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THETA FUNCTIONS AND MODULAR JETS
H. D. FEGAN®

I. Introduction

Let I be a subgroup of the modular group PSL(2,Z) then I' acts
on the upper half plane H ={zeC:Imz > 0} and we can form the
Riemann surface M = H/I', see [3]. The complex line bundles on a
Riemann surface M form a group H'(M, 0*), see [4], and whenever we
raise a line bundle to a power it will be in this group. Let « denote
the canonical bundle on M then a modular form of weight v is a sec-
tion of the bundle #**. A modular n-jet is then a section of J*(x*)
the n-th jet bundle, see [7]. We can reformulate these ideas in the fol-
lowing terms. A modular form can be viewed as a function ¢: H — C
and a modular n-jet as a vector valued function ¢: H — C"*' both of
which satisfy a transformation law under the elements of I'.

By a theta function we shall mean a function of the form 6,(2)
= X f(3) exp (ir || 2| 2) where the summation is over those i lying in a
lattice L C R’, f is a polynomial in ¢ variables and 6,: H — C is a func-
tion on the upper half plane. We shall restrict ourselves to the case
when L = Z' is the standard integer lattice and f is homogeneous of
degree 2n. By using the Fourier transform and Poisson summation
formula we can express 6,(—1/z) as a sum of terms a,(2)d,(2) for some
polynomials f;. This process can be iterated, applying it to 6,, and so
we obtain a vector valued function (6,(2),6,,(2), - --) which has a trans-
formation law under the map z— —1/z. Here the vector has possibly
infinitely many entries. In fact this iteration produces no new theta
functions after the first stage. More precisely we define a vector valued
function 6,(2) = (@,0,(2)) where ¢,: H— C"*' and the r-th co-ordinate is
a.0,(2). In this {a,} is a set of suitable constants and 6,(z) = 6,,(2) with
essentially f,_, = 47f. If I'(6) is the subgroup of PSL(2,Z) generated
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by z--»2z + 2 and 2 — —1/z then the question arises how 6, behaves under
the group I'(6). There is the following result.

THEOREM 1.1. The vector valued function 6,2) defines a modular
jet.

We have already mentioned that modular jets can be viewed as vec-
tor valued functions with a certain transformation law and that theta
functions give rise to vector valued functions with transformation
laws. This theorem essentially says that these two transformation laws
are the same. As a corollary of this we obtain immediately the well
known result.

COROLLARY 1.2. The theta function 6,(z) is a modular form if and
only if f is harmonic. If f has degree 2n then this form has weight
34 + 2n and multiplier (—1)".

This was proved in a special case by Hermite in 1858, see [2].

In their paper, see [6], Kuga and Shimura introduce the notion of
a vector valued modular form. There are some similarities between
their results and ours. In particular they obtain a decomposition for
the space %, of cusp M,-forms. We describe our decomposition by
giving a commutative diagram. The following notation is used; let
6, = {0,:deg f = 2n},S, = {§,€0,: f is harmonic} and let J, be the set
of modular n-jets where all the functions have the form 2 f(2) exp (iz |4 2)
on H.

THEOREM 1.3. The following diagram commutes

lg
B
~

@n n
o, Tae
. @ fnm "
@ Sm 'Ln‘___‘) @ Jn—m
m=0 m=0

where the maps are as follows. The vertical map 6, — P~ _, S, is de-
fined by taking the decomposition into harmonic components of a poly-
nomial. The map a, is given by a,(0;) = ;, the modular n-jet defined
by 6, as in Theorem 1.1, and the maps j,.m:Sn — J_n are given by
taking (n — m) jets. To give the maps By we use local co-ordinates and
then
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B Bos »+ o s bm) =0, <+, 0, BTy + 5 Bradbm) for suitable constants
m.. Precise details of these are given in section V.

This result arisesbecause there are two ways of obtaining a modular
jet from a theta function. One way is to use the result of Theorem 1.1
directly and obtain a single modular n-jet. The other way is to de-
compose the polynomial of the theta function into harmonic pieces and
then take the jet of each theta function which by Corollary 1.2 is a
modular form. These must then be compared and the comparison is
carried out by the maps g2.

There are a number of differences between our result and that of
Kuga and Shimura. Firstly the types of modular forms are different.
In particular modular forms which are theta functions can under cer-
tain conditions, see [8], be written as the sum of an Eisenstein series
and a cusp form and so can be modular forms which are not cusp forms.
In addition the decomposition of [6] takes place in the space &, of cusp
M, forms while our decomposition is carried out at an earlier stage,
that is in 6,.

The methods which are used here can be adapted and used to study
the heat equation on a Lie group. When we do this we obtain the
asymptotic expansion of the trace of the heat kernel and direct proof
of Kostant’s form of Macdonald’s »-functions, see [1] and [5].

II. Modular jets

We have indicated that a modular jet is a section of the n-jet bundle
J"(/c") on H/I'. However there are difficulties in taking the square root
of a line bundle which appear in our case since we shall require the
bundle «t. Now when I' = I'(¢) the Riemann surface H/I' is homotopy
equivalent to a bouquet of circles, in fact the closed surface H/I' is
the sphere S2. If & is a line bundle on M then there is a line bundle
n such that 5 = ¢ if and only if the Chern class C(§) is even. On the
closed Riemann surface S? it is a fact that C(k) = —2, see [4], so the
bundle «* exists but #* does not. However when we are considering line
bundles on H/I" then since H(H/I',Z) = 0 we have C(¢) = 0 for all line
bundles and so we can find a line bundle £*. The difficulty here is that
these bundles are not unique. In general if M is a Riemann surface
of genus g then if C(¢) is even there are 2% line bundles » such that
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7»” = &. Thus on the closed surface H/I' = S? the square root of a line
bundle is unique but we cannot find all the roots which we require while
on the open surface H/I' all square roots exist but these are not unique.
To deal with these difficulties we shall work with functions on H.
Let ¢: H— C be a modular form of weight », so that ¢(z + 2) = ¢(2)
and ¢(—1/2) = (2/0)'¢(2), with respect to I'(f). Notice that this is
equivalent to giving a section of a line bundle on H/I'(¢) and when we
have to choose between different bundles we do this by specifying a sec-
tion of the bundle. Define the vector valued function ¢: H — C**' by

2.1) &(2) = Up(z), ¢'(2), - - -, ¢*(2))

with ¢7(2) = (d/d2)"¢(z). Equation (2.1) defines an injection o:J*(x¥)
— Maps (H, C**") by o(j*¢(2)) = ¢(z), j*¢(2) denoting the equivalence class
of functions having the same k-jet at 2z as ¢. By the definition of jet
bundles w is independent of the choice of representative ¢ for j*¢. Define
a matrix A(z) = (a,,(2)) for 0 < r,s <k, by

(z)(v 4 8) -+ — Vi@ forr>s

(22) ars(z) = (—I)T(z/i)””’ fO?” r=38

0 for r <s

where <Z) is the binomial coefficient. Let S:z2— —1/z and T:z—2z + 2

be generators of I'(6) and set M(S,z) = A(2) and M(T,z) = 1, the iden-
tity matrix. Since S and T generate I'(¢) we have defined for each
ze H an action of I'(6) on C**!,

PRroPOSITION 2.1. The vector valued function ¢ satisfies the trans-
formation law ¢(yz) = M(y, 2)¢(2) for ye I'(6).

Proof. We must show ¢(rz) = M(y,2)¢(z) for y =S and y=T.

This is clear for y = T. For y =S we must show

¢(r)(_1/z) — i (Z)(D +8) - r— 1)ir+s(z/i)u+r+s¢(s)(z) ,

§=0

which follows by induction and an elementary calculation, where r-th

term in the right hand side should be read as (—l)T(ﬁ,)y+2r¢"’(z).
1
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DEFINITION. Any vector valued function f: H - C**! satisfying the
transformation law f(y2) = M(y, 2)f(2) will be called a modular k-jet.

III. Theta functions

The classical theta function 6(z) = 3 exp (izn?*z) satisfies the trans-
formation laws

3.1 0z + 2) =0 and 6(—1/2) = (z/)¥(z) .

Here the square root is chosen so that if z = ¢ then (2/))* = 1 and (z/)?
is single valued for ze H. Equation (3.1) says that 6(z) is a modular
form of weight 1 for I'(§). We are interested in studying functions of
the form 0,2) = 2f(Dexp (iz||2]?2) when S is a homogeneous poly-
nomial of degree 2n. Notice that the restriction deg f = 2n is not a
serious limitation since if f has odd degree then

2fQ) exp Gr |2} 2) = 2f(—2) exp (ix | - 2| 2) = —2 () exp (iz | 2] 2) .

Thus 6,(z) = —6,(z) and so 6,(z) = 0 when the degree of f is odd.

Changing notation replace f by f, and define f,_,(&) = 4°f,(¢)/2%s!
where 4 = X(9/0¢,)* is the Laplacian and the indexing is chosen so that
deg f, = 2r. Let 6.(2) = 6,(2) and let the constant a, be

a, =Q@ryr'n -+ ---@+r—-1),
with v = §4. The vector valued function ¢, is defined by
0j(z) = z(aoﬁo(z), ) a’nﬂn(z)) .

In the introduction in Theorem 1.1 we stated that 6, gave rise to a
modular jet. This is now stated more precisely as

THEOREM 3.1. The vector valued function 0; has the transforma-
tion low 0,yz2) = M(y,2)0,(2) for yeI'(®) and M(y,2) the same as in
Proposition 2.1.

Proof. Clearly 6,(z + 2) = 6,(z) and so the result is trivially true
for y = T. To complete the proof we must investigate how 6,(2) trans-
forms under S:z— —1/z. The method used to do this is to take
Fourier transforms and use the Poisson summation formula.

DEFINITION. If ge &, Schwartz space, the Fourier transform of ¢
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is 9@ = |

e ?g(x)dr. The Poisson summation formula is then

24 = Zg() .
To apply this we need the following result.
PRrROPOSITION 3.2. Let g(2) = f(2) exp (i || 2|} 2) then
§(&) = (z/i)"¥¢n+042n 0 (&) exp (—ix [|E]/2) ,

where # is the operator
HLE) = io 17 F@)2 [(—Ami)r! .

Proof. In the special case g(2) = exp (ix [|1|[?2) an elementary calcu-
lation shows that

(3.2) §(&) = (/D) ¥ exp (—ix ||€|F/2) .

Now let f(2) = X.a.4* using multi-indices and ¢g(1) = f(1) exp (ix ||| 2)
then the Fourier transform is

3.3 0 = @iy (/0S5 o) e (i lE/
For convenience let u = —2zi/2. We now introduce the Hermite

polynomials with parameter # and give some results about them.

DEFINITION. The k-th Hermite polynomial with parameter u is
hy(x, u) = u™* exp (—uxr>(d/dx)* exp (Jux?). With this definition we can
write equation (3.3) in the form

§©) = 2ri)""(2/0) Y w3 a.h. (&, u) exp (—ix [[§]F/2) .

In this the notation is interpreted so that if & = (ay, - - -, @,) then k. (¢, u)
= h,¢&pu) -+ k&, w). Thus we introduce the Hermite operator s# on
polynomials so if f(1) = 3,a,2* then #f(&) = X a.h (&, u). It is a fact,
which will be shown later, that

HJE) =24 E/Quyr!.

To complete the proof of Theorem 3.1 we apply the result of Proposi-
tion 3.2 and the Poisson summation formula to 4,(z). Recall that

On-(2) = 2,47 f(2) exp (ix || 2| 2) /277 ! .
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Hence
B.4) 0,2 = (/D)4 Z AU ()2 (n — 7)) exp (—ix || €]?/2) ,

which upon substituting for s# gives

3.5) @) 6.(—1/2) = (z/)¥ i (" - s)(-2rc)“(z/i)’”03(z) .

=0\l — T
Now let a, = Cri)r!(n —r)!v@ + 1) --- (v + ¢ — 1) with v = {/ then if
0,(2) = “(aby(2), - -+, a,0,(2)) we find from equation (3.5) that

0(—1/2) = @0, ,

where A(z) is defined in equation (2.2). This completes the proof of
Theorem 3.1.

COROLLARY 3.3. If f is a homogeneous polynomial of degree 2n
then 6,(2) is & modular form if and only if f is harmonic and then this
form has weight 2n + 3¢ and multiplier (—1)".

Proof. We apply equation (3.4) in the case r = n and we find that
0,(z) is a modular form if and only if f is an eigenvalue of &, in which
case §, is a modular form with weight 2n + }¢ and multiplier (—1)"c,
¢ being the eigenvalue corresponding to f. It follows from the defini-
tion of o# that s#f = c¢f if and only if ¢ =1 and f is harmonic. By
the multiplier of a modular form ¢ of weight v we mean the constant
C such that

#(—1/2) = C(z/iy¢(2) .

IV. The Hermite operator

Recall the definition of the k-th Hermite polynomial with parame-
ter u, hi(x,w) = u *exp (—tuax®)(d/dx)* exp Gux?). The results about
there are easily proved and so we shall leave many of the details to the
reader. The main result is the following.

LEMMA 4.1. h(z,u) = #(x*) where H#f =23,47f]Qwr! with 4
= (d/dx).

Proof. It is easy to show that h,(x,u) satisfies the recurrence rela-
tion
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“@.1) Why o1, U) = Ed;hk(x, u) + wuh(, ) .

Now hy(x,w) =1 and h,(x, u) = x so the result is trivially true for £ =0
and 1. The proof can be completed by showing that s#(x*) satisfies the
recurrence relation (4.1) and using induction.

Since the series defining # are exponential series we can apply this
lemma one variable at a time to obtain the result

LEMMA 4.2. Let o# denote the Hermite operator of the previous
section, that is #(.a,4%) = 3.ah (&, u), then if f is a homogeneous
polynomial in ¢ variables

HFQR) = S4 Q)] Quyr! .

This result was used in the previous section.

We also used the fact that the homogeneous polynomial eigenfunc-
tions of s were the harmonic polynomials and these have eigenvalue
¢ = 1. This follows most clearly when we consider how s is related
to the grading on the space V of polynomials. Let V, be the subspace
of V given by V, ={feV:deg f =j}. Now s preserves the associated
filtration but not the grading. More precisely we have the following
list of properties of s#. The natural projections of V are denoted by
P.:V-V,.

PrROPOSITION 4.3. The Hermite operator s#:V — V satisfies the fol-
lowing.

a) H(@P:,V,)C P, V; for each k.

b) If feV,; and geV,;,, then

f if r=27
0 if r 18 odd

g ifr=2j+1
0 if r 18 even .

c) H|P:,V,; is non singular for each k.
d) If f is symmetric so is Hf.

Proof. These all follow from elementary calculations which are left
to the reader.

The result about the eigenfunctions of s# is now stated in the fol-
lowing.

COROLLARY 4.4. Let f be a polynomial eigenfunction of # so Hf
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=Cf then C=1 and if degf=n 80 f=f,+ foo1+ -+ + fo where
f; ts homogeneous of degree j then f; is harmonic.

Proof. This follows by applying Proposition 4.3 to each of the com-
ponents of f in turn, starting with the highest f,.

V. The decomposition theorem

In this section we shall prove Theorem 1.3. To begin we define
the spaces we are considering ; 0, = {6,: f is homogeneous of degree 2n},
S, =1{0;€0,: f is harmonic} and J, = {0,:0,€0,}. The result we shall
prove is then

THEOREM 5.1. The following diagram commutes

0, —= 5 7,
[ 1%, m
. D dnm "
@ Sm L"—"‘) (“B Jn—m
m=0 m=0

In this the map «, is given by .6, =6,. The vertical map 6,
— @S, comes from the harmonic decomposition of f; more precisely
if fQ) = 2r¥»~™g,.(1) where r* = iz ||2|* and g, is harmonic and homo-
geneous of degree 2m then 6,(z) — 26,,(2). The maps j, are defined by
taking m-jets so X¢,.(2) — 2j,_.0,.(2) where j.é =g, ¢, ---,¢™). It
only remains to define the map gr:J, —J,. Let

Q) m!s!vp 4+ 1 ---@+2n—m—1)

ﬁr'z",s=(s_n+m)!(v+s)...(y+n+s—m—~1)

where as before v = 1/ then

;n(¢0) Tty ¢m) = t(O, ety Os ﬂ::‘,n-mSZSoa Y .B:Znﬁbm) .

The proof of Theorem 5.1 is essential a direct calculation. We shall
indicate the main steps in this and leave the details to the reader.
Firstly observe that it is sufficient to prove the result in the case f(1)
= r¥n-m g (1) when the result becomes

0f(z) = ﬁz_mjn—mﬁgm(z) .

This is sufficient since «,(0,.,) = a.0; + a,0, and 6;,, =6, + 6,. Next
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observe that there is the formula
Ar*tg,, = 2nik(dm + 2k + £ — 2% %g,, ,

where ¢, is a harmonic polynomial homogeneous of degree 2m. This
formula is a consequence of Euler’s theorem from elementary analysis,
namely 2-grad g, = 2mg(1). The coefficients p7, of the map gy were
chosen to make the diagram commute and this can be checked directly
by using the above two facts.
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