DISCRETE FOCAL BOUNDARY-VALUE PROBLEMS

RAVI P. AGARWAL ${ }^{1}$ AND DONAL O'REGAN ${ }^{2}$
${ }^{1}$ Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
${ }^{2}$ Department of Mathematics, National University of Ireland, Galway, Ireland

(Received 22 April 1998)

Abstract

In this paper we shall employ the nonlinear alternative of Leray-Schauder and known sign properties of a related Green's function to establish the existence results for the n th-order discrete focal boundary-value problem. Both the singular and non-singular cases will be discussed.

Keywords: Leray-Schauder alternative; focal problems; Green's function; singular; non-singular
AMS 1991 Mathematics subject classification: Primary 39A10; 34A15

1. Introduction

This paper discusses the n th-order ($n \geqslant 2$) discrete focal boundary-value problem

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k-p)=f(k, y(k), y(k+1), \ldots, y(k+n-p-1)), \quad k \in J_{p} \tag{1.1}\\
\Delta^{i} y(0)=0, \quad 0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1
\end{array}\right\}
$$

where $T \in\{1,2, \ldots\}, 1 \leqslant p \leqslant n-1, J_{p}=\{p, p+1, \ldots, T+p\}$, and $y: I_{n}=\{0,1, \ldots$, $T+n\} \rightarrow \mathbb{R}$. We will let $C\left(I_{n}\right)$ denote the class of maps w continuous on I_{n} (discrete topology) with norm $\|w\|=\max _{k \in I_{n}}|w(k)|$. By a solution to (1.1) we mean a $w \in C\left(I_{n}\right)$ such that w satisfies the difference equation in (1.1) for $k \in J_{p}$ and w satisfies the focal boundary data. The results presented in this paper are all new and supplement those recently discussed in $[\mathbf{1 - 4 , 6}, \mathbf{7}, \mathbf{1 1}, \mathbf{1 3}-\mathbf{1 5}]$. In fact, this is the first time the singular discrete focal boundary-value problem has been discussed successfully. For this we shall employ the nonlinear alternative of Leray-Schauder and known sign properties of a related Green's function cleverly. The continuous analogue of the results established here, which improve several known existence criteria (see, for example, $[\mathbf{2}, 8,9]$), has appeared in [5].

For the remainder of this introduction we gather together some results that will be used in §2 and in §3. First, we recall the following well-known result from the literature [1, 6, 10].

Theorem 1.1. The Green's function $G_{1}(k, j)$ of the boundary-value problem

$$
\Delta^{n} y=0, \quad y\left(k_{i}\right)=0, \quad 1 \leqslant i \leqslant n, \quad 0=k_{1}<k_{2}<\cdots<k_{n}=T+n
$$

exists and $G_{1}(k, j) Q(k) \geqslant 0$ for $(k, j) \in I_{n} \times I_{0}$, where

$$
I_{0}=\{0,1, \ldots, T\} \quad \text { and } \quad Q=\prod_{i=1}^{n}\left(k-k_{i}\right)
$$

In $[\mathbf{1}, \mathbf{6}]$ it was shown that if y satisfies

$$
\left.\begin{array}{rlrl}
\Delta^{n} y(k) & =\phi(k), & & k \in I_{0}, \tag{1.2}\\
\Delta^{i} y(0) & =0, & & 0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1) & =0, & & p \leqslant i \leqslant n-1,
\end{array}\right\}
$$

then

$$
\begin{equation*}
y(k)=\sum_{j=0}^{T} G_{2}(k, j) \phi(j), \quad \text { for } k \in I_{n} \tag{1.3}
\end{equation*}
$$

where

$$
G_{2}(k, j)=(-1)^{n-p} \sum_{i=0}^{j} \frac{(k-i-1)^{(p-1)}(j+n-p-1-i)^{(n-p-1)}}{(p-1)!(n-p-1)!}
$$

if $j \in\{0,1, \ldots, k-1\}$, and

$$
G_{2}(k, j)=(-1)^{n-p} \sum_{i=0}^{k-1} \frac{(k-i-1)^{(p-1)}(j+n-p-1-i)^{(n-p-1)}}{(p-1)!(n-p-1)!}
$$

if $j \in\{k, k+1, \ldots, T\}$. Next consider

$$
\left.\begin{array}{rlrl}
\Delta^{n} y(k-p) & =\phi(k), & & k \in J_{p} \tag{1.4}\\
\Delta^{i} y(0) & =0, & & 0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1) & =0, & & p \leqslant i \leqslant n-1
\end{array}\right\}
$$

Notice (1.4) is the same as

$$
\left.\begin{array}{rlrl}
\Delta^{n} y(k) & =\phi(k+p), & & k \in I_{0} \tag{1.5}\\
\Delta^{i} y(0) & =0, & & 0 \leqslant i \leqslant p-1 \\
د^{i} y(T+1) & =0, & & p \leqslant i \leqslant n-1
\end{array}\right\}
$$

and so

$$
y(k)=\sum_{j=0}^{T} G_{2}(k, j) \phi(j+p), \quad \text { for } k \in I_{n}
$$

This is the same as

$$
\begin{equation*}
y(k)=\sum_{j=p}^{T+p} G(k, j) \phi(j), \quad \text { for } k \in I_{n} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
G(k, j)=G_{2}(k, j-p), \quad \text { for } k \in I_{n} \text { and } j \in J_{p} \tag{1.7}
\end{equation*}
$$

Next suppose $y: I_{n} \rightarrow \mathbb{R}$ satisfies

$$
\left.\begin{array}{rl}
(-1)^{n-p} \Delta^{n} y(k) \geqslant 0, & k \in I_{0} \tag{1.8}\\
\Delta^{i} y(0)=0, & 0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1)=0, & p \leqslant i \leqslant n-1
\end{array}\right\}
$$

Now (1.3) implies

$$
\Delta^{i} y(k)=\sum_{j=0}^{T}(-1)^{n-p} \Delta^{i} G_{2}(k, j)(-1)^{n-p} \Delta^{n} y(j)
$$

and since [6]

$$
(-1)^{n-p} \Delta^{i} G_{2}(k, j) \geqslant 0, \quad(k, j) \in I_{n-i} \times I_{0}, \quad 0 \leqslant i \leqslant p-1
$$

and

$$
(-1)^{n-p+i} \Delta^{i+p} G_{2}(k, j) \geqslant 0, \quad(k, j) \in I_{n-i-p} \times I_{0}, \quad 0 \leqslant i \leqslant n-p-1
$$

we have

$$
\begin{equation*}
\Delta^{i} y(k) \geqslant 0, \quad \text { for } k \in I_{n-i}, \quad 0 \leqslant i \leqslant p \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{p+1} y(k) \leqslant 0, \quad \text { for } k \in I_{n-p-1} \tag{1.10}
\end{equation*}
$$

where $I_{j}=\{0,1, \ldots, T+j\}$. As a result we have

$$
\begin{equation*}
\sup _{k \in I_{n-i}} \Delta^{i} y(k)=\Delta^{i} y(T+n-i), \quad 0 \leqslant i \leqslant p-1 \tag{1.11}
\end{equation*}
$$

Fix $i \in\{0,1, \ldots, p-1\}$ and let $\phi_{i}(k)=\Delta^{i} y(k)$. It is easy to see that $\phi_{i}(k)$ satisfies the following $p-i+1$ conditions

$$
\left.\begin{array}{rl}
\Delta^{j} \phi_{i}(0)=0, \quad j & =0,1, \ldots, p-i-1 \tag{1.12}\\
\phi_{i}(T+n-i) & =\Delta^{i} y(T+n-i)
\end{array}\right\}
$$

these are conjugate conditions [6]. In addition, (1.10) implies

$$
\begin{equation*}
\Delta^{p-i+1} \phi_{i}(k)=\Delta^{p+1} y(k) \leqslant 0, \quad \text { for } k \in I_{n-p-1} \tag{1.13}
\end{equation*}
$$

Now $[\mathbf{1}, 6], \phi_{i}(k)$ can be written as

$$
\begin{equation*}
\phi_{i}(k)=\frac{k^{(p-i)}}{(T+n-i)^{(p-i)}} \phi_{i}(T+n-i)+\sum_{j=0}^{T+n-p-1} G_{3}(k, j) \Delta^{p-i+1} \phi_{i}(j) \tag{1.14}
\end{equation*}
$$

for $k \in I_{n-i}$, where G_{3} is the Green's function for the problem

$$
\left.\begin{array}{rl}
\Delta^{p-i+1} \phi_{i}(k) & =0, \quad k \in I_{n-p-1}, \tag{1.15}\\
\Delta^{j} \phi_{i}(0) & =0, \quad j=0,1, \ldots, p-i-1 \\
\phi_{i}(T+n-i) & =0
\end{array}\right\}
$$

Theorem 1.1 implies that, for $k \in I_{n-i}$,

$$
\operatorname{sgn} G_{3}(k, j)=\operatorname{sgn}\left(k^{(p-i)}(k-T-n+i)\right)=-
$$

(here we use the convention $\operatorname{sgn} 0=-$). This, together with (1.14), gives

$$
\phi_{i}(k) \geqslant \frac{k^{(p-i)}}{(T+n-i)^{(p-i)}} \Delta^{i} y(T+n-i), \quad \text { for } k \in I_{n-i} \text { and } 0 \leqslant i \leqslant p-1
$$

i.e.

$$
\begin{equation*}
\Delta^{i} y(k) \geqslant \frac{k^{(p-i)}}{(T+n-i)^{(p-i)}} \sup _{j \in I_{n-i}} \Delta^{i} y(j), \quad \text { for } k \in I_{n-i} \text { and } 0 \leqslant i \leqslant p-1 \tag{1.16}
\end{equation*}
$$

Next, suppose that $y: I_{n} \rightarrow \mathbb{R}$ satisfies

$$
\left.\begin{array}{rl}
(-1)^{n-p} \Delta^{n} y(k-p) \geqslant 0, & k \in J_{p}, \tag{1.17}\\
\Delta^{i} y(0)=0, & \\
0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1)=0, & \\
p \leqslant i \leqslant n-1 .
\end{array}\right\}
$$

Now, since $(-1)^{n-p} \Delta^{n} y(k-p) \geqslant 0$ f.r $k \in J_{p}$ is the same as $(-1)^{n-p} \Delta^{n} y(k) \geqslant 0$ for $k \in I_{0}$, we have

$$
\begin{equation*}
\Delta^{i} y(k) \geqslant \frac{k^{(p-i)}}{(T+n-i)^{(p-i)}} \sup _{j \in I_{n-i}} \Delta^{i} y(j), \quad \text { for } k \in I_{n-i} \text { and } 0 \leqslant i \leqslant p-1 \tag{1.18}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
y(k) \geqslant \frac{p^{(p)}}{(T+n)^{(p)}} \sup _{j \in I_{n}} y(j), \quad \text { for } k \in J_{p} \tag{1.19}
\end{equation*}
$$

Next we present a new existence principle for the discrete focal boundary-value problem

$$
\begin{gather*}
(-1)^{n-p} \Delta^{n} y(k-p)=f(k, y(k), y(k+1), \ldots, y(k+n-p-1)), \quad k \in J_{p}, \\
y(0)=a \tag{1.20}\\
\Delta^{i} y(0)=0, \quad 1 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1 .
\end{gather*}
$$

Theorem 1.2. Suppose $f: J_{p} \times \mathbb{R}^{n-p} \rightarrow \mathbb{R}$ is continuous (i.e. continuous as a map from the topological space $J_{p} \times \mathbb{R}^{n-p}$ into the topological space \mathbb{R} (of course, the topology on J_{p} will be the discrete topology)). Assume there is a constant $M>|a|$, independent of λ, with

$$
\|y\|=\max _{j \in I_{n}}|y(j)| \neq M
$$

for any solution $y \in C\left(I_{n}\right)$ to

$$
\begin{gather*}
(-1)^{n-p} \Delta^{n} y(k-p)=\lambda f(k, y(k), y(k+1), \ldots, y(k+n-p-1)), \quad k \in J_{p} \\
y(0)=a \tag{1.21}\\
\Delta^{i} y(0)=0, \quad 1 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1
\end{gather*}
$$

for each $\lambda \in(0,1)$. Then (1.20) has a solution.
Proof. Solving (1.21) ${ }_{\lambda}$ is equivalent to finding a $y \in C\left(I_{n}\right)$ that satisfies

$$
\begin{equation*}
y(k)=a+\lambda \sum_{j=p}^{T+p}(-1)^{n-p} G(k, j) f(j, y(j), y(j+1), \ldots, y(j+n-p-1)), \quad \text { for } k \in I_{n} \tag{1.22}
\end{equation*}
$$

where G is as in (1.7). Define the operator $S: C\left(I_{n}\right) \rightarrow C\left(I_{n}\right)$ by setting

$$
S y(k)=a+\sum_{j=p}^{T+p}(-1)^{n-p} G(k, j) f(j, y(j), y(j+1), \ldots, y(j+n-p-1)) .
$$

Now (1.22) $)_{\lambda}$ is equivalent to the fixed-point problem

$$
y=(1-\lambda) a+\lambda S y
$$

It is easy to see $[\mathbf{3}, 6]$ that $S: C\left(I_{n}\right) \rightarrow C\left(I_{n}\right)$ is continuous and completely continuous. Let

$$
U=\left\{u \in C\left(I_{n}\right):\|u\|<M\right\} \quad \text { and } \quad E=C\left(I_{n}\right)
$$

The nonlinear alternative of Leray-Schauder [12] guarantees that S has a fixed point in \bar{U}, i.e. (1.20) has a solution.

2. Non-singular focal problems

In this section we establish existence of solutions to discrete focal non-singular boundaryvalue problems. For convenience, we discuss (1.1).

Theorem 2.1. Suppose the following conditions are satisfied:

$$
\begin{equation*}
f: J_{p} \times \mathbb{R}^{n-p} \rightarrow \mathbb{R} \quad \text { is continuous } \tag{2.1}
\end{equation*}
$$

there exists a continuous, non-decreasing function $\psi:[0, \infty) \rightarrow$ $[0, \infty)$ with $\psi>0$ on $(0, \infty)$ and a function $q: J_{p} \rightarrow[0, \infty)$ with $\left.\begin{array}{l}\left|f\left(k, u_{1}, \ldots, u_{n-p}\right)\right| \leqslant q(k) \psi(|u|) \text { for all } u_{i} \in \mathbb{R}, i=1,2, \ldots, n-p \\ \text { and } k \in J_{p} \text {, where }|u|=\max \left\{\left|u_{i}\right|: i=1,2, \ldots, n-p\right\} ;\end{array}\right\}$
and

$$
\begin{equation*}
\sup _{c \in(0, \infty)}\left(\frac{c}{\psi(c)}\right)>Q, \quad \text { where } Q=\max _{k \in I_{n}} \sum_{j=p}^{T+p} q(j)(-1)^{n-p} G(k, j) \tag{2.3}
\end{equation*}
$$

Then (1.1) has a solution.
Proof. Let $M>0$ satisfy

$$
\begin{equation*}
(M / \psi(M))>Q \tag{2.4}
\end{equation*}
$$

Consider the family of problems

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k-p)=\lambda f(k, y(k), y(k+1), \ldots, y(k+n-p-1)), \quad k \in J_{p} \tag{2.5}\\
\Delta^{i} y(0)=0, \quad 0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1
\end{array}\right\}
$$

for $0<\lambda<1$. Let y be any solution of $(2.5)_{\lambda}$ for $0<\lambda<1$. Then

$$
\begin{equation*}
y(k)=\lambda \sum_{j=p}^{T+p}(-1)^{n-p} G(k, j) f(j, y(j), y(j+1), \ldots, y(j+n-p-1)), \quad \text { for } k \in I_{n} \tag{2.6}
\end{equation*}
$$

Now, (2.6) together with (2.2) implies that for $k \in I_{n}$,

$$
|y(k)| \leqslant \sum_{j=p}^{T+p}(-1)^{n-p} G(k, j) q(j) \psi(\|y\|) \leqslant Q \psi(\|y\|)
$$

where $\|y\|=\sup _{k \in I_{n}}|y(k)|$. Consequently,

$$
\begin{equation*}
\frac{\|y\|}{\psi(\|y\|)} \leqslant Q . \tag{2.7}
\end{equation*}
$$

Now, (2.4) together with (2.7) implies $\|y\| \neq M$. Thus, any solution y of (2.5) ${ }_{\lambda}$ satisfies $\|y\| \neq M$. Now, Theorem 1.2 implies that (1.1) has a solution.

Remark 2.2. It is easy to put conditions $[\mathbf{3}, \mathbf{4}, 6]$ on f to guarantee that (1.1) has a non-negative solution.

Remark 2.3. The ideas in this section can be trivially extended in order to establish existence results for the non-singular conjugate n th-order problem,

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k)=f(k, y(k), y(k+1), \ldots, y(k+n-1)), \quad k \in I_{0} \\
\Delta^{i} y(0)=0, \quad 0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+n-i)=0, \quad 0 \leqslant i \leqslant n-p-1,
\end{array}\right\}
$$

the non-singular focal n th-order problem,

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k)=f(k, y(k), y(k+1), \ldots, y(k+n-1)), \quad k \in I_{0} \\
\Delta^{i} y(0)=0, \quad 0 \leqslant i \leqslant p-1 \\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1
\end{array}\right\}
$$

and the non-singular (n, p) problem,

$$
\left.\begin{array}{c}
\Delta^{n} y(k)=f(k, y(k), y(k+1), \ldots, y(k+n-1)), \quad k \in I_{0} \\
\Delta^{i} y(0)=0, \quad 0 \leqslant i \leqslant n-2 \\
\Delta^{p} y(T+n-p)=0, \quad 0 \leqslant p \leqslant n-1 \quad(p \text { fixed })
\end{array}\right\}
$$

3. Singular focal problems

Next we discuss

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k-p)=f(k, y(k)), \quad k \in J_{\boldsymbol{p}} \tag{3.1}\\
\Delta^{i} y(0)=0, \quad 0 \leqslant i \leqslant p-1, \\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1,
\end{array}\right\}
$$

where $f(i, y)$ may be singular at $y=0$.
Theorem 3.1. Suppose the following conditions are satisfied:

$$
\begin{equation*}
f: J_{p} \times(0, \infty) \rightarrow(0, \infty) \text { is continuous; } \tag{3.2}
\end{equation*}
$$

$\left.\begin{array}{l}f(k, u) \leqslant g(u)+h(u) \text { on } J_{p} \times(0, \infty) \text { with } g>0 \text { continuous } \\ \text { and non-increasing on }(0, \infty), h \geqslant 0 \text { continuous on }[0, \infty) \\ \text { and }(h / g) \text { non-decreasing on }(0, \infty) \text {; }\end{array}\right\}$
for each constant $H>0$, there exists a continuous function $\psi_{H}: J_{p} \rightarrow(0, \infty)$ with $f(k, u) \geqslant \psi_{H}(k)$ on $J_{p} \times(\mathrm{O}, H]$;
there exists a constant $K_{\theta}>0$ with $\left.g(\theta u) \leqslant K_{\theta} g(u)\right\}$
for all $u \geqslant 0$, where $\left.\theta=\left[p^{(p)} /(T+n)^{(p)}\right] ; \quad\right\}$
and

$$
\begin{equation*}
\sup _{c \in(0, \infty)}\left(\frac{c}{g(c)+h(c)}\right)>K_{\theta} Q \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\sum_{j=p}^{T+p}(-1)^{n-p} G(T+n, j), \quad \text { and } G \text { is as in (1.7). } \tag{3.7}
\end{equation*}
$$

Then (3.1) has a solution $y \in C\left(I_{n}\right)$ with $y(i)>0$ for $i \in J_{p}$.
Proof. Choose $M>0$ with

$$
\begin{equation*}
\frac{M}{Q K_{\theta}[g(M)+h(M)]}>1 \tag{3.8}
\end{equation*}
$$

Next choose $\epsilon>0$ and $\epsilon<M$ with

$$
\begin{equation*}
\frac{M}{Q K_{\theta}[g(M)+h(M)]+\epsilon}>1 \tag{3.9}
\end{equation*}
$$

Let $n_{0} \in\{1,2, \ldots\}$ be chosen so that $\left(1 / n_{0}\right)<\epsilon$ and let $N_{0}=\left\{n_{0}, n_{0}+1, \ldots\right\}$. We show first that

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k-p)=f^{\star}(k, y(k)), \quad k \in J_{p} \\
y(0)=(1 / m) \\
\Delta^{i} y(0)=0, \quad 1 \leqslant i \leqslant p-1 \tag{3.10}\\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1
\end{array}\right\}
$$

has a solution for each $m \in N_{0}$, where

$$
f^{\star}(k, u)= \begin{cases}f(k, u), & u \geqslant(1 / m) \\ f(k,(1 / m)), & u<(1 / m)\end{cases}
$$

To show that $(3.10)^{m}$ has a solution for each $m \in N_{0}$, we will apply Theorem 1.2. Consider the family of problems

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k-p)=\lambda f^{\star}(k, y(k)), \quad k \in J_{p} \\
y(0)=(1 / m) \\
\Delta^{i} y(0)=0, \quad 1 \leqslant i \leqslant p-1 \tag{3.11}\\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1,
\end{array}\right\}
$$

for $0<\lambda<1$. Let $y \in C\left(I_{n}\right)$ be any solution of $(3.11)_{\lambda}^{m}$. Then

$$
\begin{equation*}
y(k)=(1 / m)+\lambda \sum_{j=p}^{T+p}(-1)^{n-p} G(k, j) f^{\star}(j, y(j)), \quad \text { for } k \in I_{n} \tag{3.12}
\end{equation*}
$$

and so $y(k) \geqslant(1 / m)$ for $k \in I_{n}$. Also, as in $\S 1$ (see (1.11)), we know that $\|y\|=$ $\sup _{j \in I_{n}} y(j)=y(T+n)$. We next claim that

$$
\begin{equation*}
\|y\|=y(T+n) \neq M \quad(\text { here } M \text { is as in (3.8)). } \tag{3.13}
\end{equation*}
$$

We have immediately, from (3.12), (3.3), (1.19) and (3.5), that

$$
\begin{aligned}
y(T+n) & \leqslant \frac{1}{m}+\left\{1+\frac{h(y(T+n))}{g(y(T+n))}\right\} \sum_{j=p}^{T+p}(-1)^{n-p} G(T+n, j) g(y(j)) \\
& \leqslant \epsilon+\left\{1+\frac{h(y(T+n))}{g(y(T+n))}\right\} \sum_{j=p}^{T+p}(-1)^{n-p} G(T+n, j) g(\theta y(T+n)) \\
& \leqslant \epsilon+[g(y(T+n))+h(y(T+n))] K_{\theta} Q
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\frac{y(T+n)}{\epsilon+[g(y(T+n))+h(y(T+n))] K_{\theta} Q} \leqslant 1 \tag{3.14}
\end{equation*}
$$

Now (3.9) and (3.14) imply $y(T+n) \neq M$, and so (3.13) is true. Consequently, Theorem 1.2 guarantees that $(3.10)^{m}$ has a solution $y_{m} \in C\left(I_{n}\right)$ with $(1 / m) \leqslant y_{m}(i) \leqslant M$ for $i \in I_{n}$. Next we obtain a sharper lower bound on y_{m}. Notice that y_{m} satisfies

$$
\begin{equation*}
y_{m}(i)=\frac{1}{m}+\sum_{j=p}^{T+p}(-1)^{n-p} G(i, j) f\left(j, y_{m}(j)\right), \quad \text { for } i \in I_{n} \tag{3.15}
\end{equation*}
$$

Also, (3.4) guarantees the existence of a continuous function $\psi_{M}: J_{p} \rightarrow(0, \infty)$ with $f(i, u) \geqslant \psi_{M}(i)$ for $(i, u) \in J_{p} \times(0, M]$. This, together with (3.15), yields

$$
\begin{equation*}
y_{m}(i) \geqslant \sum_{j=p}^{T+p}(-1)^{n-p} G(i, j) \psi_{M}(j) \equiv \Phi_{M}(i), \quad \text { for } i \in J_{p} \tag{3.16}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left\{y_{m}\right\}_{m \in N_{0}} \text { is a bounded family on } I_{n} \tag{3.17}
\end{equation*}
$$

The Arzela-Ascoli Theorem [3] guarantees the existence of a subsequence N of N_{0} and a function $y \in C\left(I_{n}\right)$ with $y_{n} \rightarrow y$ in $C\left(I_{n}\right)$ as $n \rightarrow \infty$ through N. Also

$$
y(0)=\cdots=y(p-1)=0 \quad \text { and } \quad \Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1
$$

Fix $i \in J_{p}$, then $y_{m}, m \in N$ satisfies (3.15). Also,

$$
\begin{equation*}
\Phi_{M}=\min _{i \in J_{p}} \Phi_{M}(i) \leqslant y_{m}(j) \leqslant M, \quad \text { for } j \in J_{p} \text { and } m \in N \tag{3.18}
\end{equation*}
$$

Let $m \rightarrow \infty$ through N in (3.15) to obtain

$$
y(i)=\sum_{j=p}^{T+p}(-1)^{n-p} G(i, j) f(j, y(j)), \quad \text { for } i \in J_{p}
$$

Also, notice that (3.18) implies $y(j) \geqslant \Phi_{M}>0$ for $j \in J_{p}$.
Example 3.2. Consider the focal discrete boundary-value problem

$$
\left.\begin{array}{c}
(-1)^{n-p} \Delta^{n} y(k-p)=\mu\left([\boldsymbol{y}(k)]^{-\alpha}+A \mathrm{e}^{y(k)}\right), \quad \text { for } k \in J_{p} \tag{3.19}\\
\Delta^{i} y(0)=0, \quad 0 \leqslant i \leqslant p-1, \\
\Delta^{i} y(T+1)=0, \quad p \leqslant i \leqslant n-1,
\end{array}\right\}
$$

with $\alpha>0, \beta \geqslant 0, A \geqslant 0$ and $\mu>0$. If

$$
\begin{equation*}
\mu<\frac{\theta^{\alpha}}{Q} \sup _{c \in(0, \infty)}\left(\frac{c^{\alpha+1}}{1+A c^{\alpha} \mathrm{e}^{c}}\right) \tag{3.20}
\end{equation*}
$$

where

$$
\theta=\frac{p^{(p)}}{(T+n)^{(p)}} \quad \text { and } \quad Q=\sum_{j=p}^{T+p}(-1)^{n-p} G(T+n, j)
$$

then (3.19) has a solution $y \in C\left(I_{n}\right)$ with $y(i)>0$ for $i \in J_{p}$.
The result follows immediately from Theorem 3.1 with $g(u)=\mu u^{-\alpha}$ and $h(u)=\mu A \mathrm{e}^{u}$.

References

1. R. P. Agarwal, Difference equations and inequalities (Marcel Dekker, New York, 1992).
2. R. P. Agarwal, Focal boundary value problems for differential and difference equations (Kluwer, Dordrecht, 1998).
3. R. P. Agarwal and D. O'Regan, A fixed point approach for nonlinear discrete boundary value problems, Comp. Math. Applic., Advances in difference equations, II, 36 (1998), 115-121.
4. R. P. Agarwal and D. O'Regan, Singular discrete boundary value problems, Appl. Math. Lett. 12 (1999), 127-131.
5. R. P. Agarwal and D. O'Regan, Right focal singular boundary value problems, ZAMM 79 (1999), 363-373.
6. R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive solutions of differential, difference and integral equations (Kluwer, Dordrecht, 1999).
7. R. P. Agarwal and P. J. Y. Wong, Advanced topics in difference equations (Kluwer, Dordrecht, 1997).
8. P. W. Eloe and J. Henderson, Singular nonlinear boundary value problems for higher order ordinary differential equations, Nonlinear Analysis 17 (1991), 1-10.
9. P. W. Eloe and J. Henderson, Existence of solutions for some higher order boundary value problems, ZAMM 73 (1993), 315-323.
10. P. Hartman, Difference equations: disconjugacy, principal solutions, Green's functions, complete monotonicity, Trans. Am. Math. Soc. 246 (1978), 1-30.
11. A. Lasota, A discrete boundary value problem, Ann. Polon. Math. 20 (1968), 183-190.
12. D. O'Regan, Existence theory for nonlinear ordinary differential equations (Kluwer, Dordrecht, 1997).
13. P. J. Y. Wong, Two-point right focal eigenvalue problem for difference equations, Dyn. Sys. Appl. 7 (1998), 345-364.
14. P. J. Y. Wong, Positive solutions of difference equations with two-point right focal boundary conditions, J. Math. Analysis Appl. 224 (1998), 34-58.
15. P. J. Y. Wong and R. P. Agarwal, Existence of multiple positive solutions of discrete two-point right focal boundary value problems, J. Difference Eqns Appl. (In the press.)
