WREATH PRODUCT OF O^{*}-GROUPS THAT IS NOT IN O^{*}

BY
S. V. MODAK

1. Introduction. It is well known that the wreath product of two ordered groups is an ordered group. In [2] Fuchs asks if the same is true for O^{*}-groups. Here we construct an example to show that the wreath product of an infinite cyclic group with a free metabelian group is not an O^{*}-group.

Following Fuchs [3] we shall call a group G an O^{*}-group if every partial order on G can be extended to a full order on G. We shall use the following characterization of O^{*}-groups given by Ohnishi in [4].
F is an O^{*}-group if and only if the following two conditions hold:
(i) If $1 \neq a \in G$ then $1 \notin S(a)$ where $S(a)$ is the semigroup generated by all conjugates of a in G.
(ii) If $b \in S(a)$ and $c \in S(a)$ then $S(b) \cap S(c) \neq \varnothing$.

Property (ii) is inherited by homomorphic images. Hence in order to show that a group G is not an O^{*}-group it is enough to show that some homomorphic image of G does not satisfy (ii).
2. Theorem 1. Every free metabelian group is an O^{*}-group.

Proof. By a result of Baumslag [1] every free polynilpotent and in particular free metabelian group is an O-group. By Theorem 1 of [5] every metabelian O-group is an O^{*}-group.
3. Theorem 2. Let $A=\langle a\rangle$ be an infinite cyclic group and G be a free metabelian group on two generators. Then A wr G is not an O^{*}-group.

Proof. If $D=\left\langle x, y ; x^{2}=y^{2}=1\right\rangle$ is the infinite dihedral group it is clear that $A \mathrm{wr} D$ is a homomorphic image of $A \mathrm{wr} G$. Therefore it is enough to prove the following:

Lemma. $W=A$ wr D does not satisfy property (ii).
It is well known that if R is the integral group ring of D then W is a semi-direct product of the additive group of R and D. In this notation it is sufficient to show that for all r, s of the form

$$
\sum \zeta_{g} g\left(g \in D ; \zeta_{g} \geq 0\right)
$$

one has

$$
\begin{gathered}
(1+x) r \neq(1+y) s \text { in } R . \\
453
\end{gathered}
$$

Suppose that r and s are any two elements say $r=1+g_{2}+\cdots+g_{n}, s=h_{1}+h_{2}$ $+\cdots+h_{m}$, where g_{i} 's and h_{i} 's need not be distinct. Then $(1+x)\left(1+g_{2}+\cdots+g_{n}\right)$ $=(1+y)\left(h_{1}+h_{2}+\cdots+h_{m}\right)$. Therefore the sets

$$
\begin{aligned}
I & =\left\{1, g_{2}, \ldots, g_{n}, x, x g_{2}, \ldots, x g_{n}\right\} \\
I I & =\left\{h_{1}, \ldots, h_{m}, y h_{1}, \ldots, y h_{m}\right\}
\end{aligned}
$$

are the same. $1 \in I$ hence for some $i_{1}, h_{i_{1}}=1$ or y. In either case $y \in I I$. Now let $y(x y)^{k} \in I I$ where k is a positive integer. As $x \neq y(x y)^{k}$, there is some j_{k} such that

$$
g_{j_{k}}=y(x y)^{k} \text { or }(x y)^{k+1} .
$$

In either case $(x y)^{k+1} \in I$. Therefore there exists some i_{k} such that

$$
h_{i_{k}}=(x y)^{k+1} \text { or } y(x y)^{k+1} .
$$

In either case $y(x y)^{k+1} \in I I$. Thus $y(x y)^{k} \in I I$ for all positive integers k. As $I I$ is a finite set, this gives that $(x y)^{m}=1$ for some $m>0$. A contradiction. Hence the result.

References

1. G. Baumslag, Wreath products and extensions, Math. Z. 81 (1963), 266-289.
2. L. Fuchs, On orderable groups, Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. (1965), 89-98.
3. -, Partially ordered algebraic system, Pergamon Press, Oxford, 1963.
4. M. Ohnishi, On linearization of ordered groups, Osaka J. Math. 4 (1952), 17-18.
5. N. D. Gupta and A. H. Rhemtulla (to appear).
