parameters, (ii) IMU intrinsic parameters (i.e. sensor gains, biases, and misalignments), and (iii)
extrinsic parameters (i.e. sensor rotations, translation, temporal offset, and gravity). Enabled by recent
advancements in continuous-time batch estimation [12], our method computes maximum a posteriori
(MAP) estimates of the system parameters and the trajectory simultaneously given the sampled data.
Under Gaussian assumptions, we show that this leads to a nonlinear least-squares problem and analyze
the structure of the associated Jacobian. Finally, as the planned robot trajectory is arbitrary, we devise
a sequential method for numerically planning the trajectory that improves estimation convergence. Our
sequential approach makes solutions to a computationally intractable trajectory planning problem fea-
sible. We validate our methods in simulation and with experimental data collected with an AUBO i5
industrial robot (AUBO Robotics, USA) comparing our calibration to standard methods for both robot
and IMU calibration.

Our unified calibration approach is useful for three main scenarios. First, our approach enables (i) a
fast and inexpensive alternative to traditional robot calibration. While the method is evidently useful for
estimating robot angle parameters (i.e. a Level I and partial Level II robot calibration [1]), our numer-
ical results provide evidence suggesting that full Level II robot calibration (with length parameters) is
possible given a sufficiently fast robot trajectory. Robot calibration equipment (e.g. optical/laser track-
ing systems) is often expensive, and data collection is often cited as the most time-consuming part of
calibration [13]. The IMU used in our experiments cost less than 30 USD, and automatic data collection
took only 5 min. Furthermore, the method does not require any line of sight such is the case with optical
tracking systems. Second, our approach enables (ii) a fast, cheap, and automated alternative to tradi-
tional IMU calibration. Specifically, our method circumvents the need for expensive external calibration
equipment (e.g. rate tables) provided that a robot is available.

Finally, our method enables (iii) an essential calibration step for online robot estimation and monitor-
ing applications using IMUs. For example, IMUs have been explored as a primary means of measuring
robot joint angles [14—17]. More recently, data from IMUs have been fused with joint position sensor
data to increase robot accuracy online [18, 19]; this approach could be especially useful to improve the
accuracy of compliant [20] or cable-driven [21] medical robots. Additionally, IMUs have been used for
robot collision monitoring [22] and could be applied to general fault detection. In order to use an IMU
in these applications, many extrinsic parameters (e.g. rotation and translation of the IMU relative to the
end-effector) must first be determined. Furthermore, our method eschews removal of the IMU from the
robot to achieve an accurate IMU calibration; this is especially useful since frequent recalibration of
sensor parameters is often unavoidable [10].

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1592 James M. Ferguson et al.

2. Related work on robot/IMU calibration

While IMUs have seen extensive application in mobile robotics, their use has been more limited in fixed-
base robot manipulators. Here, we outline related works concerning calibration with IMU-equipped
stationary robots in three general categories.

2.1. Robot calibration via IMU

Robot calibration is typically carried out measuring end-effector pose; however, some groups have
instead attempted to use IMU data for robot calibration. Perhaps the earliest example is ref. [23] where
the method showed promise; however, the achieved end-effector error was on the order of 15 mm. More
recently, in ref. [24] the achieved positioning errors were still large in comparison to typical require-
ments. While these studies laid the foundation for IMU-based robot calibration, our method achieves
better accuracy while additionally estimating many other useful parameters.

Others have adopted a sensor fusion approach to IMU-based robot calibration. In ref. [25], the authors
use a Kalman filter fusion algorithm to estimate the end-effector orientation. The orientations alone
were then used to calibrate the robot. While the accuracy of the robot was improved in this case, it is
not possible to estimate the robot length parameters from orientation information alone. Thus, in refs.
[26, 27], the authors fuse data from both an IMU and a position sensor to estimate the full pose of the
end-effector. An unscented Kalman filter was then used to estimate the robot kinematic errors online
from the pose information. Even though the authors achieved good accuracy results, the position sensor
used adds another operating constraint (line of sight) to the robot, while an IMU alone poses minimal
constraint.

Importantly, in all of these works, IMU measurements were taken under static conditions. In our
method, we sample the data while the robot moves continuously. These data collected under dynamic
conditions are potentially more informative. During motion, we can measure the acceleration and angu-
lar velocity of the end-effector. If, on the other hand, the robot is stationary, these quantities are all
Zero.

Furthermore, in order to use an IMU for robot calibration, its sensor parameters must first be cal-
ibrated. In each of the aforementioned works, the IMU sensors were either calibrated beforehand or
nominal values were used instead, potentially sacrificing accuracy. Our method proposes to jointly
estimate the robot and IMU parameters in one fast and accurate calibration step.

2.2. IMU calibration via robot

While IMU calibration is typically conducted using turntables, some researchers have instead opted
to use robot data. In ref. [28], the authors present a method using a robot to calibrate an end-effector-
mounted accelerometer and magnetometer. Similarly, in ref. [29], the authors present an open source,
low cost robot for calibration of IMUs. In ref. [30], the authors focus on calibration of the triaxial
accelerometer portion of the IMU using a serial robot.

These methods were able to calibrate at least some of the IMU sensors using a robot arm with good
results. However as the robot was not in motion during data collection, many of the gyroscope parameters
could not be estimated. In our proposed dynamic method, we are able to calibrate all of the sensor
parameters of interest. Furthermore, our method also simultaneously calibrates the robot; this makes
our method potentially more accurate.

2.3. Sensor extrinsic calibration

While most applications of IMUs in robotics are limited to visual-inertial navigation and mobile robots
[31-37], some researchers have instead attempted to use IMU data with stationary robots. For example,
some researchers have used inertial sensors for joint angle measurement instead of traditional angle
transducers (e.g. encoders) [14]. In ref. [15], the authors measure the joint angles of a robot using 2 axis
accelerometers with a static accelerometer calibration scheme to estimate voltage biases. Similarly, in
ref. [16], the authors propose a method for estimating joint angles of an industrial robot using multiple

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1593

Extrinsic Parameters
(e.g. Spatial and Temporal Offsets)

Inertial
Measurement Unit

Robot
Kinematic
Model, T},

I

Fy
[|

Fa

Robot
Kinematic Error
Parameters, F,

Accelerometer and
Gyroscope Instrinsic

Sensor Parameters
Figure 1. Diagram of a serial robot with end-effector-mounted inertial measurement unit (IMU) illus-
trating the various parameters and reference frames involved. Given known robot motion, IMU outputs
can be predicted; however, these predictions will in general be erroneous due to unknown errors in robot
kinematic parameters, IMU intrinsic parameters, and extrinsic parameters relating the two. Our cali-
bration method determines all of these parameters simultaneously given robot and IMU data sampled
during continuous motion.

IMUs. In order to use the sensors for estimation, several of the gyroscope parameters were first calibrated
by moving the robot dynamically; the accelerometer parameters were then calibrated while the robot was
stationary by comparing the sensor outputs to gravity. In ref. [17], the authors use IMUs for joint angle
estimation with good results. A necessary step was the calibration of the sensor spatial offset which was
only briefly discussed.

More recently, researchers have fused joint position sensor data and IMU data together to increase
robot accuracy [18, 19]. Toward this, in ref. [18], the researchers present a calibration method to esti-
mate the spatial offset of the IMU relative to the end-effector. Their sensor fusion methods did improve
robot accuracy; however, accuracy could be further improved using our method which also estimates
the relevant IMU and robot parameters.

3. Robot and inertial sensor models

Our method involves a fixed-base serial robot moving along a trajectory while sampling data from an
end effector-mounted IMU. In this section, models describing how the system’s parameters affect mea-
surement outputs are developed in order to facilitate self-calibration of the system. An overview of the
system parameters involved is illustrated in Fig. 1.

3.1. Serial robot model

We adopt the generalized kinematic error method in ref. [38] to model the kinematics of serial robots and
to parameterize their kinematic errors. We use this method because compared to the Denavit-Hartenberg
(DH) error parameterization, it has been shown to be minimal (i.e. no error parameter redundancy),
continuous (small changes in error parameters —> small changes in robot geometry), and complete
(enough parameters to describe any deviation from nominal) [5] for any serial robot geometry without
any additional modifications [39].

Under this method, the robot link transform between frame F;_, ., and frame F;.y (see Fig. 1) is
first computed using the standard DH convention

cosf; —cosq;sinb; sin «; sin 6; a; cos 6;
sin 6; cos 6; cos «; —sin@; cos; a;sinb;
P = . (1
0 sin «; COS «; d;
0 0 0 1

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1594 James M. Ferguson et al.

where 6;, d;, a;, o; are the joint angle offset, the joint offset, link length, and link twist of link i,
respectively. These DH parameters are the same both before and after calibration.

Rather than using the DH convention to parameterize the kinematic errors, each link transform
is modified by six generalized error parameters €, €,,, €;,, €;,, €;, €;, Where the first three parameters
describe translation along the X, Y, and Z axes, respectively, and the last three correspond to a YZX
Euler rotation sequence. Thus, the error transform between frame F;q., and frame F; ., (see Fig. 1) is
given by

C4Cs S84 — CeCaSs CeS4 + C486S5 €

S5 C6Cs —Cs5S6 €,
—C584 C4S6 + C6S54S5 CeCyq — 85654855 €i;
0 0 0 1

where, for example, ¢, stands for cos €;,, and s¢ stands for sin ¢;,. Kinematics computation of the rotation
and translation (R € SO(3) and p € R, respectively) of the IMU board attached to the robot end-effector
is carried out by multiplying all of the transforms together in order

Rop E,T\E T,E, 3)
OT 1_011"‘71)1

where we note that the transform E, has been added to describe the pose of the robot base frame relative
to a world frame. Additionally, in our setup, E, describes the pose of the IMU frame relative to the
end-effector.

Given the functions ¢, ¢, § : R — R”, we can predict the angular velocity @, and linear acceleration
a, of the IMU frame relative to the robot base using the familiar Newton recurrence relationship

w1 = ; +n,4;(t)
o =0o; +n,qi(t) + w; X (n,4,(2)
Viel =Vi+ @i X P4

Qi =+ 0y X P+ @i X (@i X) 4)

where p, is the distance vector between frame i and frame i — 1 and n_, is the direction of the Z axis of
frame i as computed in the DH model (3). Note that this calculation also gives the angular acceleration
o; and linear velocity v; for each of the robot links. Transforming these quantities from the robot base
frame into the IMU frame and adding the force of gravity to the computed acceleration, we get the
predicted inertial quantities

w(t)=R"w,
s()=R"(a, —g) (%)

where s and @ are the specific force and angular velocity, respectively, acting on the sensor and R is the
rotation of the IMU frame relative to the robot base computed in (3). Note that because the magnitude
of the gravity vector g is known to be 9.81 m/s*, we parameterize g with only two values g, = [g.8,]"-

3.2. Inertial sensor model

We use the inertial sensor model in ref. [8] to describe how angular velocity @ and specific force s
map to raw voltage values. This model accounts for nonunit sensor gains, nonorthogonal sensitivity
axes, nonzero sensor voltage biases, and gross sensor rotations relative to the IMU frame. Note that the
position of the IMU frame relative to the robot end-effector has already been accounted for by E, in (3).

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1595

The model that we use which relates the inertial quantities w(f) and s(¢) to sensor voltages is

() =K,I',R, o)+ b,

§() =K,L,R,s(t) + b, (6)
where
! 0 0 ! 0
FCo=1| v, 0], Fo=1| Vo ,
[—Vey Ve | Vo, VYo 1
Tk, O 0 Tk,, O 0
K.={0 k, O| ., K,=|0 &k, O
[0 0k, L0 0 K,

Here, @ and s are the output voltages caused by the IMU frame’s angular velocity @(f) and specific force
s(1), respectively. Note that noise will be added to these ideal outputs @ and § in our full measurement
model (10).

The rotation matrix R, accounts for the gross rotational misalignment of the triaxial gyroscope on
the IMU frame and is parameterized by a ZYX Euler angle sequence with parameters (r,, 7, ,,)- The
matrix R, is similar, but is for the accelerometer and has parameters (r,,, Tay»> Ta,)- The lower triangular
matrices I', and I', account for small gyroscope and accelerometer sensor axis misalignments to first
order. The diagonal matrices K, and K, are gains which map the physical quantities to voltage values.

Finally, the vectors b,, and b, are the triaxial sensor biases (nonzero voltage offsets) for the gyroscope
and accelerometer, respectively. In this paper, we assume that these parameters are constant. To assess
the validity of this assumption with our IMU, we performed a test where we collected IMU data for
25 min, 5 times longer than our experiments. To check for drift in the values b,, and b,, we filtered
the IMU data using a smoothing spline and then computed the error between the spline and the mean.
The maximum drift observed was 0.017 m/s? for the accelerometer and 0.025 °/s for the gyroscope.
Both of these values are well within the range of the sensor noise computed in Section 8. This analysis
verifies the assumption of constant sensor biases in our specific setup. However, when sensor biases drift

significantly, continuous-time functions for b,, and b, can be neatly folded into the estimation problem
[12, 40].

3.3. Parameter redundancy

There are currently 6(n 4 1) generalized error parameters in the robot kinematic model (3). However, this
is currently not a minimal set of parameters. In other words, there are directions in e-space which have no
effect on the computed IMU location 7 in (3). Following the method in ref. [38], several of these redun-
dancies must be eliminated prior to calibration. If €y ={ey, ... €p, €1,... €1, ... €4 ...€4}E
RS+ is the set of all generalized error parameters, the subset € C €, is the minimal set of parameters.

In ref. [38], the authors provide a comprehensive and systematic approach for determining the subset
€ depending on whether the end-effector pose measurements include both position and orientation.
Therefore, based on ref. [38], the length of the robot kinematic error vector is at most 6(n + 1) — 2N, —
4N,, where N, is the number of revolute joints and N, is the number of prismatic joints.

Furthermore, it is important to note that in our IMU-robot arrangement, the IMU can only provide
motion information relative to itself or relative to the robot. This means that the transform from the
robot base to the world system E|, is not identifiable from the IMU measurements. Because of this,
we do not include the parameters ¢, €,, . . ., €, in €. Finally, we note that the rotation parameters
€,,> €5, and €, that describe the orientation of the IMU frame are redundant with the each of the sensor
orientations R, and R,. Therefore, we eliminate these parameters as well. After elimination of these
redundant parameters, the length of € is 6n — 2N, — 4N, — 3.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1596 James M. Ferguson et al.

Table I. System parameter vector x for the serial robot—IMU system.

Symbol Physical meaning

€ € RO—2Nr=4Np =3 Robot generalized kinematic errors
g8, =188l Direction of the gravity vector
teR Time offset between robot and IMU
Yo=IVa.Var, VarIT Accelerometer axis misalignments
r,=[r, 'r(,y ryv,x]T Accelerometer sensor orientation
k, = [k, ko k., 17 Accelerometer sensor gains
b,=[b,b,b,]1" Accelerometer sensor biases

Yo =Wo,)'/wzy V1T Gyroscope axis misalignments

Ty =1y 7o, rol" Gyroscope sensor orientation

k,= [kwlkuv,y ko 17 Gyroscope sensor gains

b, =1[byb,b,.] Gyroscope sensor biases

Together with the robot parameters €, 12 gyroscope parameters, 12 accelerometer parameters, 2 grav-
ity direction parameters, and the time offset 7, there are 6n — 2N, — 4N, + 24 system parameters that
we pack into the vector x. Table I details the components of the vector x.

4. Bayesian parameter estimation
4.1. Problem statement

In our method, instead of taking measurements at static configurations, the IMU is sampled while the
robot moves continuously through the trajectory ¢ : R +— R". During robot motion, IMU outputs z; are
sampled at times ¢; and the robot joint transducer outputs ¢; are sampled at times ; wherei=1... N, j=
1...N,and N, N, are the number of IMU measurements and the number of joint vector measurements,
respectively. Note that we do not assume synchronous measurements of z; and g;. The set of all IMU
outputs z.y, and the set of all joint vector measurements g, x, are then used optimally to infer the system
parameters x and the robot trajectory g(¢) simultaneously. Here, we roughly follow ref. [12] to derive an

estimator.

4.2. Posterior parameter distribution
All of the information that the measurements z,.y, and ¢, can reveal about the system parameters x

and the robot trajectory ¢(¢) is encoded in the posterior probability distribution p(x, q(@®) | q.:N‘,,Zm:)-
Bayes’ theorem asserts that this distribution takes the form

p(qlqu’ zl:Nz | X, q(t)) P(x, ‘I(t))

P(qlqu’ ZI:N:)
If we assume that the data g,y , 2.y, and the system parameters x are all statistically independent from
the inputs g(7), then the expression on the right becomes

P(x.9(0) 1 g1 210) = ™

P(1-218. 15) POIPG()

p<q|:N,,’z1:N:)
Additionally assuming that the input measurements ¢, are independent of the IMU data z,.y, leads to

®)

Py, | PN, | X)p(X)p(g(1))

p(ql:Nq’zliNz>

P(x.90) g1 z1) = ©)

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1597

4.3. Conditional and prior distribution assumptions

In order to make the estimation problem feasible, we must make statistical assumptions about the distri-
butions of the measured data. As is often done, we assume a zero-mean, Gaussian measurement model
for both the joint vector samples and the IMU outputs:

q,=q(t) +n,, n,;~N(0,%,)
Zi= h(ti + T, x) + nu” nz,i NN (07 Ez,')
where n,; and n_; are zero-mean Gaussian random vectors with covariance X, and ¥, Here, the func-

tion h : (R X Rﬁ’"z"“”““) > RS stacks the vectors §(¢) and @(¢) and is dependent on the function g(?).
Equation (10) implies that the conditional distributions of the data are

plg; | x)~ N(q(t), =)

(10)

@i | X)~ N (h(t;+7,%), Z,) . (11)
We also assume that the prior distribution of the system parameters is independent and Gaussian:
px) ~ N (&,). (12)

where x are the nominal parameters and X; is the assumed covariance of the nominal parameters (e.g.
from known measurement or manufacturing error).

The final assumption is that the prior distribution of the joint value function p(g(#)) over the joint space
is constant and uniform for all time. In other words, we assume that there is no prior information about
the robot trajectory. Given these assumptions, the posterior distribution (9) is proportional to a product
of Gaussians where the constant of proportionality does not depend on either x or (7). In particular, the
proportionality can be expressed as

Ny N
P(%.a0 141y, 210) p) [T (g, 1 [[otz). (13)

i=1

4.4. MAP formulation

The MAP estimate seeks to minimize the negative logarithm of the posterior distribution, as this is
equivalent to maximization of the distribution:

(x*, g*(t)) = arg min {— 10g(p<x, q() | q.n,> ZI:N;)) } . (14)

xq(t)
Given the Gaussian assumptions, (13) shows that the objective function in (14) can be expanded into
the following quadratic form in the unknowns x and gq(¢):

_log(p<x’q(t)|q1:Nq7zl:Nz)> =C+Jq +Jz +JX (15)

where c is some constant that does not depend on the system parameters x or the joint vector function
q(t) and

1
J=5 doers,le,
j=1
eqj = qj - Q(t/)

1 N
J==) e’ e,

e, =z, —h(t;i+7,x)

-1
Ji=elX e,

e, —x—% (16)

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1598 James M. Ferguson et al.

0.2 0.4 0.6 0.8 1
t

Figure 2. B-Spline function representation. The normalized B-splines {N>(1)}_, are shown in color. The

function f(t) which is a linear combination (¢ =[1.41.91.00.9 1.7 1.3 1.9]7) of the B-splines is shown
in black. The B-splines make for efficient function evaluation and differentiation, and their local support
makes for efficient solving of continuous-time trajectory estimation problems.

Defining J(x, g(t)) = J, + J, + J,, we note that because the constant ¢ does not depend on the optimiza-
tion variables, the solution to
(", ¢ (1)) = arg min{J(x, (1))} a7
x.q(1)
is the same as the MAP estimate (14). Therefore, solving the optimization problem (17) leads to the
MAP estimate of the system parameters x and the trajectory q(7).

5. Trajectory representation

Currently, along with the parameter vector x, one of the unknowns in the optimization problem (17) is a
function q(7). If we are to have any hope of computing a solution, we must first agree on a representation
of q(¢) that a computer can evaluate. Usually, continuous functions are approximated as a sum of basis
functions, but the particular basis functions used are a design choice. We follow refs. [12, 40] and choose
to use B-splines as a basis to represent the unknown function ¢g(¢).

There are two main advantages to this choice of basis for continuous-time batch estimation [12]. One
is that B-splines are locally supported. In other words, the contribution of any single basis function is
local in time. This is useful for solving problems like (17) because the changes in the state trajectory
caused by a change in a B-spline coeflicient are zero almost everywhere. This makes for a sparse Jacobian
and thus efficient nonlinear least-squares solutions. Second, there are simple and efficient algorithms
for evaluating B-spline functions, derivatives, and integrals [41] — quantities which are necessary for
evaluation of the objective function (17).

We choose to represent the robot trajectory q(#) as linear combinations of B-splines following
the general methodology of ref. [41]. Given spline degree d, smoothness d — 1, and time points a =
Xo <X) <--- <X <Xy =bin an interval Q2 = [a, b], the extended partition A, = {ijQ,‘”l is defined

to be
A=y, =...=Yat1,
Yor1 = oo =Yura1 =D, (18)
Yarz S SV =X, Xy

where the dimension of the spline space can be shown to be m = k 4+ d + 1. Given this extended partition
A,, in one dimension, we represent functions as linear combinations of the normalized B-splines:
f@O =Y eNM @) (19)

i=1

where f is any function in the spline space, the N*™'() are the normalized B-splines of order d + 1,
and the ¢; are the multiplying coefficients which determine the shape of the function f(f). An example
function is shown in Fig. 2.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1599

Extending this representation to n dimensions, we can write curves such as the robot trajectory in
(17) using the following matrix equation:

Cii Ciz . Cip Ni“'l(t)
Nd+1 t
a1 € C» : > @
q()=CN"" (1) = : . (20)
d+1
Cul PP PP Coum Ivm (t)

As the basis functions are known, if the matrix C is known, then one way to calculate g(¢) is by evaluating
all of the B-splines that have value at the time point and then computing the linear combinations using
(20).

However, a more efficient way to evaluate (20) which we adopt is to use the recurrence relationship
outlined in ref. [41]. Additionally, we use a similar relationship (also outlined in ref. [41]) to compute
the B-spline coeflicients corresponding to the derivatives of (20), ¢(r) and g(¢), from the matrix C.

Finally, as mentioned earlier, one important advantage of the B-spline representation is its local
support. Specifically, considering the interval 2; = [y, Vizas1],

N (@) >0 fory <1< yian
N®'(H)=0 otherwise. (21)
This is illustrated in Fig. 2 where each of the basis functions only take on nonzero values within a smaller

subset of the total interval [0, 1]. We exploit this fact in Section 7 where we iteratively plan trajectories
to maximize parameter identifiability.

6. Least squares formulation

Our ultimate goal is to solve (17), determining estimates for the parameters x as well as the unknown
actual trajectory ¢(f). However, in light of the chosen trajectory representation (20), the new unknowns
that we would like to estimate are x and C. Writing the coefficient matrix C as a vector ¢ =
[cii.--¢a1 oo Cim---Cu]7, and defining the full vector of unknowns 6 =[xT ¢7]7, the cost
function in (17) can be rewritten in matrix form as

1
J(0) = EeTZ;'e (22)
where
€= [e;]rl T e;N egl o 'e;rN ex]T

X, = blkdiag [Etn e Equ 221 o EZN,- Ex] .

J

The residual vector of (22) can be written as
d=Le (23)

where L is the Cholesky factor of X! (Z;‘ = LTL). Note that the Cholesky decomposition always exists
in the case of symmetric, positive definite matrices like X'

If a unique solution exists, this problem can be solved with any nonlinear least-squares solver such
as the Levenberg—Marquardt (LM) algorithm. In order to prevent convergence to an incorrect local
minimum, it is recommended to supply a good nominal guess to the algorithm. See Section 8.1 and
Table II for an example showing how to determine nominal parameters and their prior uncertainties.
Furthermore, if the solution is nearby to the nominal solution, the confidence in our estimate 6 is
encoded in the posterior covariance matrix

- ([5]=%)
T \la0]| T 90

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1600 James M. Ferguson et al.

Table II. Nominal and calibrated model parameters x and their standard deviations in our experiments.

Parameter Units Nominal value Nominal STD Calibrated value Standard calibration

€, mm 0.0 1.0 - *

€1, ° 0.0 1.0 0.0692 —0.0212
€, mm 0.0 1.0 - *

€, mm 0.0 1.0 - *

€, ° 0.0 1.0 0.0819 0.0870
€ ° 0.0 1.0 0.2144 0.1269
€3, mm 0.0 1.0 - *

€3, mm 0.0 1.0 - *

€, ° 0.0 1.0 0.0421 0.0579
€3, ° 0.0 1.0 0.1534 0.2182
€4 mm 0.0 1.0 - *

€4, mm 0.0 1.0 - *

€4, ° 0.0 1.0 —0.0070 0.0117
€4, ° 0.0 1.0 0.0258 —0.0075
€s, mm 0.0 1.0 - *

€s, mm 0.0 1.0 - *

€s, ° 0.0 1.0 0.3795 0.3870
€s, ° 0.0 1.0 —0.0751 —0.0171
€6, mm 25.2 10.0 28.0233 *

€6, mm 78.3 10.0 73.7862 *

€6, mm 18.2 10.0 16.8530 *

8« m/s’ 0.0 0.5 0.0506 *

8 m/s? 0.0 0.5 —0.0405 *

T S 0.0 1.0 —0.0806 *

Vaye ° 0.0 1.5 0.7217 0.7401
Vazy ° 0.0 1.5 1.7363 1.8197
Van ° 0.0 1.5 —0.0196 —0.0051
Ta, ° 180.0 5.0 180.2329 *

Ty ° 0.0 5.0 2.0984 *

Ty ° 0.0 5.0 1.0842 *

kq, none 1.0 0.1 0.9933 0.9933
kq, none 1.0 0.1 0.9768 0.9768
k. none 1.0 0.1 0.9824 0.9810
b,, m/s? 0.0 2.0 —0.1234 —0.1209
by, m/s? 0.0 2.0 0.3000 0.2741
b, m/s’ 0.0 2.0 —0.1452 —0.1397
Vooye ° 0.0 2.0 0.0461 0.0187
Vo ° 0.0 2.0 —0.1581 —0.1236
Vo ° 0.0 2.0 —0.0916 —0.0280
T, ° 180.0 5.0 181.2498 *

T ° 0.0 5.0 1.6536 *

Fo, ° 0.0 5.0 0.8570 *

ko, none 1.0 0.1 1.0212 1.0198
ko, none 1.0 0.1 1.0266 1.0232
k,, none 1.0 0.1 1.0218 1.0215
b, °/s 0.0 5.0 —0.1295 —0.1274
b, °/s 0.0 5.0 —0.1505 —0.1431
b, °/s 0.0 5.0 —0.0572 —0.0597
A “-” indicates a parameter which could not be calibrated. See Section 10 (Discussion) for details. A “*” indicates a parameter

which was not included in standard comparison methods. See Section 10 (Discussion) for details.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1601

where "; is the identification Jacobian matrix associated with 6. Note that least-squares solvers like

LM generally benefit from providing a derivative to (23). In this case, assuming that L is constant,
differentiation of (23) results in

08 de

—=L—. 25

20 a0 25)
6.1. The structure of the Jacobian

In our experiments, solution of (22) was not feasible with standard, dense matrices. Here, we analyze

e
the sparsity structure of 70 determining which elements of the Jacobian are nonzero. Knowledge of

de
this structure enables the use of sparse finite difference methods to compute 50 making solution of (22)

feasible.
First, we note that of the parameters § = [xT ¢7]7, the system parameters x only influence the output
measurement errors e, and cannot influence the input measurement errors e,,. Inspection of (16) verifies

ade
this; e, is only a function of ¢, so a—q = 0. In contrast, each component of the spline coefficients ¢ can
x
de
affect both e, and e.. However, the local support of B-splines (21) makes many of the elements of B_q and
c
de,
a—” zero. For measurements ¢, taken at time #; ¢ [y;, 14411, the derivative of (21) is zero. Employing the

c

de,,
chain rule on e,, in (16) shows that — 5. = 0. Similarly, the effect of ¢; is local on e,. A similar argument
"./

shows that for measurements z; taken at time (; + 7) € [}, Yira+11, = 0. Finally, a spline coefficient

e.

A 3
e,

can only affect e,, if it is on the same row in the matrix (20), so — can only have one nonzero element.

Next we note that the parameters in € which correspond to translatlonal displacements cannot affect

the orientation of the end-effector. Therefore, the model-predicted rate of orientation w also cannot be

de,
affected by such length parameters, so that Te. =0 wheni € {1,2,3}. As the gravity direction also does
€;

de
not affect measured orientations, —— = 0.

gx)'
Because of the way the sensor misalignments y, and y, are incorporated into the matrices I', and

de, de,
I', (6), the corresponding matrices FYe and 3 have sparsity structures

0O 0 O
* 0 0
0 * =x

where a * indicates any nonzero element. Similarly, it can be shown that the YZX Euler sequences r,
and r,, lead to the sparsity structure

¥ x 0
¥ 0 *
0 * =
for the matrice
r, 8ra
8ew 8e(, de, . . .
offsets, 8k 8k ab and b % are all diagonal, 3 x 3 matrices. Finally, we note that the accelerometer

parameters cannot affect the gyroscope outputs, and similarly, the gyroscope parameters cannot affect

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1602 James M. Ferguson et al.

de, de,
dx de
de __

o8 de. de,
dx dc
dey de,
da de

de
Figure 3. Sparsity pattern of the Jacobian matrix % which can be exploited for efficient least-squares

de
solutions. The labeled, gray submatrices combine to form the full block matrix 30" Black pixels indicate

elements that are not necessarily zero, and gray pixels indicate entries that are always zero. In this
example, we use only N; = N; = 15 data samples for visualization purposes, but in our experiments, we
had over 30,000 samples leading to a Jacobian with greater than 99% sparsity.

de, ode, Ode, OJde, OJe, OJe,

8)’ ’ Bra’ aka, aba’ ayw’ 8r‘4’

a

s

the accelerometer outputs; therefore, the following matrices are zero:

de, and de,
ok, ab,,

de, de,
Fore,, m is an identity matrix of size 6n — 2r — 4p + 24 and e is a zero matrix with size (6n —
X c

0
2r —4p + 24) x nm. A diagram showing an example sparsity structure of the full Jacobian a_e can be
x
seen in Fig. 3.

This diagram was generated using the system in our experiments with 15 measurements of both ¢

de
and z for visualization purposes. Note that with only 15 measurements, 50 in Fig. 3 is only about 85%

sparse, but it was greater than 99% sparse in our experiments where many thousands of measurements
were taken.

7. Numerical trajectory planning

Even though part of our problem is to estimate the actual robot trajectory ¢, up to this point, the com-
manded robot trajectory ¢ : R — R”" is still arbitrary. While we could command the joint values to follow
any trajectory, we can reduce estimation error substantially by commanding a trajectory ¢ that is in some
sense optimal. Optimal trajectory planning has been used for identification of robot dynamic parameters
for many years [42, 43], but here we propose and test a new method that specifically deals with long
trajectories, such as the 5 min timescale in our self-calibration problem.

7.1. Efficient approximation of the posterior covariance

Our ultimate goal is to estimate the parameter vector x, so our definition for optimality should ultimately
serve to reduce the posterior estimation error X,. In order to develop an efficient approximation for X,
we momentarily assume that the actual robot trajectory g is close to the planned trajectory q (i.e. ¢ = q).
This assumption is reasonable because robot controllers are generally accurate at following planned
trajectories; furthermore, our numerical results show that, even with this assumption, our parameter
estimates are about 10 times more precise than if random trajectories are used. Note that we verify the
validity of this temporary approximation in our numerical experiments (Section 8). Given a trajectory
plan g, the posterior covariance of x now takes the form

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1603

» de. 1" ., de, -
o=z 2| =2 (26)
dax © ox

where X, =blkdiag[X, --- X,]ande, = [e; - -eZTN]T.
Approximation of X, using (26) is significantly more efficient than computing ¥, with (24) and then

de,
extracting X,. In the former case, we only need to compute a Jacobian 8_ of size 6NN; x 48 (assuming a
x

de
6 axis rotary system). In the latter case, we would have to compute the matrix — of size (6N, + 6N; +

48) x (48 4 6m). Because N; and m are generally quite large (e.g. 36,000 and 303 in our experiments),

0 de,
the matrix a—; is much larger in both dimensions than i. Therefore, as long as the approximation (26)

x
is reasonably accurate, a significant efficiency advantage can be obtained by using (26) over (24) for the
many thousands of computations of %, during trajectory planning.

7.2. Trajectory planning problem statement

To reduce posterior uncertainty, we want to make X, as small as possible in some sense by varying
the B-spline coefficients ¢ (and thus q(#)). It is well-known that the maximum singular value of X,
provides an upper bound on the posterior variance of any parameter in x. Therefore, similar to ref. [42],
to reduce parameter uncertainty, we minimize the maximum singular value of X,. In particular, we solve
the following optimization problem:

¢* = arg min{max svd(XZ,)} Q27
subject to
q(0)
Grin = q@) | < q nax for all ¢, (28)
4(1)

where the vectors ¢,,,, and g, constrain the trajectory by setting upper and lower bounds on the joint
values, velocities, and accelerations.

Solving (27) using the approximation (26) should ensure a good trajectory for data collection.
However, in order to achieve good results, the data collection process must proceed over several minutes.
In our experiments, this long trajectory corresponds to a ¢ with length 1818. With an objective function
(27) taking several seconds to compute, solution of this large-scale, inequality-constrained, nonlinear
trajectory optimization problem was not feasible on our research PC.

7.3. Sequential trajectory planning

When possible, it is generally much more efficient to solve a set of smaller optimization problems than to
solve one large-scale problem [44]. Therefore, we propose a method that splits (27) up into many simpler
problems that can be solved sequentially. We first partition the trajectory domain into many smaller
intervals. The local support of B-splines makes it so that the trajectory in each interval is only affected
by a small subset of the variable coefficients ¢. We exploit this fact to derive an efficient, sequential
trajectory planning scheme.

Toward partitioning the time domain, we first split the matrix C into several blocks C=
[CoCC; ... Cy, Cy,y1] where Ny = [n/N.] and N, is the number of columns in each of the blocks
and is arbitrary. The matrix C is padded on the right and left with C, = Cy,;; = Cp € R™ in which all
of the columns are constant and equal; this serves to make the beginning and end of the trajectory have
zero derivative values so that it is smooth. The rows of C are all initialized to be the mean values of the
joint limits so that the nominal trajectory is centered at the middle of the joint space with no motion.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1604 James M. Ferguson et al.

l — 41 — Q2 B —q — G 96

&\
0 50 100 150 200 250 300 150 155 160 165 170 175 180
time (sec) time (sec)

Joint values, q (rad)

Figure 4. The numerically planned robot trajectory for estimation of the parameters x in our particular
robot/IMU setup. The joint space curves are defined by 1818 B-spline coefficients. By varying these
coefficients, we generated trajectory plans that minimize posterior uncertainty of the parameters x for
precise estimation. Solving this problem directly (27) was not feasible on our research PC; however, our
sequential trajectory planning method (33) enabled solution of this large-scale, inequality-constrained,
nonlinear optimization problem.

After this initialization, our trajectory generation algorithm actually produces motion which covers the
entire robot joint space (see Fig. 4) so that our resulting calibration should be valid throughout. During
each iteration (j =1, ..., N,), our algorithm will update the next N. columns of C, (i.e. the matrix C;)
given knowledge of all previously computed columns Cy, Cy, ..., C_;.

Because of B-splines’ local support (21), the columns C; only have effect on the interval €2, =
[y:l+l+N£(j—1),)’2(d+1)+Nc(i—1)+Nr]. We could consider the information about x that sampling on this inter-
val would yield. However, some of the affect of C; overlaps into the interval affected by C;;; which
is not desirable for solving the trajectory sequentially. Therefore, we associate with C; the interval €2,

excluding the next interval €, . Specifically, the interval that we associate with C; is
Q; = Qo — 0, N Qo = [Yarieng-1y» Yariingl- (29)

Using the general results for recursively processing sets of measurements for estimation [45], (26)
can be decomposed into

S= (S04 S) (30)

where the covariance of x associated with interval ; is

de, 1" . de,\
== == . (3D
' ox 9 0x

Here, e, is the vector obtained by stacking all of the e, that happen to fall in the interval €2;; X, are all
of the associated covariance matrices.

The covariances X; in (31) can be interpreted as the uncertainty of the parameters x, given only the
data sampled within the interval €2;. In (30), all of these intervals are brought together with the prior
covariance X; to compute the posterior covariance X,.

Next, we note that we can truncate the sum in (30) after only a portion of the N, intervals have
occurred. This suggests the following recurrence relationship to compute the posterior covariance of x
after j time intervals have occurred:

T, = (E;l +3z " (32)
where X, is the posterior covariance of x given measurements in all intervals up to and including €2;.

The trajectory g(f) (and thus the data sampled) in €2; is only dependent on the coefficients C; due to the

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1605

locality of B-splines. Thus, the covariance ; is only a function of C;, a small subset of the full parameter
matrix C. Further, the construction of €2; ensures that C; will have no effect on the prior covariance %, _|
which (given all C, where 1 <k <) has already been established in the previous iteration.

Therefore, instead of solving the optimization problem (27) all at once, during each of the N;
iterations, we instead solve the following local problem:

C; = arg min{max svd(Z,)} (33)

G

subject to the same trajectory constraints (28) as the global problem. Solving (33) forj=1... N, will
give all of the columns of the full matrix C which should approximately solve (27).

During each iteration, this process can be thought of as adding onto the trajectory some new small
trajectory piece over the added interval €2;. This additional trajectory piece only affects %; in the sum
in (32). By changing C;, we design the information %; in this new interval to optimally combine with
the prior, known information %, from the previous iterations. Note that the B-spline function rep-
resentation ensures that the function g(#) maintains continuity over its entire domain throughout this
process.

This sequential approach may not lead to exactly the same solutions as directly solving (27); however,
itis more practical. Furthermore, in our numerical experiments, trajectories generated in this way achieve
parameter estimates that are 10 times more precise than using a random trajectory. Finally, because the
approach essentially adds to the full trajectory a new small piece, it can be terminated once the covariance
%, becomes sufficiently small which makes the method more flexible than solving (27) directly.

7.4. Full calibration pipeline

Here, we summarize the required steps to use our method to calibrate a robot/IMU pair. Below is a
practical step-by-step guide explaining the general pipeline of our algorithm. Prior models for both the
robot and the IMU are assumed.

1. Using the methods in Section 7, numerically generate a trajectory plan g. Note that any trajectory
could be used in principle, but calibration results may be less accurate.

2. Command the physical robot/IMU setup to follow the desired trajectory g. During motion, collect
both robot joint position data ¢, and IMU sensor data z,.y..

3. Given the observed data, set up and solve the nonlinear least-squares problem (22) for the vector
of unknowns @ = [xT ¢T]7. Note that the posterior covariance for all parameters ¥, can also be
computed using (24).

Ultimately, the following sections perform these operations for an example robot/IMU pair and then
validate the results using ground truth data from an optical tracker.

8. Numerical experiments
8.1. Nominal system parameters and prior uncertainties

All of our numerical and real experiments are conducted with an AUBO i5 collaborative industrial arm
(AUBO Robotics, USA) with an end-effector-mounted Bosch BNOO055 9-axis orientation sensor (see
Fig. 9). Note that while this IMU is capable of estimating some of its parameters online, throughout
our experiments, we are using it in the raw output mode collecting only raw triaxial accelerometer and
gyroscope outputs. Note that while these outputs are generally voltages, our IMU instead outputs in
inertial units converting using hard-coded gain values internally. While this does affect the units of our
identified and nominal parameters (e.g. unitless sensor gains, biases with non-voltage units), it does not
affect our method, as these parameters can be formed into an equivalent model. Here, we justify all of

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1606 James M. Ferguson et al.

the nominal parameters (and their prior uncertainties) related to our numerical and real experiments. A
summary of this information is shown in Table II.

By definition, the nominal values for all of the robot kinematic errors € are zero, and as machining
errors are generally on the order or 0.1 mm, we conservatively choose prior STDs of 1.0 mm for length
parameters and 1.0° for angle parameters. Nominally, the gravity direction parameters g, and g, are zero
as gravity should only be acting in the Z axis, but if the robot is mounted on the table with some angle
6,, then the largest that either could be is 9.81 sin 6,. A conservative value for 6, is 5°; this implies a
prior STD for g, and g, of about 0.5 m/s*>. As we have no prior information about the time offset t,
its nominal value is zero, and we conservatively choose a large prior STD of 1s. The IMU board was
oriented carefully onto the end-effector at the nominal orientation for r, and r,,. However, to account for
potential mounting and machining errors, we choose prior STDs of 5° for the sensor orientations. The
position of the IMU board relative to the end-effector was measured with a set of calipers; to account
for measurement error here, we choose a prior STD of 10 mm for the parameters ¢, , €,, and €.

The nominal values and prior uncertainties for the sensor parameters were chosen based on the IMU
data sheet [46]. For the triaxial accelerometer, the maximum cross axis sensitivity was quoted to be 2%.
This means that the maximum misalignment angle is sin™' (0.02) = 1.146°, so we choose prior STDs
of 1.5° for y, to be conservative. The maximum deviation of the accelerometer sensitivity was quoted
to be 4%. Therefore, we conservatively choose prior STDs of 0.1 for k,. The maximum zero-g offset
was quoted to be 150mg = 1.4715m/s?, so we conservatively choose prior STDs of 2.0 m/s? for b,,. The
gyroscope cross axis sensitivity was quoted to be 3%. Therefore, as sin' (0.03) = 1.7191°, we choose
prior STDs of 2.0° for y . The maximum deviation of the sensitivity was quoted to be 3%. Therefore,
we choose prior STDs of 0.1 for k,,. The maximum zero-rate offset was quoted to be 3 °/s. Given this,
we choose prior STDs of 5 °/s for b,,.

We adopt the standard assumption throughout our experiments that the parameters x are not ini-
tially correlated. Therefore, the initial covariance of the parameters X; is diagonal; the elements on the
diagonal of ¥; are then the squares of the initial standard deviations in Table II.

Trajectory planning (33) and calibration of the system (22) both require knowledge of the covariance
matrices ¥, associated with the IMU measurements. Here, we again apply the standard assumption
that the measurements are not correlated. Additionally, we assume that the covariance is constant
during robot motion — that is, ¥, =...=2%, = X,. While X, can be estimated by sampling the
IMU under static conditions, in our experiments, we found the measurement noise to be signifi-
cantly greater when the robot is moving. Therefore, to determine 3. we moved the robot—IMU setup
(Fig. 9) dynamically while sampling the IMU. The samples z, collected over 300 s, were then least-
squares fit to a spline function (20). The errors between the fit and the data were then used to
compute the covariance ¥, =diag[0.38% 0.21> 0.19> 0.32* 0.47° 0.57%] where the first three
elements, corresponding to specific force variance, have units of (m/s?)? and the last three elements
have units of (°/s)* and represent angular velocity variance. Using similar methods and assump-
tions, we determined the constant, diagonal covariance of the measured joint values to be X, =
diag[0.0038> 0.0050* 0.0043%> 0.0105* 0.0101*> 0.0086%](°)*.

8.2. Numerical trajectory planning

In order to proceed with any of our other experiments, first we must choose the planned trajectory for
the robot to follow during data collection. Here, we discuss the details of implementing our trajec-
tory planning method (Section 7) with our particular robot-IMU setup. After planning, we compare
the performance of the planned trajectory to a random trajectory of the same length to determine the
performance gain by using the optimal trajectory.

We generated a 300s trajectory using our recursive method outlined in Section 7. To build the
matrices in (31), we assumed a sample rate for the IMU and the joint values of 120 Hz as this was
approximately the value achieved by our system. For the trajectory representation, we chose to use a
spline of degree d = 3 with one interior knot per second. This leads to a C having 303 columns in total.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1607

Table II1. Robot joint position, velocity, and acceleration limits for our experiments.

Position limits (°) Velocity limits (°/s) Acceleration limits (°/s?)
Joint Min Max Min Max Min Max
1 —-90 90 —10 10 —100 100
2 =75 75 —10 10 —100 100
3 30 120 —10 10 —100 100
4 —175 175 —-25 25 —100 100
5 —-90 90 —-25 25 —100 100
6 —175 175 -25 25 —100 100

Note that these values are chosen conservatively to maintain safe operating trajectories.

Optimal Trajectory
Random Trajectory

max svd(X,) (-)
<
N

10 102
Trajectory Length (sec)
Figure 5. Identifiability of the robot—IMU system parameters versus trajectory length. Compared with
a random trajectory of the same length, the planned trajectory generated by our sequential trajectory
planning method reduced the identifiability measure by at least an order of magnitude.

Taking into account the known padding blocks C and Cy, i, this leads to 297 columns of C to deter-
mine. We used a block size of N. =5 columns per iteration. Given our 6 axis robot model, this leads to
solving (33) for N, = 60 iterations to determine the unknown elements of C. In order to constrain the
motion (28) within safe operating conditions, we used the joint limits shown in Table III.

During each iteration, we used a hybrid global optimization method to solve (33) for the 30 elements
of C;. First, we ran 2000 iterations of the simulated annealing algorithm (implemented in MATLAB’s
simulannealbnd function) to determine C; globally. This was followed by a local refinement step
using the Hooke’s—Jeeves pattern search algorithm (as implemented in MATLAB’s patternsearch
function) with 200 iterations, a maximum mesh size of 0.5, and compete polling. The optimal trajectory
generated is shown in Fig. 4.

The trajectory performance measure (33) is shown decreasing with time in Fig. 5.

Also shown here is the same identifiability measure computed using a random trajectory as opposed
to the optimal trajectory. This random trajectory was determined by selecting uniformly random values
for the matrix C while still adhering to the trajectory constraints (28).

Additionally, using the relationship (32), we computed the posterior standard deviations (the square
roots of the diagonals of X)) of all of the parameters in x. These are plotted versus time in Fig. 6. To
verify the approximation (26), we compared the approximate covariance X, to the covariance predicted
by the estimator (24). After the full trajectory, the Frobenius norm between the two covariances was
4.7e-6.

8.3. Monte Carlo simulations

To verify the identifiability of the parameters # = [xT ¢T7]™ under our assumptions, we performed a
series of Monte Carlo simulations. In each of the simulations, data were generated using ground truth

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1608 James M. Ferguson et al.

Robot Angle Parameters

Robot Length Parameters

10°
5 0.98
A 0.96
& 0.94
10 100 300
time (sec) time (sec)
(Gravity Direction 3 Time Offset Sensor Position)
107
2107 - =8 €6
G E =4 €65
a . a
£ 107 & 10 g, N
10 100 300 10 100 300 10 100 300
time (sec) time (sec) time (sec)
Accelerometer Orientation o Gyroscope Orientation
10
—~ — T
< < —r,
a A "o
= &
w0 n —
2 e
10 . : ==
10 100 300
L time (sec) time (sec))
4 N\
Accelerometer Misalignments Accelerometer Gains Accelerometer Biases
— ba,
— by,
b,
10 100 300 10 100 300 10 100 300
Gyroscope Misalignments Gyroscope Gains Gyroscope Biases
0 2 -1
10 10 10
— b,
— b,
10 100 300
time (sec) time (sec) time (sec))

Figure 6. Estimated posterior standard deviations of system parameters x versus optimal trajectory
length. Top: robot kinematic error parameters €. Middle: extrinsic system parameters g, T, I, and r,,.
Bottom: IMU sensor parameters y ,, k,, b,, v, k., and b,,. The estimation precision of all parameters

improves with trajectory length for our particular system.

parameters, noise was injected into the data, and then (22) was solved using the noisy data to estimate
the true parameters. In the following, we describe this process for a single iteration.

First, we sample the ground truth set of parameters using the nominal values and standard deviations
shown in Table II. Next, using the optimal trajectory C*, the ground truth parameters, and the determined
covariances X, and X,, we generate the required data ¢; and z; for i =1... N with (10). Using these
measurements along with the nominal parameters as an initial guess, we compute the estimate (22)
and posterior covariance (24) of the parameters 6. This process was repeated for 100 simulations, and

estimation errors for x are shown in Fig. 7.

8.4. Robot length parameter identifiability
As discussed in Section 10, our numerical results indicate that for our particular setup, robot length
parameters (e.g. link lengths) cannot be estimated with much certainty. We hypothesize that restrictions

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1609

30
20 20 20
10 10
0 0 0

20
10

N
o o o
N
coo
NN
o o o
YN
coo
N

o

0
-5 0 5 -02 0 02 -5 0 5 -5

0 5 02 0 02 -02 0 02 -5
€1, (mm) €1, (°) €9, (mm) €9,(mm) €, (°) e, (%) qu(mm €3, (mm)
40 30 40
20 20 20 20 20 t
10 20 10 10 10 10 20
0 0 0 0 0 0 0

02 0 02 -02 0 02 -5 0
es, (°) €3, (°) €4, (mm) €4,(mm) s, (°) e, (°) €5, (mm €5 mm)

0 m:
0

IS
.
&
o
o
.
o
[N

—~ o
)
N
.
S
)
o
o
[N

10

N

o o
=N

o oo
=N
o o

o

o

IS

o

o

o

N
N
oo

o

o

IS

IS)

o

o

N
(RN
o o
N
oo

0
e (°) es (°) gr (m/s) gy (m/s?) 7 (ms) €6, (mm) fe_(mm) fe«x(mm)
20 40 20 20 20 20 20 40
10 20 ﬂ 10 10 10 10 10 20
0 0 0 0 0 0
02 0 02 -02 0 02 02 0 02 02 0 02 -02 0 02 -02 0 02 -2 0 2 2 0 2

3
—
B
<
3
i
<
s
—

e ka, % 1000 ka, % 1000
20

0

0 0
02 0 02 02 0 02 -02 0 02 -02 0 02
o (°

20

N
coo
§
F -
SN W
=1=1=]
=N
o o
=}
) .
g
© —
)
o
Py .
N}
=N
=X=}
=}
o
S}
o
o
o
¥}
N
=)
= N
o oo
N}
=]

0 0
2 0 2 —0.02 0 0.02 -0.

ka. > 1000 ba, (m/s?) ba, (m/s) ba. (m/s?) Yer: () Yoy () Yore () 70, (%)
Histog 40 30 30
10 10 10 10 10 10
0 0 0 0 0 0 0
02 0 02 02 o 2 20 2 2 0 2 2 0 2 0020 002 -002 0 002 -0.02 0 002
W(7, (ky, x 1000 ky,, x 1000 k. x 1000 by, (°/s) b, (°/3) b (°/5)

Figure 7. Histograms of errors between the 48 estimated and ground truth system parameters x in
our 100 Monte Carlo simulations. The red lines indicate the posterior distributions predicted by the
estimator (i.e. Eq. (24)) which match closely with the histogram data.

1e

O I I I
1x 2x 4x 8x 16x 32x

trajectory speed multiplier (-)

Figure 8. Predicted posterior standard deviations of the nine robot length parameters (e.g. link lengths)
versus trajectory speed. As the speed of robot motion increases, the precision on length parameters
improves substantially. While our robot’s motion was bounded by the values in Table II1, faster robots
could enjoy accurate length parameter calibration with our method.

on robot joint speeds and accelerations (see Table III) could affect identifiability of robot length param-
eters. Here, we perform a numerical experiment analyzing the effect of trajectory speed on length
parameter identifiability.

Our generated 300 s optimal trajectory was used to define several faster trajectories. This was done
by scaling the X —axis by different amounts so that the original trajectory was completed in less time. In
this way, we created five new trajectories: one that was 2 x faster than the original, one 4 x, one 8 x, and
so on. Using (26), the posterior standard deviations of the robot length parameters were computed for
each of the different trajectory speeds. We adjusted the 120 Hz sample rate to achieve the same number
of data samples for each trajectory (e.g. 240 Hz for the 2x trajectory). Posterior uncertainty of robot
length parameters is shown decreasing with trajectory speed in Fig. 8.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1610 James M. Ferguson et al.

NDI Polaris Vega
optical tracker

@)

Retro-

reflective .
Inertial
markers
Measurement
Unit
AUBO i5

industrial arm

Figure 9. Experimental setup to test our calibration method’s ability to improve accuracy of the robot
and sensor models. An aluminum plate with a Bosch BNO055 IMU and optical tracking spheres is
mounted to the end-effector of an AUBO i5 industrial collaborative robot. The NDI Polaris Vega optical
tracker is used for ground truth data acquisition only to evaluate our calibration method’s ability to
improve robot and sensor accuracy.

9. Experimental results

To verify our method’s ability to increase robot accuracy and sensor accuracy, we performed a set of
experiments testing our method with an AUBO i5 collaborative industrial arm with an end-effector-
mounted Bosch BNOO55 9-axis orientation sensor (see Fig. 9).

Additionally, we used an NDI Polaris Vega optical tracker (with a quoted accuracy of 0.12 mm) to
measure the accuracy of the robot and the sensors. With the tracker, we also performed “standard”
calibrations of both the robot and the IMU separately for comparison with our estimated values. Note
that the optical tracker was used for verification purposes only.

The aluminum plate mounted to the end-effector flange served to hold the retro-reflective markers
(for optical tracking) and the IMU board rigid with respect to the robot’s end-effector. The IMU reported
its samples to an Arduino Mega microcontroller using the I*C digital communication protocol. Software
was written to command the robot along the desired optimal trajectory. Additionally, separate data col-
lection software was written to simultaneously record the robot’s joint values (via MATLAB’s ROS
toolbox) and the IMU sensor readings (via MATLAB’S serial interface).

The robot was first commanded along the optimal trajectory while recording its joint values and the
sensor readings on a separate PC. This information was then used to infer # and thus the model parame-
ters x using (22). The resulting values are shown alongside their nominal counterparts in Table II. Based

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1611

on the results of our numerical experiments in Section 8, in our real experiments, we made the choice
to exclude robot length parameters from the calibration. This was achieved by setting their prior covari-
ances to small numbers so that they would not be updated by calibration. Therefore, only the updated
robot angle parameters are shown in Table II. This limitation of our method is discussed thoroughly in
Section 10. To test the convergence of the algorithm on experimental data, we additionally subdivided
the full 5 min of data to perform five 1-min calibrations. The maximum differences between these five
calibrations and the values in Table II were 0.36° for €, 0.036 m/s> for g.,» 0.0029 s for 7, 0.30° for
y,, 0.33° for r,, 0.0028 for k,, 0.0402 m/s> for b,, 0.22° for y,, 0.0621° for r,, 0.00082 for k,, and
0.0158 °/s for b,,.

Following the identification procedure, we began the robot accuracy evaluation process. The robot
was next commanded to 250 discrete configurations for robot accuracy evaluation. Once at a configura-
tion, the pose of the end-effector was sampled for 3 s. The poses at a particular configuration were then
averaged using the quaternion-based rotation averaging algorithm [47].

To verify our method’s ability to identify robot parameters, we performed a standard robot calibration
[38] using 150 of the 250 collected poses. Note that because our method could not calibrate length
parameters precisely in our setup, length parameters were also excluded in the standard calibration.
The standard calibration values are shown alongside our calibration values in Table II. The constant
transforms 7% and Tmake necessary for evaluating robot accuracy were then extracted from the
standard calibration.

To test our method’s ability to improve robot accuracy, the remaining 100 poses were used to compute
accuracy using nominal parameters, our calibration parameters, and the standard calibration parameters.
The positional accuracy was computed using the standard Euclidean norm between the tracker-measured
and model-predicted end-effector positions. The rotational accuracy was taken as the standard minimal
geodesic distance between the measured and predicted end-effector rotations, Ryc,s and Ry.q. In other
words, the rotation error is defined as the angle of the rotation R} R.s. These robot translation and
rotation accuracy results are shown in Fig. 10.

To verify our method’s ability to identify IMU parameters, we performed a standard IMU calibration
[7] using the optical tracker. The setup was manipulated along a random 20 min trajectory while record-
ing both tracker-based pose and raw IMU data. These data together were used for IMU calibration. Note
that the angular parameters relative to the end-effector were not included in the standard IMU calibra-
tion which was relative to the tracked markers. The standard calibration values are shown alongside our
calibration values in Table II.

In addition to improving the robot accuracy, our method should improve the accuracy of the IMU
sensors. Immediately after running the optimal calibration trajectory, a different random 120 s trajectory
was run to evaluate the accuracy of the IMU sensors. During this process, the pose of the end-effector was
measured using the optical tracker for evaluation purposes. Given the alignment of the end-effector with
the markers (known from the standard robot calibration above) and the alignment of the end-effector
with the IMU (known from our calibration), the tracked pose of the IMU was computed. Splines of
degree 5 and one interior knot per 30 samples were fit to the IMU position and quaternion data. These
spline functions were differentiated to obtain ground truth IMU acceleration and angular velocity func-
tions. The ground truth-specific force was then computed from the acceleration data using the estimated
gravity direction vector from the calibration g . In order to assess IMU calibration accuracy relative
to the tracker data, the tracker must first be temporally aligned with the IMU. To accomplish this,
first the tracker was temporally aligned with the robot data using a subset of the trajectory. Then the
required tracker/IMU temporal alignment is just the sum of this tracker/robot alignment and the esti-
mated robot/IMU alignment t in Table II. Using the temporal offsets, the ground truth-specific forces
and angular velocities were evaluated at the same time of the IMU samples and then transformed into
the accelerometer and gyroscope coordinate systems, respectively.

The accelerometer and gyroscope IMU outputs were computed using the inverse of (6) using nominal
sensor parameters and our calibration parameters, and the standard calibration parameters. The normed

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1612 James M. Ferguson et al.

Nominal Parameters

40 40
|
- F\'HW i
0 = 0
0 2 4 0 0.5 1

Our Calibration

40 a0t _
El
3 20 20

0 — (1]

0 2 4 0 0.5 1

Standard Calibration

40 40
g
3 20 20 H
) o =
0 2 4 0 0.5 1
Position Error (mm) Rotation Error (°)

Figure 10. Histograms showing both position and rotation robot accuracy before calibration (top),
after our calibration (middle), and after a standard calibration (bottom). Accuracy is evaluated by com-
paring the model-predicted end-effector pose to the optically tracked ground truth. Note that neither our
calibration nor the standard calibration includes length parameters.

differences between the sensor outputs and the ground truth inertial quantities measured with the tracker
are shown in Fig. 11 where we have applied a moving mean filter with a window size of 500 samples.

10. Discussion

In our numerical experiments (see Fig. 6), all of the parameters’ STDs were reduced by calibration, and
the identification Jacobian was found to be full rank and well-conditioned over the calibration trajectory.
Furthermore, our Monte Carlo simulations indicate that, given all assumptions about the system and
associated noise profiles, our calibration converges to the correct values. This indicates that the IMU
and joint angle measurements provide enough information to infer x in our setup.

While the robot angle parameter uncertainties were all reduced by at least a factor of 10, calibration
only changed the robot length parameter uncertainties marginally (see Fig. 6). This suggests that, in
our particular setup, calibration of the robot length parameters — while mathematically possible — is not
practically feasible. For these reasons, we chose not to include the robot length parameters as calibration
variables in our real experiments.

The identifiability of the robot length parameters could be improved with a longer trajectory; however,
this comes with additional time and computation costs. As only the accelerometer measurements can
give robot length parameter information, the lengths could be identified more accurately by improving
the accelerometer signal to noise ratio. As mentioned previously, accelerometer noise was dominated
by the vibrations of the system during trajectory following; therefore, we believe that using a higher
fidelity IMU is unlikely to make a large difference. Instead, we propose that it is more practical to
improve robot length parameter identifiability by utilizing faster robot trajectories. Our real experiments
were limited to the motion constraints in Table III; however, our numerical experiments (Fig. 8) suggest

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1613

3.0r

— Nominal
— Calibrated
20 Standard

1.0p

angular velocity error (°/s)

0 20 40 60 80 100 120

0.81

0.6}

0.4r

0.2r

L SAS TN A VIR
"0 20 40 60 80 100 120
time (sec)

specific force error (m/s?)

Figure 11. Histograms showing both specific force and angular velocity sensor accuracy before calibra-
tion (blue), after our calibration (red), and after a standard calibration (yellow). Accuracy is evaluated
by comparing the sensor model-predicted values to the optically tracked ground truth. Note that data
have been passed through a moving mean filter with a 500 sample window.

that the identifiability of robot length parameters can be significantly improved with faster trajectories.
Application of our method to high-speed robots for full Level II [1] calibration (both length and angle
parameters) could be the basis for future work.

The problem proposed in this paper requires long robot trajectories in order to acquire enough infor-
mation for a good calibration. Thus, we used trajectory planning to ensure information richness of the
robot motion, ultimately enabling shorter trajectories. Traditionally, trajectory planning involves com-
puting the entire optimal trajectory all at once [42, 48-50]. In our numerical experiments, this approach
led to an inequality-constrained, nonlinear optimization problem in 1782 variables. Due to this size
and complexity, solution of this trajectory optimization problem was not feasible on our research PC.
Alternatively, our sequential approach to trajectory planning makes computation of such long trajectories
feasible by splitting the large-scale problem into many simpler ones. As shown in Fig. 5, our trajec-
tory planning method significantly improved the identifiability of the system parameters x. The optimal
trajectory yielded a posterior covariance of x with a maximum singular value of 3.1e-05, whereas the
random trajectory yielded a value of 4.6e-04. This implies that the posterior STDs are bounded by 0.0056
and 0.0215, respectively. Therefore, compared with a random trajectory, the optimal trajectory made the
calibration 3.8 times more accurate for our system. We note that based on Fig. 5, adequate results are
eventually possible with a random trajectory; however, in our experiments, an optimal trajectory is more
efficient, achieving the same level of precision in less time.

Our Monte Carlo simulations (Fig. 7) validate our method given all assumptions about the system
and the noise profiles of the sensors. Specifically, these results verify the approximation of X, in our
trajectory planning method. As shown in Fig. 7, all of the predicted distributions based on the approxi-
mation (26) matched closely with the histograms output by the Monte Carlo simulations. Therefore, we
can assume the approximation of X, (26) to be reasonably accurate for our system.

Our real experiments show that our method works in practice to identify robot angle parameters.
In Table II, the average and maximum error between our identified angle parameters and the standard
calibration was 0.04° and 0.09°, respectively. Our method also significantly improved robot accuracy.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1614 James M. Ferguson et al.

This is shown in Fig. 10 by the error reduction of both the position and rotation model predictions.
Before calibration, the mean position accuracy was 1.58 mm; our calibration reduced this metric to
0.55 mm, near the 0.49 mm obtained by the standard calibration. Rotation accuracy was also improved
by our method bringing the mean accuracy from 0.37° down to 0.13°, very near the 0.13° achieved by
the standard calibration.

All of this suggests that our method is comparable to a standard robot calibration for estimating angle
parameters. Thus, our approach offers a cheap and fast Level I robot calibration [1] (i.e. calibration of
the joint angle offsets) as well as a partial Level II robot calibration (i.e. calibration of the entire rigid
kinematics model). As previously noted, full Level II calibration could even be achieved given a suffi-
ciently fast robot trajectory (see Fig. 8), but this was not possible in our specific setup. The incapability
of the method to estimate link lengths in our specific setup is likely not a large concern as an accuracy of
0.55 mm is adequate for most applications. Furthermore, it has previously been shown that for industrial
arms, the majority of positional error is actually caused by errors in joint angle offsets rather than the
other kinematic parameters [51].

Another area of future work is in the application of these approaches to redundant and continuum
robots. Sensing and calibration for redundant and infinite degree of freedom robots are an active area of
research [52]. We believe that IMUs could be used on these robots to calibrate parameters such as base
frame parameters and material property constants, which is an exciting potential area for future work.

In addition to robot angle parameter calibration, our method also provides an IMU sensor calibra-
tion. All of our calibrated values match reasonably well with the standard IMU calibration in Table II.
Our method also substantially improved the accuracy of the IMU sensors. Both angular velocity and
specific force errors were reduced when compared to the optically tracked ground truths (see Fig. 11).
Specifically, over the 60 s evaluation trajectory, the angular velocity errors were reduced from 2.17 °/s to
0.95°/s in the RMS sense; the standard calibration also achieved 0.95°/s. For the accelerometers, specific
force errors were reduced from 0.93 m/s? to 0.77 m/s> in the RMS sense; the standard calibration also
achieved 0.77 m/s?.

All of this suggests that our method is comparable to a standard IMU calibration. Based on these
results, and given that our method could be used with multiple IMUs at once, we believe that our method
could be useful in cases where many IMU sensors need to be calibrated quickly such as in a sensor
manufacturing facility.

Finally, based on our Monte Carlo simulation, our method also accurately estimates all of the extrinsic
parameters of the IMU (i.e. spatial offset, temporal offset, and gravity). This makes our method ideal
as an initial calibration step enabling the use of IMU data in online robot estimation and monitoring
applications.

11. Conclusion

In this work, we proposed and evaluated a new method for jointly estimating robot kinematic parameters,
inertial sensor parameters, and various extrinsic parameters relating the two (spatial offsets, temporal
offsets, and gravity). Enabled by recent advancements in continuous-time batch trajectory estimation,
we showed that the MAP estimate leads to a nonlinear least-squares problem and derived the sparsity
structure of the associated Jacobian. Additionally, as long robot trajectories were required to achieve a
good calibration, we proposed a new method to generate trajectory plans sequentially, building the tra-
jectory piece-by-piece. In our specific application, our results suggest that it achieves estimates that were
many times more precise than a random trajectory. Note that generalization of our sequential trajectory
planning approach to many other estimation scenarios (e.g. robot dynamic identification [42, 48]) is
straightforward. Using this optimal trajectory, we evaluated our approach in a Monte Carlo simulation
showing that the calibration produces the correct result on average. Our numerical results also suggest a
strong link between trajectory speed and robot length parameter identifiability. While length parameters
could not be accurately estimated in our particular setup, application of our method to high-speed robots
for full kinematic calibration could be the basis of future work.

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

Robotica 1615

Our method improved the accuracy of the robot in our experiments substantially, suggesting a poten-
tial application in Level I robot calibration (i.e. determining joint angle offsets) as well as a partial Level
II robot calibration (i.e. calibration of the entire rigid kinematics model) [1]. Furthermore, the method
significantly reduced inertial sensor errors when compared to a ground truth showing promise for an
alternative method of IMU sensor calibration. Our experiments show that our method is comparable
to standard methods for robot and IMU calibration. Based on our Monte Carlo simulation, our method
also accurately estimated the extrinsic parameters of the IMU (i.e. the IMU translation, rotation, and
temporal offset relative to the robot). This makes our method ideal as an initial calibration step enabling
the use of IMU data in online robot estimation and monitoring applications.

Author contributions. JMF conceived and designed the study. TEE and JMF conducted data gathering. JMF, TEE, and RIW
wrote the article. SDH and RJW provided practical feedback and guidance throughout the study.

Financial support. This research was supported by National Institutes of Health under grant RO1-EB023717. The content is
solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflicts of interest. The authors declare no conflicts of interest exist.

Ethical approval. Not applicable.

References

[1] Z.Roth, B. Mooring and B. Ravani, “An overview of robot calibration,” IEEE J. Robot. Automat. 3(5), 377-385 (1987).
[2] J. Ziegert and P. Datseris. Basic Considerations for Robot Calibration. In: International Conference on Robotics and
Automation (IEEE, 1988) pp. 932-938.
[3] B. W. Mooring, Z. S. Roth and M. R. Driels. Fundamentals of Manipulator Calibration (Wiley, New York,1991).
[4] H.Zhuang and Z. S. Roth. Camera-Aided Robot Calibration (CRC Press, Boca Raton, Florida, USA, 1996).
[5] R. He, Y. Zhao, S. Yang and S. Yang, “Kinematic-parameter identification for serial-robot calibration based on POE
formula,” IEEE Trans. Robot. 26(3), 411-423 (2010).
[6] W. Fong, S. Ong and A. Nee, “Methods for in-field user calibration of an inertial measurement unit without external
equipment,” Meas. Sci. Technol. 19(8), 085202 (2008).
[7]1 A. Kim and M. Golnaraghi, “Initial Calibration of An Inertial Measurement Unit Using An Optical Position Tracking
System,” In: Position Location and Navigation Symposium (IEEE, 2004) pp. 96-101.
[8] H.Zhang, Y. Wu, W. Wu, M. Wu and X. Hu, “Improved multi-position calibration for inertial measurement units,” Meas.
Sci. Technol. 21(1), 015107 (2009).
[9] D. Tedaldi, A. Pretto and E. Menegatti, “A Robust and Easy to Implement Method for IMU Calibration Without External
Equipments,” In: International Conference on Robotics and Automation (IEEE, 2014) pp. 3042-3049.
[10] S.Poddar, V. Kumar and A. Kumar, “A comprehensive overview of inertial sensor calibration techniques,” J. Dynam. Syst.
Meas. Contr. 139(1), 011006-1-011006-11 (2017).
[11] J. Rohac, M. Sipos and J. Simanek, “Calibration of low-cost triaxial inertial sensors,” IEEE Instru. Meas. Mag. 18(6), 32-38
(2015).
[12] P. Furgale, C. H. Tong, T. D. Barfoot and G. Sibley, “Continuous-time batch trajectory estimation using temporal basis
functions,” Int. J. Robot. Res. 34(14), 1688-1710 (2015).
[13] A. Elatta, L. P. Gen, F. L. Zhi, Y. Daoyuan and L. Fei, “An overview of robot calibration,” Inform. Technol. J. 3(1), 74-78
(2004).
[14] P. Cheng and B. Oelmann, “Joint-angle measurement using accelerometers and gyroscopes—A survey,” IEEE Trans.
Instrum. Meas. 59(2), 404—414 (2010).
[15] F. Ghassemi, S. Tafazoli, P. D. Lawrence and K. Hashtrudi-Zaad, “Design and calibration of an integration-free
accelerometer-based joint-angle sensor,” IEEE Trans. Instrum. Meas. 57(1), 150-159 (2008).
[16] L. Cantelli, G. Muscato, M. Nunnari and D. Spina, “A joint-angle estimation method for industrial manipulators using
inertial sensors,” IEEE/ASME Trans. Mechatron. 20(5), 2486-2495 (2015).
[17] P. Roan, N. Deshpande, Y. Wang and B. Pitzer, “Manipulator State Estimation with Low Cost Accelerometers and
Gyroscopes,” In: International Conference on Intelligent Robots and Systems (IEEE/RSJ, 2012) pp. 4822-4827.
[18] B. Olofsson, J. Antonsson, H. G. Kortier, B. Bernhardsson, A. Robertsson and R. Johansson, “Sensor fusion for robotic
workspace state estimation,” IEEE/ASME Trans. Mechatron. 21(5), 2236-2248 (2015).
[19] B. Munoz-Barron, J. R. Rivera-Guillen, R. A. Osornio-Rios and R. J. Romero-Troncoso, “Sensor fusion for joint kinematic
estimation in serial robots using encoder, accelerometer and gyroscope,” J. Intell. Robot. Syst. 718(3-4), 529-540 (2015).
[20] J. Burgner-Kahrs, D. C. Rucker and H. Choset, “Continuum robots for medical applications: A survey,” IEEE Trans. Robot.
31(6), 1261-1280 (2015).

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012

1616 James M. Ferguson et al.

[21]
[22]
(23]
[24]

[25]
[26]

(27]
(28]
[29]
[30]
[31]
[32]
[33]
[34]
(35]
[36]
[37]
[38]
[39]
[40]

[41]
[42]

[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]

(52]

H. M. Le, T. N. Do and S. J. Phee, “A survey on actuators-driven surgical robots,” Sens. Actuat. A Phys. 247, 323-354
(2016).

S. A. B. Birjandi, J. Kiihn and S. Haddadin, “Observer-extended direct method for collision monitoring in robot manipulators
using proprioception and imu sensing,” IEEE Robot. Automat. Lett. 5(2), 954-961 (2020).

G. Canepa, J. M. Hollerbach and A. J. M. A. Boelen, “Kinematic Calibration by Means of a Triaxial Accelerometer,” In:
International Conference on Robotics and Automation, vol. 4 (IEEE, 1994) pp. 2776-2782.

N. D’Amore, C. Ciarleglio and D. L. Akin, “IMU-Based Manipulator Kinematic Identification,” In: International
Conference on Robotics and Automation (IEEE, 2015) pp. 1437-1441.

G. Du and P. Zhang, “IMU-based online kinematic calibration of robot manipulator,” Sci. World J. 2013, 1-10 (2013).

G. Du, “Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters,”
IEEE Trans. Ind. Electron. 61(12), 6852-6859 (2014).

G. Du, Y. Liang, C. Li, P. X. Liu and D. Li, “Online robot kinematic calibration using hybrid filter with multiple sensors,”
IEEE Trans. Instrum. Meas. 69(9), 7092-7107 (2020).

E. L. Renk, M. Rizzo, W. Collins, F. Lee and D. S. Bernstein, “Calibrating a triaxial accelerometer-magnetometer-using
robotic actuation for sensor reorientation during data collection,” IEEE Contr. Syst. Mag. 25(6), 86-95 (2005).

J. Botero-Valencia, D. Marquez-Viloria, L. Castano-Londono and L. Morantes-Guzman, “A low-cost platform based on a
robotic arm for parameters estimation of inertial measurement units,” Measurement 110, 257-262 (2017).

T. Beravs, J. Podobnik and M. Munih, “Three-axial accelerometer calibration using kalman filter covariance matrix for
online estimation of optimal sensor orientation,” IEEE Trans. Instrum. Meas. 61(9), 2501-2511 (2012).

T. Qin, P. Li and S. Shen, “VINS-Mono: A robust and versatile monocular visual-inertial state estimator,” IEEE Trans.
Robot. 34(4), 1004-1020 (2018).

J. Kaiser, A. Martinelli, F. Fontana and D. Scaramuzza, “Simultaneous state initialization and gyroscope bias calibration in
visual inertial aided navigation,” IEEE Robot. Automat. Lett. 2(1), 18-25 (2017).

W. Huang, H. Liu and W. Wan, “An online initialization and self-calibration method for stereo visual-inertial odometry,”
IEEE Trans. Robot. 36(4), 1153-1170 (2020).

L. O. Hakyoung Chung and J. Borenstein, “Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic
gyroscope,” IEEE Trans. Robot. Autom. 17(1), 80-84 (2001).

B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems for mobile robots,” IEEE Trans. Robot. Autom. 11(3),
328-342 (1995).

A. Martinelli, “Vision and imu data fusion: closed-form solutions for attitude, speed, absolute scale, and bias determination,”
IEEE Trans. Robot. 28(1), 44-60 (2012).

C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, “On-manifold preintegration for real-time visual-inertial odometry,”
IEEE Trans. Robot. 33(1), 1-21 (2017).

M. A. Meggiolaro and S. Dubowsky, “An Analytical Method to Eliminate the Redundant Parameters in Robot Calibration,”
In: International Conference on Robotics and Automation (IEEE, 2000) pp. 3609-3615.

S. Hayati and M. Mirmirani, “Improving the absolute positioning accuracy of robot manipulators,” J. Robot. Syst. 2(4),
397-413 (1985).

P. Furgale, J. Rehder and R. Siegwart, “Unified Temporal and Spatial Calibration for Multi-sensor Systems," In:
International Conference on Intelligent Robots and Systems (IEEE/RSJ, 2013) pp. 1280-1286.

L. L. Schumaker. Spline Functions: Computational Methods (SIAM, Philadelphia, PA, USA, 2015).

J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter and H. Van Brussel, “Optimal robot excitation and identification,”
IEEE Trans. Robot. Autom. 13(5), 730-740 (1997).

V. Bonnet, P. Fraisse, A. Crosnier, M. Gautier, A. Gonzélez and G. Venture, “Optimal exciting dance for identifying inertial
parameters of an anthropomorphic structure,” IEEE Trans. Robot. 32(4), 823-836 (2016).

J. Nocedal and S. Wright. Numerical Optimization (Springer Science & Business Media, Berlin, Germany, 2006).

P. S. Maybeck. Stochastic Models, Estimation, and Control (Academic Press, Cambridge, Massachusetts, USA, 1982).
Bno055 intelligent 9-axis absolute orientation sensor,” Bosch Sensortec, Baden-Wiirttemberg, Germany, p. 21, 2016.

F. L. Markley, Y. Cheng, J. L. Crassidis and Y. Oshman, “Averaging quaternions,” J.Guid. Contr. Dynam. 30(4), 1193-1197
(2007).

K.-J. Park, “Fourier-based optimal excitation trajectories for the dynamic identification of robots,” Robotica 24(5), 625-633
(2006).

B. Armstrong, “On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics,”
Int. J. Robot. Res. 8(6), 28-48 (1989).

A. D. Wilson, J. A. Schultz and T. D. Murphey, “Trajectory synthesis for fisher information maximization,” IEEE Trans.
Robot. 30(6), 1358-1370 (2014).

P. Shiakolas, K. Conrad and T. Yih, “On the accuracy, repeatability, and degree of influence of kinematics parameters for
industrial robots,” Int. J. Model. Simul. 22(4), 245-254 (2002).

V. Modes and J. Burgner-Kahrs, “Calibration of concentric tube continuum robots: Automatic alignment of precurved elastic
tubes,” IEEE Robot. Automat. Lett. 5(1), 103-110 (2019).

Cite this article: J. M. Ferguson, T. E. Ertop, S. D. Herrell IIT and R. J. Webster III (2023). “Unified robot and inertial sensor
self-calibration”, Robotica 41, 1590-1616. https://doi.org/10.1017/S0263574723000012

https://doi.org/10.1017/50263574723000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000012
https://doi.org/10.1017/S0263574723000012

	
	Introduction
	Related work on robot/IMU calibration
	Robot calibration via IMU
	IMU calibration via robot
	Sensor extrinsic calibration
	Robot and inertial sensor models
	Serial robot model
	Inertial sensor model
	Parameter redundancy
	Bayesian parameter estimation
	Problem statement
	Posterior parameter distribution
	Conditional and prior distribution assumptions
	MAP formulation
	Trajectory representation
	Least squares formulation
	The structure of the Jacobian
	Numerical trajectory planning
	Efficient approximation of the posterior covariance
	Trajectory planning problem statement
	Sequential trajectory planning
	Full calibration pipeline
	Numerical experiments
	Nominal system parameters and prior uncertainties
	Numerical trajectory planning
	Monte Carlo simulations
	Robot length parameter identifiability
	Experimental results
	Discussion
	Conclusion

