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INFINITELY DETERMINED MAPGERMS 

LESLIE C. WILSON 

1. Introduction. In differential analysis, it is very useful to have the 
local behavior of a differentiable map be determined by the derivatives of 
the map at a point. Hence we have the theories of finite and infinitely 
determined germs. Let mn

p be the space of germs of C°° maps/: (Rw, 0) —» 
(Rp, 0) and G a group operating on mn

p. A germ / is called finitely G-
determined if there exists an integer k such that every germ having the 
same k-]et a s / is G-equivalent to (i.e., in the same G-orbit as) / . A germ/ 
is called co -G-determined if every germ having the same formal power 
series as / is G-equivalent to / . 

In this paper we give necessary and sufficient conditions for a germ to 
be co -determined with respect to one of the groups C, R, K or L which 
appear frequently in Singularity Theory. In another paper ([13]) we con­
sider oo -A-determined mapgerms. Also in this paper we show that a 
germ/ is co -i^-determined if and only if it is finitely ^-determined (mean­
ing that every representative of some fe-jet of/ has homeomorphic zero 
set), we prove a version of Glaeser's Theorem on closedness of pullback 
rings for oo-L-determined germs, and discuss the relationship between 
oo -K- or C-determination and properness. 

In [14] we employ co -^-determination in studying the question: when 
can one find conditions on the derivatives of a map at a point which will 
guarantee that the zero set of the map is nonsingular at that point? The 
Implicit Function Theorem gives one such condition: that the first deri­
vative be surjective. However, we show that, for singular mapgerms 
whose zero sets are of dimension at least two, any such condition must 
involve all the derivatives. Thus finite jets are inadequate for this study. 
The mapgerms for which such conditions on GO-jets exist are the co-K-
determined germs. 

R is the group of germs of origin preserving diffeomorphisms acting on 
mapgerms by composition on the right; L is similar but acts by composi­
tion on the left; C is the group of germs of diffeomorphisms at 0 on Rn+P 

leaving Kn fixed and commuting with orthogonal projection onto Rn and 
acting on a mapgerm by mapping its graph onto the graph of another 
mapgerm ; K is the semidirect product of R and C and A is the direct 
product of R and L. For more detailed descriptions of these group actions, 
see [8]. Let En be the ring of C°° real-valued germs at 0 in Rn and mn its 
maximal ideal ; mn

p will sometimes denote ^-tuples of elements of mn and 
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sometimes the p-th. power of mn, which should be clear by context. For 
/ e mn

v
} let TCf denote (f*mp)En

p, TRf denote dfEn
n, TKf denote 

(f*mp)En
p + dfEn

n, TLf denote f*mp* and TAf deno te /* !» / + dfEn
n 

(for interpretations of these see [8]). 

THEOREM 1.1. The following are equivalent: 
(1) / is finitely G-determined; 
(2) TGf 3 mn

kEn
v for some positive integer k; 

(3) (iff is analytic) for each representative f of the complexification of f, 
there is a deleted neighborhood of the origin in Cn on which f is infinitesimally 
G-stable (defined below). 

By saying/ is innnitesimally G-stable we mean: / is never 0 (if G = C) ; 
/ is a submersion (if G = R)\f has no critical zeros (points at which/ is 
zero but not a submersion) (if G = K) ; / is an embedding (if G = L); 
f is innnitesimally stable in the usual sense (if G = A). For the theories of 
stability and infinitesimal stability see [4]. Such theories can be developed 
for each of the groups C, R, K and L. However we do not need this here; 
we use the term innnitesimally G-stable merely to unify our results and 
for intuition. The result (1) if and only if (2) is due to Mather (see 
Theorem 3.5 of [8]). The result (1) if and only if (3) in the cases G = R, 
C or K is a special case of Tougeron's Proposition VIII.4.2 in [11]; the 
case G = A is due to Mather, G = L to Gaffney, and both proofs first 
appeared in [3]. 

We prove an analogous theorem for oo-determined germs. Note that 
finite-determinedness depends upon what complex singularities occur 
nearby; oo-determinedness only depends upon what real singularities 
occur nearby. Thus (3) is replaced by: (3a) (if / is analytic) for each 
representative/ of/, there is a deleted neighborhood of the origin in Kn on 
which / is innnitesimally G-stable. 

Every finitely determined germ is equivalent to its Taylor polynomial 
of some degree, so the restriction of condition (3) to analytic germs is no 
real problem. However, it is not known whether oo -determined germs 
need be equivalent to analytic germs, hence the analyticity in (3a) is a 
real restriction. One cannot simply drop the word analytic; for example, 
any function in wn°° which is positive except at 0 would satisfy (3a) for 
G = C, but would not be oo-G-determined. Thus it is necessary to 
restrict the rate at which / approaches being unstable as we approach 0. 

The germ g is said to satisfy a Lojasiewicz inequality of order r at a set X 
if there are constants c > 0 and r ^ 0 such that \g(x)\ ^ cd(x, X)r as 
germs; one also says in this case that the ideal (g*mp)En is Lojasiewicz at 
X (this does not depend upon the generators gi, . . . , gp chosen). Suppose 
positive real numbers bt converge to zero. A sequence of real numbers at 

is flat along bt if, for each r > 0, there is an N such that i ^ N implies 
\a,i\ S bt. A sequence of vectors, matrices or oo-jets is flat along bt if 
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each entry is, and is flat along xt in Rn if it is flat along \xt\. Note that an 
ideal (g*nip)En is not Lojasiewicz at X if and only if there is a sequence 
Xi —•» 0 such that g(xt) is flat along d{xu X). 

One defines G-stable jets analogously with infinitesimally G-stable 
mappings. See [4] for the theory of jet spaces. We will write RpT X 
Jk(n, p)T for the space of r-tuples of &-jets of elements of En

p; if/ maps U 
into Rp, we define a map (Jkf )r into the above jet space in the obvious 
way. Let UnsR denote the set of critical jets, Unsc the set of jets with 
value 0 and UnsK the set of critical jets with value 0; let UnsL be V\ KJ V2, 
where Vi is the set of pairs of jets, at least one of which is not the jet 
of an immersion, and F 2 is the set of pairs of jets having the same value. 
Let A G denote the ideal of all polynomials on the jet space which vanish 
on UnsG. Let IG(f) denote ( ( ( / / )r)*AG)Enr} where k = 0 if G = C and 
otherwise k = 1, and r = 2 if G = L and otherwise r = 1. So Ic(f) = 
(f*mp)En, IR(f) = If, the ideal generated by the determinants of the 
p by p submatrices of df, and IK(f) is the sum of these. Let An denote the 
diagonal in Rn X Rn. If G = L, let D denote (Rn X 0) W (0 X Rn) U An; 
otherwise D = {0}. 

THEOREM 1.2. Suppose fis in En
p. For G either C, R, K or L, the following 

conditions are equivalent: 
(1) f is co -G-determined; 
(2) TGfDm~E*; 
(3) IG(f) is Lojasiewicz at D. 

For G — L} condition (3) is equivalent to: f(x) — f{y) is Lojasiewicz 
at An and Jn(f), the ideal generated by the determinants of the n by n 
submatrices of df, is Lojasiewicz at 0. 

There are several useful restatements of (3): 
(3;) IG(f) D mD

œ (all germs which are flat on D) ; 
(3") d((ff)r(x)} UnsG) is Lojasiewicz at D\ 
(3;//) The graph of (Jkf )r and Rnr X UnsG are regularly situated and 

D= (07 Y)"1 (Uns0). 
The equivalence (3) and (3') follows from Proposition V.4.3 of [11]. 

The equivalence of (3") and (3//r) follows easily from the definition of 
regularly situated, which can be found in [11]. The equivalence of (3) 
and (3") follows from the next Lemma. 

LEMMA 1.3. Let p be a polynomial mapping, V its zero set, Fa C00 germ. 
Then p o F is Lojasiewicz at D = F~lV if and only if d(F(x), V) is. 

Proof. "If" follows from the fact that every polynomial satisfies a 
Lojasiewicz inequality at its zero set. "Only if" follows from the fact 
that, for z restricted to a compact set, there is a positive k such that 
\p{z)\ S kd(z, V). 
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Belickii, in [1], proved that (3) implies (1) when G is R or L. His 
proof in the R case is quite different from ours. His proof in the L case is, 
in this author's opinion, quite sketchy. Also his result as stated is wrong. 
Instead of requiring that | f(x) — fiy) | satisfy a Lojasiewicz inequality at 
An, he only requires t h a t / be one-to-one and | f(x)\ satisfy a Lojasiewicz 
inequality at 0. A map which satisfies his conditions but is not GO-L-
determined is: 

Example 1.4. f(x) = (x2, g(x)), where g(x) is Cœ, positive when x is 
positive and zero when x is nonpositive. 

Kucharz in [6] states that (1) is equivalent to (3) when G is R or L, 
but gives no proofs. He repeats Belickii's mistake. In addition, he states 
that / is oo -7^-determined if and only if / is finitely Cfc-Lî-determined, 
0 ^ k < oo , and that / is oo -L-determined if and only if / is finitely 
C*-L-determined, 1 ^ k < oo. We prove a similar result for oo -K-
determined germs in Section 5 (earlier proofs of this result by Tougeron 
and Bochnak-Kuo are referred to in [2]). 

Brodersen in [2] proves Theorem 1.2 for G = R and K. His proof, 
obtained independently from and simultaneously with ours, differs from 
ours largely in the case "(1) implies (3)." He also expounds upon the 
relationship between infinite determination and finite Ck determination 
(k < oo ) for these cases. 

Sections 2, 3, and 4 are devoted to the proof of Theorem 1.2. Some 
related results are given in Section 5. Among these results are that oo -C-
determined germs are precisely the proper germs, and oo -./^-determined 
germs are precisely the germs which are proper on their critical sets. 
Such germs are quite common. 

While finitely L-determined germs only occur when p ^ 2n and 
finitely ^-determined germs only occur when p = 1, oo-L-determined 
germs occur whenever p ^ n and oo -7^-determined germs occur whenever 
p ^ n. When p = n, the oo-L-determined germs form a subcollection of 
the oo -i^-determined germs (the latter are covering spaces on a deleted 
neighborhood of the origin, while the former are diffeomorphisms on a 
deleted neighborhood; if p ^ 3, these collections are identical). Belickii 
gives examples of infinitely L- and ^-determined germs which are not 
finitely L- or i^-determined. We close this section with some more 
examples. 

Example 1.5. The complex map/(z) = zn, n > 1, is, as a map from R2 

to R2, oo -.^-determined but not oo-L-determined. 

Example 1.6./(x, y, z) = (x, y, zr + (xs + yl)z) is oo -L-determined if r 
is odd and 5 and / are even. 

Example 1.7./(x, y) — (x, y2, yT + xny) is oo-L-determined if r is odd 
and n is even. 
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2. Proof that (2) implies (1). We will first do the case G = K. Cases 
G — C and G = R will be omitted as they are entirely analogous to this 
case. 

We are given that 

dfEn»+ (f*mp)En*DTn,rEn*. 

Let g(x,t) = fix) + tu(x),u flat, let F = if, t) and G = (g, t), and le t / a , 
ga, Fa and Ga denote the germs of these maps at (0, a) (where/(x, t) = 
fix) for all t). Via translation we identify the germs at (0, a) with those at 
(0, 0). Thus ga — f a is in m^°En+iv. We fix a and henceforth will suppress 
the superscript a, writing F for Fa, etc. 

Let mT
k+l denote the germs which vanish to order k along the /-axis 

in either Rw+1 or Rp+1. Then 

rnn°°En+i = mT
œ and mp

œEp+i = mT
œ. 

This follows from the proof of Lemma V.2.4 of [11]. In that proof, let X 
be the /-axis and observe that the functions at can be chosen to be in­
dependent of /. 

Let dg denote the p by n matrix of partials of g with respect to the x 
variables. Let Jg denote the ideal in En+i generated by the determinants 
of the p by p submatrices of dg. 

LEMMA 2.1. For any g in JtLn+i , 

dgEn+1» + (g*?np)En+1v D (mT
œy 

if and only if 

Jg + ig*?np)En+1 D mT
œ. 

Proof. "If": Using the fact that, for any square matrix A, A (adj A) = 
(det A)Iy one can easily show that 

dgEn+1
n D (Jg)En+1

n. 

The conclusion is immediate. 
"Only if": Pick^ mmT

œ. By Lemma V.2.4 of [11], there exists U\,... ,up 

in mT
œ such that u = u\ • . . . • up. Let M be the diagonal p by p matrix 

with u\, . . . , uv the diagonal entries. By assumption, there is an n by p 
matrix N with entries in En+i and a p by p matrix P with entries in 
(g*mp)En+i such that dgN = M + P. Take the determinant of both 
sides of this equation. By the Cauchy-Binet formula for computing the 
determinant of a product of matrices, the left hand side is in Jg; the 
right hand side is u plus something in (g*mp)En+i. Thus u is in Jg + 
ig*nip)En+i as claimed. 

Since (w r
œ) 2 = mT

œ
} the two equivalent conditions in the Lemma are 

also equivalent to 

dg(ntT
œ)n + (g*™P)irnT

œ)p D (rnT
œ)* 
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and to 

(Jg)mT
œ + (g*mp)mT

œ D mT
œ. 

We are given that dfEn
n + (f*mp)En

p D (mn
œ)p. Multiplying both 

sides by En+i, we have that 

dfEn+1» + (f*mp)En+1* D (mT
œ)*. 

Applying Lemma 2.1 t o / , we see that 

(Jf)En+1+ (f*rnp)En+1DmT
m. 

Thus the ideal on the left hand side satisfies a Lojasiewicz inequality at 
the /-axis. Since g is infinitely close t o / , Jg + (g*mp)En+i also satisfies a 
Lojasiewicz inequality at the /-axis, hence contains mT

œ. Thus, by 
Lemma 2.1, 

dg(mT
œ)n + (g*mP)(mTœ)p D (mT°°y. 

Since G*(rnpEp+i)En+1 = (g*mp)En+i, this is equivalent to 

dgmn
œEn+1

n + G* (mpEp+1)mn
œEp+1

p D mn
œEn+1

p. 

This is exactly what is needed to make Mather's proof in Section 5.3 of 
[8] work. The conclusion is tha t / (x ) + tu(x) = Kt • / (#) , where all the 
components of Kt (an element of the group K) are flat and depend 
smoothly on t. 

Next we do the case G = L. 
The condition f*Ep

p D mn
œEn

p is equivalent to f*Ep D mn
œ. Suppose 

g — f is in m^°Ep. By Lemma 5.1 of [3], / and g are L-equivalent if and 
only if g*Ep = f*Ep. Taking Taylor series, we see that 

ftç/^çA + w;. 
That g*Ep = f *EP follows from Nakayama's Lemma and the following 
two facts, which we will establish: 

(0 g*Ep + g*mpf*Ep =f*EP; 
(ii) f*Ep is finitely generated as a g*Ep module. 

Since g*Ep Qf*Ep, the left hand side of (i) is clearly contained in the 
right hand side. Since/, hence g, is oo-C-determined, {g*mp)mr^ D mn°°. 
Thus 

g*mp -f*Ep~2) (g*mp)mn
œ D mn

œ. 

Thus the right hand side of (i) is contained in the left hand side. 
By (i), f*Ep/(g*mpf*Ep) is a one-dimensional real vector space. 

F u r t h e r m o r e , / * ^ = (/, g)*E2p so, by Gafrney's Preparation Theorem 
(Theorem 2.7 of [3]), (ii) holds. 
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3. Proof that (1) implies (3). We assume (3) fails and prove the 
existence of two representatives g and h of the given formal power 
series (namely Tf ) which, because of the differing geometry of their 
G-unstable sets, must be G-inequivalent. First we prove two lemmas: a 
transversality lemma which is used to prove the existence of h having 
as nice as possible geometry of its G-unstable set; a construction lemma 
which is used to prove the existence of g having G-unstable points at 
preassigned locations. These lemmas will be proved in a more general 
form than is needed for this paper. 

Let N and P be Cœ manifolds, X a closed subset of N and h: X —> 
Jœ(N,P) a section (JT(N, P) is the limit of . . . -> Jk+1(N, P) -> 
J*(N, P) -> . . . -> J°(N, P) = NX P). Let 

A = {finC"(N,P):rf\X = h} ; 

A is a closed subset of C°°(7V, P) in the (weak or strong) C°° topology. 
Hence A is a Baire space (see Theorem 4.4 and the following discussion 
in Chapter 2 of [5]), i.e., every residual set (= countable intersection of 
open, dense sets) is dense. 

Now suppose X is closed in N. Let 

TT: sJ
k(;N, P)->N^ X Ps 

denote the 5-fold &-jet bundle and let X(s) be the set of s-tuples with at 
least one component in X; X{s) is closed in iV(s). Suppose W is an im­
mersed submanifold of irr^N^ - Z ( s ) ) . Let 

A1 = {/ G A: sff\(N^ - X^) M W). 

LEMMA 3.1. (Multijet Transversal Extension Theorem.) A l is residual 
in A. 

Proof. W can be covered by a countable collection of compact, co-
dimension 0 submanifolds Mt (with boundary) ; furthermore, the Mi 
may be chosen so that, for each i, there exist relatively compact, mutually 
disjoint coordinate patches Uiti, . . . , UitS whose closures are contained 
in N — X and Viti, . . . , VitS in P such that 

* (Mi) C Uiti X . . . X UitS X Viti X . . . X Vit8. 

Let 

Bt = {fe C(N,P): j*f(\\W on Mi] 

and let At = Bx;C\ A ; At is open in A since Bt is open (see II.4.14 of 
[4]). Pick any neighborhood Uoff. Exactly as in the proof of the Multijet 
Transversality Theorem ([9] or [4]), there is a g in Bt Pi U which agrees 
with / outside Uiti W . . . W UitS; thus g is in A t P\ U. Hence At is 
dense in A ; Al = C\ A t is residual. 
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COROLLARY 3.2. If [W%] is a countable collection of immersed submani-

foldsofirrl(W8) - X^s)),then 

{/ G A: ff\(N^ - X^) (\\ Wi for alii) 

is residual. 

LEMMA 3.3. Suppose there exist wt in Kpr X Jk(n, p)r(k ^ oo), xt = 
(Xi1, . . . , x / ) in Knr converging to 0, and f in E/ such that qt = wt — 
(jkf)r(Xi) is flat along |x / | ^ 0 for each s and along |x / — x / | 9^ 0 for 
each s 9e t. Then there is a g such that Tg = Tf and (jkg)T(Xi) = wt holds 
for a subsequence of {x%\. 

Proof. If k is finite, then we transform each Wi into an oo -jet in such a 
way that all the terms of order greater than k of q{ are zero. Thus we will 
assume k = oo. 

Let Q be the Taylor field given by qt
s at x / and by the zero series at 0. 

We want to show that Q is a Cœ Whitney field. By IV. 1.5 and IV. 1.6 of 
[11], it is enough to show, for each m and each multi-index K, \K\ :§ m, 
that 

(Ry
mQ)K(x) = o(\x - y\m-^), 

where 

(i) (Rv
mQ)K{x) = QK(x) - £ QK+L(y)(x-y)L/Ll. 

\L\Sm-\K\ 

Q^iXi) = qt
s,K is flat along |x / | and along |x / — x / | . Passing to a 

subsequence if necessary (and renumbering so the subsequence is also 
labeled x^), we may assume that |x / | fg 2|x/ — x / | for all 5 and t and 
j > i, and that \qi,K\ is a decreasing function of i for each 5 and K, 
\K\ ^ m. For each /, there is an N such that, for all j > i ^ N and all 
K, \K\ ^ m, 

(ii) \q/'K\ ^ \qt
s'K\ ^ \xt* - xt

l\l for all s 9* t, 

and 

(iii) \qjs'K\ ^ \qt
s'K\ ^ |x/ |z ^ 2zlx/ - x / | z for all s, t. 

For all x and 3/in {x/: all 5 and al i i ^ TV} U {0}, |<2*(x)| and |(>*+L(:y)| 
are, by (ii) and (iii), no greater than 2z|x — y\l. Thus 

|(iV"<2)x(*)| ^ C|*-y|', 

where C depends only on m and /. Let / = m + 1. By Whitney's Exten­
sion Theorem (IV.3.1 of [11]), there is a C°q with (jcog)7'(xî) = g< and 
j°°<z(0) = 0. L e t £ = / + ç. 

Now we proceed to the proof that (1) implies (3). We assume (3) 
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does not hold for / . We will prove that two representatives of Tf exist 
which cannot be G-equivalent. 

Case C. First note that if two germs are C-equivalent, then their 
zero sets are the same. Suppose/is identically zero; we can certainly find 
a g with Tg = 0 which is not identically zero. 

Suppose/ isn't identically zero. We are given t h a t / doesn't satisfy a 
Lojasiewicz inequality at 0. Then there is a sequence xt converging to 0 
so tha t / (x i ) is flat along xu h\xtf{xt) ^ 0. By Lemma 3.3, there is a g 
with Tg = Tf such that g(xt) = 0. 

Case R. If two germs are jR-equivalent, then their critical values are 
identical. By assumption, d(UnsR, jlf ) doesn't satisfy a Lojasiewicz in­
equality at 0. Thus there is a sequence xt converging to 0 with d(UnsR, 
jlf(xi)) flat along x{. By Sard's Theorem, we can find a sequence yt con­
verging to 0, yi not a critical value of/, such that/(x^) — y t is flat along 
xt. By Lemma 3.3, there is a g with Tg = Tf such that yt = g(xt) is a 
critical value of g. 

Case K. If two germs are i^-equivalent, their sets of critical zeros are 
diffeomorphic. Note UnsK is the union of the sets 0 X Sr, where Sr is the 
set of 1-jets of rank r, r < p. By the Transversal Extension Theorem, 
there is an h with Th = Tf and jlh f\\ 0 X Sr on a deleted neighborhood 
of 0 for all r < p. Since cod (UnsK) = n + 1, h has no critical zeros on 
a deleted neighborhood of 0. Since d(UnsK, jlf{xt)) is flat along some 
sequence xt converging to 0, there is a g with Tg = Tf and xt critical 
zeros of g. Thus g and h aren't i^-equivalent. 

Case L. If / and g are L-equivalent, then their nonimmersion sets are 
identical as are their double point pairs (i.e.,/(xi) = /(x2) if and only if 
&(#0 = g fe ) ) . UnsL in K2P X Jl(n, p)2 is the union of V\ (the set of 
those pairs of jets, at least one of which has rank less than n) and V2 

(= Ap X Jl{n,p)2, where Ap is the diagonal in Rp X Rp). There is a 
sequence xt = (x/ , xt

2) converging to 0 with d(zu UnsL),zt = (zil,Zi2) = 
(JViXi1), Jlf(Xi2)), flat along d(xt, D). Recall that D = ( 0 X R B ) U 
(Rn X 0 ) U An. 

Note that 

d(xuD) = min (|x^|, \xt
2\, d(xu A j ) . 

The closest point in An to xt is {wiy Wf), where Wi = (x / + xt
2)/2, so 

d(xit An) = Ix,1 - x,2 | /21/2. 

Since V\ and F2 are algebraic varieties, they are regularly situated. 
Thus, passing to a subsequence (and renumbering) if necessary, d(zu V\) 
or d(zu V2) is flat along d(xu D). Thus either 

https://doi.org/10.4153/CJM-1981-053-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-053-3


680 LESLIE C. WILSON 

(a) d(zt, Vi) is flat along Ix,1] and |x*2| or 
(b) | j{%il) - f(xt2)\ is flat along [x^l, |x t

2| and jx^1 - x*2|. 
Assume (a) holds. Without loss of generality we assume d(zt

l, S) is flat 
along Ix,1!, where 5 is the set of 1-jets of maps of rank less than n. Suppose 
n ^ p. There is an h with Th = Tf and jlh transverse on a deleted 
neighborhood U of 0 to the stratification of J1 by rank. Either (i) the 
nonimmersion set of h is nonempty but nowhere dense in [/, or (ii) the 
nonimmersion set is empty in U. 

If (i), then we can find a sequence w* in U converging to 0 such that 
d{jlh(ui}, S) is flat along ut and such that h is an immersion at ut. By 
Lemma 3.3, there is a g with Tg = Th such that g is not an immersion at 
Ui. Thus g and h are not L-equivalent. Suppose (ii). There is a g such 
that Tg = Tf and g is not an immersion at x*1. Thus g and h are not L-
equivalent. 

Suppose n > p. The case / identically zero is trivial. If/ is not identi­
cally zero, then there are points arbitrarily near 0 with at least two pre-
images under/ . Thus we are in case (b). 

Assume (b) holds. Then there is a sequence (x*1, x*2) not in D con­
verging to 0 such that \f{xt

l) — f(xt
2)\ is flat along |x / | , |x*2| and 

|x^ — %i2\. We can pick x*3 arbitrarily near x*2 so that / (x i
1 ) is unequal to 

f{xt
z) and | j{Xil) — / ( x / ) | is flat along |x^|, | x / | and \xt

l — xt
s\. Then 

by Lemma 3.3 there is a g with Tg = Tf such that g&i1) = g(x*3). 
Thus g is not L-equivalent to / . 

4. Proof that (3) implies (2). 

Cases K, R, and C. For the case K, apply Lemma 2.1 to / (x) in place 
of g(x, t). As we stated before, similar lemmas hold for R and C. 

Case L. Assume (3) holds, i.e.: 
(i) d(jkf(x), S) è C|x|r for some C, r > 0 (where 5 is the set of fe-jets 

of maps of rank < n), and 
(ii) | /(x) - f(y)\ ^ K\x - y\l for some K, I > 0. 
We are to establish (2), which is equivalent to f*rnp 3 mn

œ. Thus we 
are given a 6 m^°. Since M = im ( / ) — {0} is a manifold, there is a 
germ along M of a submersion q onto M whose fibers are the normal 
spaces Nf(X) to TMf(X). We let g = / _ 1 o q and let b be the Taylor field on 
i m ( / ) defined by the Taylor series of a o g on M and the zero Taylor 
series at 0. We will prove that & is a Whitney field on im(/) , hence has 
a smooth extension V Ç mp

œ such that V of = a. 
Clearly h is a Whitney field on M in Rp — {0}. We will prove 

(iii) for each multi-index I, (DTb) of is flat, 

which means that each derivative of (Dzb) of goes to zero as x goes to 
zero. It follows from Hestenes' Lemma (see [11]) that (Dzb) of is in En. 
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Then, to show 6 is a Whitney field one mimics Tougeron's proof of 
Glaeser's Theorem (see particularly p. 181 of [11]); in that proof, re­
place Lemma 1.5 by (iii) and Lemma 1.6 by (ii). 

In order to establish (iii) we construct maps F: Kn X Rp_n —» Kp so 
that g o F — p, the projection of Rw X Kp~n onto Rw. To do this, we 
choose a basis Ni(x)1 . . . , Np-n(x) for iV/(x) and let 

F(X, t) = / ( * ) + hNiix) + . . . + tp-nNp-nfr). 

Since it may not be possible to choose the Nt smoothly for all x in 
Rn — {0}, we must restrict ourselves to certain open sets as follows. 
Given a fixed orthonormal basis of Rp, choose n of these basis vectors 
and label them ei, . . . , en, and label the rest k\} . . . , kp-n. Let /* be the 
set of fe-jets of immersions, and let Ok be the set of fe-jets of those immer­
sions with image transverse to K, the span of fei, . . . , kp-n. Jk — Ok is an 
algebraic variety. 

Apply the Gram-Schmidt algorithm to df/dxi,. . . , df/dxni ki,. . . , kp-n 

to produce an orthogonal basis; the last p — n vectors, which we label 
TVi, . . . , Np-n, form a basis for Nf(X). (Nt is the projection of ki onto 
the normal space to the span of TMf(X) and TVi, . . . , Ni-i.) Then 
(iVi, . . . , Nv-n) = ^ ( i 1 / ), where $ is a rational map on J1, regular on O1 

(which means that the denominators of the rational functions which 
define $ do not vanish on O1). By differentiating the above equation, 
we get a rational map $k on Jk+1, regular on Ok+1, assigning to jk+1f(x) 
the fe-jet of Ni(x), . . . , Np-n(x). 

Define F as above. There is a rational map ^ on Jk, regular on Ok, 
such that 

^ 0 7 W ) =j*F(x,0). 

Thus there is a rational map A on Jk, regular on Ok, such that 

A07(*)) =Jk(poF-i)(f(x)) =jkg(f(x)). 

By varying our choice of k1} . . . , kp-n from the given basis of Rp, we 
get a cover Oi, . . . , Os of I and rational maps A* regular on 0*. A< = A,-
on Ot Pi Oj, so we can piece together the A* to give a map A regular on 
/ so that the component functions of A are flat multipliers at S = 
Jk(n, p) — I (see p. 80 of [11] for the theory of flat multipliers). 

Since (jkg)(f(x)) = A(ff(x)) for all nonzero x and d(jkf(x), S) ^ 
C\x\r, it follows that the components of (jkg) ( f(x) ) are flat multipliers at 0 
in Rn. For each multi-index I, (DTb) of = (DT(a o g)) of is a sum of 
terms, each a product of flat functions and flat multipliers, hence is flat. 
This proves (iii) and Theorem 1.2. 

An important theorem of Glaeser (see [11]) states that if / from 
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U C Rw to V C Rp is an analytic map satisfying certain conditions, 
then/*jE(T) is a closed subring of £(£/) in the weak C00 topology (of 
uniform convergence of derivatives on compact sets). One of the re­
quirements is that n be at least p. Little is known in the case n < p. 
However, we have: 

COROLLARY 4.1. Suppose f in En
p is an co-L-determined germ. Then f 

has a representative F: U—> V such that F*E(V) is a closed subring of 
E(U) in the weak Cœ topology. U can be chosen arbitrarily small. 

Proof. Since/ is a proper germ, it has a proper representative F. For 
any neighborhood W of 0 we can find U C M^and F such that F~lV = U. 
From the proof of "(3) implies (2)" for G = L, we see that U and V 
can be chosen so that F*m0

œ D m0
œ (m0°° consists of functions in E{U) or 

E(V) which are flat at 0) and so that condition (ii) of this section holds 
on all of U. 

Condition (ii) implies that F satisfies condition (H) of Theorem 1.1 
of [12]. The implication of that theorem is that F*E(V) = FŒ{V), 
where the latter is defined to be {a 6 E{U): for each y in V there exists b 
in E(V) such that b o F — a is flat on F"1^)}. In our case, this implies 

F*E(V) C F*E(V) + mo00 C F*E(V). 

5. Some other results. 

PROPOSITION 5.1. (a) / is oo -G-determined if and only if EJIG{f) is 
No ether ian {G = R, C, or K). (b) Suppose f is finitely C-determined. 
Then f is oo -L-determined if and only if EJ f*Ep is a Noetherian (Tf)*Fp 

module (Fp the formal power series in p variables). 

Proof. The proof of (a) is essentially the same as that given in [10] for 
the real valued case, with G = R. The assumption that / is finitely C-
determined gives that Fn is a finite (Tf)*Fp module. If f*Ep D mn

œ, 
then 

EJ f*Ep = ( £ > D / ( / % / < ) = FJ{Tf)*Fv 

which is a finite (Tf)*Fp module, hence Noetherian. Conversely, far 
En/ f*Ep to be a (Tf)*Fp module at a l l , /*E p must contain mn

œ. 

PROPOSITION 5.2. / is oo -K-determined if and only if f is finitely v-
sufficient. 

Proof. Part of Theorem 1 in [7] states that an r-jet z is ^-sufficient if 
and only if the following condition holds: 

(£7+i) p o r a n y çr+i representative / of z, f is a submersion at each 
point of/_ 1(0) in a deleted neighborhood of 0. 

If/ is not oo-i^-determined, then (by the proof of "(1) implies (3)" 
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for the case K) there is a g with Tg = Tf such that g has critical zeros 
arbitrarily close to 0. Thus ff fails to satisfy (Cr+1) for any r. T h u s / is 
not finitely ^-determined. 

Suppose/ is oo -^-determined. Let Ju . . . , Js denote the generators of 
Jf. Then F = (f,Ji,...,Js) satisfies a Lojasiewicz inequality of some 
order k at 0. Let z = jk+1f(0). Let g be any Ck+2 representative of z, 
with G defined as F is. Then each component function d — Ft is in 
0(\x\k+1), so G also satisfies a Lojasiewicz inequality of order k at 0. 
Thus g is a submersion at each point of g_1(0) in a deleted neighborhood 
of 0. Thus z is ^-sufficient. 

Recall that an analytic germ is finitely K-determined if and only if its 
complexification is finite-to-one on its critical set or, equivalently, the 
complexification is proper on its critical set. Thus a smooth, finitely K-
determined germ is finite-to-one and proper on its critical set. What can 
be said about oo -^-determined germs? 

Definition 5.3. A germ is finite-to-one if it has a finite-to-one representa­
tive. A germ (at x) is proper if, for every representative/ of the germ, 
there are open neighborhoods U oi x and Voîf(x) such t h a t / | U: U —> V 
is proper. 

LEMMA 5.4. The germ at x of a map f is proper if, and only if, for every 
neighborhood U of x there exist neighborhoods U\ C U of x and V of y such 
that ( / | Ui)~l(V) is contained in a compact subset of U\. 

Proof. Assume/ is proper at x. Then there are neighborhoods U\ of x 
and Vi of y such that U\ C U and ( f\ U\) : U\ —> V\ is proper. There is a 
V C V\ such that V is compact and contained in V\ (by local compact­
ness). Then (f\Ui)~l{V) is a compact subset of U\. 

Now suppose we are given U2 = ( / | U\)~l{V) contained in a compact 
subset K of Ui. T h e n / | JJi\ U2 —» V is proper. 

LEMMA 5.5. Suppose S is a closed subset of an open set U in Rw,/: S —> Kp 

is continuous, and /_ 1(0) = 0. Then the germ of f at 0 is proper. 

Proof. There is an r > 0 such that the disk 5 (0 , r) is contained in 
U. A = D(0, r) - £>(0, r/2) is compact, so B = A C\ S is compact. f(B) 
is compact and misses 0, hence misses an open neighborhood F of 0. Thus 
(f\D(0,r) r\ S)~l(V) is contained in D(0, r/2). By the preceeding 
Lemma, / is proper at 0. 

Let C denote the critical set of/. I f / is oo -i£-determined, then f-1(0) H 
C = 0 and, if / is analytic, the converse holds. By Lemma 5.5, / \C is 
proper. Conversely, if / is analytic and / \C is proper, then / is co~K-
determined: for if the dimension of/ - 1(0) P\ C is greater than 0, then for 
every small, open U in C, (f\U)~l(0) is noncompact. 

Example 5.6./(x, y) = (x2 + y2, 0) is oo -.^-determined at 0. It is not 
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finite-to-one, and it is not proper at any point except 0. Note this shows 
oo -^-determination is not an open property. 

Similarly, an analytic/ is oo-C-determined if and only if/_1(0) = 0 or, 
equivalently, / is a proper germ. Every smooth oo-C-determined g e r m / 
has/ _ 1(0) = 0 and is proper. 

Finally we prove a result which is used in [14]. 

PROPOSITION 5.7. Iff is oo -K-determined andf~l (0) = 0, thenf is oo re­
determined. 

Proof. By Corollary V.5.7 of [11], (f*mp)En is closed. By Corollary 
V.4.4 of [11], (f*mp)En satisfies a Lojasiewicz inequality at its zero set, 
which is 0. Thus, by our main theorem,/ is oo-C-determined. 
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