
Proceedings of the Edinburgh Mathematical Society (1993) 36, 299-317 ©

PRIME IDEALS IN SKEW LAURENT POLYNOMIAL RINGS

by K. W. MACKENZIE

(Received 2nd August 1991)

Let R be a commutative ring and {a,,.. . , a.} a set of commuting automorphisms of R. Let T =
R[8*1,...,0*l;al ern] be the skew Laurent polynomial ring in n indeterminates over R and let
S = / l [x* ' , . . . , x*1] be the Laurent polynomial ring in n central indeterminates over R. There is an
isomorphism ij> of right R-modules between T and S given by </>(0J) = x/. We will show that the map <j> induces
a bijection between the prime ideals of T and the F-prime ideals of S, where F is a certain set of
endomorphisms of the Z-module S. We can study the structure of the lattice of F-prime ideals of the ring S by
using commutative algebra, and this allows us to deduce results about the prime ideal structure of the ring T.
As an example, if R is a Cohen-Macaulay C-algebra and the action of the at on R is locally finite-dimensional,
we will show that the ring T is catenary.

1991 Mathematics subject classification: 16D3O, 16P40, 16S34, 16S36.

Introduction

In this paper we will investigate the prime ideal structure of a skew Laurent
polynomial extension

T — R\_QU61 1,92,&2 \ . • • , 0 n > 0 n
 1;at,a2,.• •,<?„],

where R is a ring and the a, are commuting automorphisms of R. We obtain fairly
detailed results if R is a commutative ring and the as satisfy appropriate conditions; for
instance, if R is an affine C-algebra and the action of the a, on R is locally
finite-dimensional then we will show that T is a catenary ring.

Much of the work here is based on [3], where the case of an extension involving
derivations is treated. Related results are also contained in [2].

Acknowledgments. The research for this paper was carried out at the University of
Edinburgh with the financial support of the Science and Engineering Research Council.
I would like to thank my Ph.D. supervisor, Dr. T. H. Lenagan, for his help and advice
during the course of my studies.

1. Ideals in skew Laurent polynomial rings

1.1. The following notation will be used throughout.
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300 K. W. MACKENZIE

Notation, k is a commutative ring and R an associative /c-algebra. £ denotes a finite
sequence (au...,oa) of (not necessarily distinct) fe-automorphisms of R, and G =
(au...,<jn}^A\itkR is the subgroup of \utkR generated by the a}. We will always
suppose that the a{ commute, so that G is abelian. Let

be the ring of skew Laurent polynomials over R (see [8, §§ 1.2, 1.4, 1.6] for general
properties of such rings). We will view T as a ring of Laurent polynomials in the 0, with
coefficients from R written on the right; thus an element t e T can be written uniquely in
the form

IeZ"

where rt€R and r, = 0 for all but finitely many /eZ", and d' = Oi;...d\ for / =
(I'I, ..., in) 6 Z" (note the reversal of the order of the ik).

The additive structure of T is the same as that of the usual Laurent polynomial ring.
Elements of R are multiplied together in the normal way, and the Q} commute with each
other, but we have

r0j=6j<rj(r) for reR. (*)

Since 0, is a unit in T the above equation can be written in the form ai(r) = 6jlr0}; thus
the automorphism Oj becomes an inner automorphism in T. If we use the symbol "a"'
to denote o'^.-.o^ then (using the fact that that the CT, commute) we see that rO' = 6'o'(r)
for all reK, 7eZ".

Let

S = i?[x1)x1 ,...,xn,xn ]

be the Laurent polynomial ring in n central indeterminates x1,...,xn; we will write
elements of S using a similar multi-index notation to that above.

We will occasionally need to consider the skew polynomial rings S+ =R[xlt...,xn]
and T+ =R[61,...,0n;a1,...,aa]. The ring T+ has a similar structure to that of T; the
elements 9} are no longer units of T+, but it can be seen with the aid of (*) that each 6}

is a normal element of T+ (i.e., 6JT~t~ = T+0J for all j). We will view T+ as being a
subring of T in the natural way; we may then regard T as being the localisation of T+

at the Ore set generated by {0!,...,0n}; similarly we will regard S+ as a subring of S
and S as a localisation of S+.

Note that if R is a Noetherian ring then so is each of the rings T, T+, S and S+: see
[8, l.2

1.2. We wish to study the relationship between the ideals of T and those of S. We
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will define a map <p from T to S and we will show that under this map the prime ideals
of T are in one-to-one correspondence with the F-prime ideals of S, where F2G is a
certain subset of EndtS. Firstly we require some standard definitions and some
notation.

Definition. Let A be a ring and F a subset of Endz A. If y e F then we will denote the
action of y on A by av-*ay (aeA). If X£/4 then Xy = {xy:xeX}. We say that K s X is a
right T-ideal of A if K is a right ideal of /I and K is F-stable (i.e., Ky^K for all yeF).
We denote the lattice of right F-ideals of A by ^^A). If / ^ A then we say that / is a
T-ideal of A, and write I^rA, if Us I for all yeF. A proper ideal (2 of 4 is a F-prime
ideal of X if Q ^ r A and the following holds:

l,J^rA and / J s Q => 7sQ or J £ g .

The set of F-prime ideals of A will be denoted by Specr(/1). If I^A then we write
/ r = r\{/ ' :yer}: it is clear that if F is a group of automorphisms of A then Ir is the
largest F-ideal contained in /, and that in this case if P e Spec A then Pr e Specr A.

1.3. A special case that will arise later occurs when A is Noetherian and F is a
subgroup of Aut/4; then F acts naturally on Spec.4 (for if PeSpec/4 and yeF then it is
easy to see that Py e Spec A) and there is a well-known result giving a precise description
of Spec1" A.

Theorem. Suppose that A is a Noetherian ring and H is a group of automorphisms of
A. Let Q e Spec" A and let fi be the (finite) set of primes minimal over Q. Then Q forms a
complete orbit for the action of H on Spec ,4, and

Q = p» far all PeQ

= Phln---nPh" for some h}<=H.

Thus every H-prime ideal is semiprime.

Proof. See [9, Lemma 5], for example. •

Note that it is possible to have Q = PH with P not minimal over Q: for instance if
/4 = Q[:x] and H is the subgroup of AutA generated by x\-*x+l then 0eSpecH4 and
0=0"=(*)".

1.4. We can now return to the skew Laurent polynomial ring T. The result below is
very simple but it will turn out to be extremely useful.

Lemma. Every two-sided ideal of T is G-stable (where G is the subgroup of Autk T
generated by {au...,an}); in other words, J ^ T=>JeJSfG(T).
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Proof. Let J be a two-sided ideal of T. We have oj(J) = 6jlJ0j and since 0, is a unit
in T, OjlJdj=J for all ;; it follows that J is G-stable. •

1.5. The rings T and S are free right J?-modules with bases of the same cardinality
and are thus isomorphic as right K-modules; we will use this isomorphism to relate the
ideal structure of T to that of S.

Definition. Let R, T and S be as in 1.1. Define <£: T^S by

) = I *'»/•

<t> is clearly an isomorphism of right /^-modules and

<f>{e'tr) = x'(j)(t)r = <j){t)xlr for all IeZ", reR, teT.

Moreover, if we extend the <x,- to T and S in the obvious manner (i.e., so that they act
trivially on the indeterminates) then 4>Oj=Oj4> f° r aU j- Note that </> restricts to a map
T+-*S+: we will denote this map by <f> also.

Proposition 1.6. 4> induces an isomorphism between £?G{T) and &G{S); this restricts to
an isomorphism between £'G(T+) and J£?G(S+).

Proof. Let K e J5fG(T); then (/>(K) ^ SR. Also,

aJ(l)(K) = (f>(T'(K)^<t>(K) V/eZ";

in other words, <j>{K) is G-stable. Thus

so 4>(K)^SS. Thus 4>(K)e£eG(S).
Similarly, if Le£?G(S) then a/(/)"1(^) = </'"1ff/(^)S^"1(^) and hence
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Thus </> induces a bijection between i?G(T) and Sfc{S), and this map is clearly an
isomorphism of lattices.

The same argument shows that the restriction of <j> to T + induces an isomorphism+ + . •
1.7. We wish to find out what happens to two-sided ideals of T under <f>. It turns

out that we need some more endomorphisms to do this.

Definition. If reR define x,'S->S by

Zr(s) = (/.(r^-1(s)) (seS).

Xr is the map of S induced by left multiplication by r in T.

Lemma 1.8. If reR then

(i) X,Qya,) = X;cV(r)a,
(ii) Xr(a) = ra VaeK
(iii) xAsa) = Xr(s)a VseS,aeR

(iv) x'x,(s) = x<,-ax's) VseS./eZ"
(v) xr(x')=*V(r) V/eZ".

Proof. These facts are easy consequences of the definition of the xr- •

Note that by (iii), xr e EndR(Sj,). If we define x- ^->EndR(SR) by x(r) = Xr t n e n 't can be
shown that x iS a n injective homomorphism of rings.

1.9. We can now show that the ideals of T correspond to those right ideals of S
which are stable both under G and under each xr-

Definition.

Proposition 1.10. <p induces an isomorphism between the lattice of two-sided ideals of T
and the lattice of T-stable right ideals of S.

Proof. Firstly, recall from Lemma 1.4 that all two-sided ideals of T are G-stable;
thus if A^ T, Lemma 1.6 shows that <f>(A)e£CG(S), so we need only show that <t>(A) is
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Xr-stable for each r in R; this follows because Xr'p{.A) = <p{r<p~l(p(A)) = <p{rA)^<l)(A) for
all reR.

Conversely, let K be a F-stable right ideal of S. Then 4>~lK is a G-stable right ideal
of T. We have 0 /^-1K = 0-1(x/K) = ^ - 1 ^ / ) e ^ > " 1 ^ ; also, if reR then r0-1(/C) =

H)- It follows that Tcp'W^cp-^K) and hence

•
Note. The same proof shows that 0 induces an isomorphism between the lattice of

G-stable two-sided ideals of T+ and the lattice of F-stable right ideals of S+.

2. Prime ideals in skew Laurent polynomial rings

2.1. From now on we will assume that R is a commutative ring, so that S is also
commutative. Proposition 1.10 now reads as follows:

Proposition. / / R is a commutative ring then the map (p induces an isomorphism
between the lattice of two-sided ideals of T and the lattice of T-stable ideals of S.

This result will allow us to investigate the ideals of T by using commutative algebra.

2.2. Our objective in this section is to show that the prime ideals of T correspond to
the F-prime ideals of S. In rings of polynomials, results can often be proved by
induction on the degree of an element. In the rings of Laurent polynomials considered
here it is convenient to use a different measure of the size of a polynomial.

Definition. If t^J^O'rjeT then the support of t is supp(t) = {/eZ":rj/0}, and the
width of t is width(t) = |supp(t)| (note that width(r)<oo for all teT). The constant term
of t is r0. We make similar definitions in S.

Thus if t = d~1 + $ + 619eR[O,d~1;a] then the width of t is 3 (not 26) and the constant
term of t is 8.

2.3. In the following results, the symbol "[x>.y] ' denotes xy—yx; if X and Y are
subsets of some ring then [X, Y] = {[x,yy.xeX,ye Y}.

Lemma. If reR and teT then width([r,£])^width(t). If the constant term of t is
nonzero then width ([r, £]) < width (().

Proof. If t=^6 ' f l , eT and reR then a simple calculation shows that [r,i] = £0'b t ,
where bl = a'{r)al — a,r (note that 60 = 0), and the result follows easily. •

Lemma 2.4. Let A be an ideal of T and suppose that ceT is such that [/?, c] £ A. If
teT then <p(tc)-(p{t)^{c)e<t>{A).

Proof. Put t = X 6'rr Then
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V ) - <

0'l>/, c]

0V/, c]) + E *V(c)r/ - £ xV^W

07[r/; c]), since R is commutative

since [R,c]£A D

Lemma 2.5. Let A be an ideal ofT.IfC is a G-stable subset of T such that [R, C] £ A
then TC + A = CT + Ais a two-sided ideal of T.

Proof. If t = £ e'r, e T and c e C then tc = X 0 V = I ^ [»•/, c] + X ̂ C/ = E ^ in, c] +
Eff 'VJ^/eyl + CT; since [R,c\^A and ff-'(c)gC for all 7eZn. Thus TCS/4 + C7: A
similar argument shows that CT^TC + A, and the result follows. •

Lemma 2.6. Let A be an ideal of T and let C be a G-stable subset of T with
[R,C]zA.IfweputC = A + TC then C is an ideal of T, and if K is any right ideal of T
we have 4>{KC) + (t>(A) = <p(K)<l>{€) + <l>(A).

Proof. By Lemma 2.5, € is an ideal of T. Lemma 2.4 shows that (f)(tc) —
<fi(t)(t>(c)e<p(A) for eve ry teT a n d ceC; it fo l lows t h a t
for any right ideal K of T. Now

Also,

S 0(K)(<£(T)4>{C) + <j>{A)) + <t>(A), by Lemma 2.4
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= <t>(KC) + (j>(A), by Lemma 2.4

Thus (f)(KC) + <f>{A) = 4>(K)<j>{C) + ct>(A), as claimed.

Theorem 2.7. Suppose that A is an ideal of T. If A<F^T then there exists F'-^
with A<F'<*F such that 4(KF') + <I>(A) = <I>(K)<I>(F') + <I>(A) for any right ideal KofT.

Proof. Let w = Min {width ( / ) : / e F\A} and let C = {c e F: width (c) = w and co#0}.
Note that C # 0 , since having found feF\A with width (/) = w, we have 0'feF\A for
all / e Z", and 0'f will have a nonzero constant term for an appropriate value of /; in
this case we in fact have PfeCXA. Now C is clearly a G-stable subset of T, and if re/?
and ceC then 2.3 shows that width([r,c])<width(c) = w; since [r,c]eF, the choice of w
means that [r,c]£y4, so that [_R,C]^A. Lemma 2.6 now shows that F': = A + TC
behaves as required. •

Theorem 2.8. 4> induces a bijection between Spec T and Specr S.

Proof. Suppose that BeSpecrS and put A = <p~iB, which is a two-sided ideal of T
by Proposition 2.1. Let E and F be ideals of T with A^EnF and £ F s A If F £ 4 ,
construct F'-^T with / 1<F ' ^F as in Theorem 2.7. Now <£(£) and </>(F') are both
T-ideals of S, and <)>(E)4>(F')^<t>(EF') + <t>{A) = B since EF'^EF^A. Since B is a T-
prime ideal of S and (f>(F')£B, we have </>(£)£B = </>(/!) and so £s^4. Thus A is a
prime ideal of T.

Now suppose that A is a prime ideal of T and put B = <f>(A)^rS. Suppose that U
and V are T-ideals of S with B^UnV and C/Kcfi. put E = 4>~\U) and F = 0-1(K),
and note that £ and F are two-sided ideals of T. If V£B then /1<F and Theorem 2.7
again provides us with an ideal F' of T such that A<F'^F and 0(£F') + 0(/i) =
0(£)<£(F')+ <£(/!). Now ^(£F)s^(£)0(F#) + ^(i4)c0(£)0(F) + B=l/K + B = fl = ^(i4).
Therefore EF'^A and since F '£ / i we have £ £ / l and hence C/ = <£(£) £ <£(/!) = B. It
follows that B is a F-prime ideal of S. •

2.9. We require one more result in this section.

Lemma. If Be Spec1" S and B<V^rS then Anns/B( V/B) = 0.

Proof. Put A = <t>-XB and F = 4>~lV; then /4eSpecT and y4<F-23T Construct an
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ideal F as in 2.7; since F is a two-sided ideal of T and A is a prime ideal of T,
AnnT/A(F/A)=0. Now

seS and sV^B => s(t>(F)^B

s / i by Theorem 2.7

=> seB. D

Corollary 2.10. Suppose that R is a Noetherian ring. If QeSpecrS and HeSpecS is
minimal over Q then Q is the largest F-ideal of S which is contained in H.

Proof. H/Q is a minimal prime in the commutative Noetherian ring S/Q and so has
nonzero annihilator. It follows from Lemma 2.9 that H/Q contains no nonzero F-ideals
of S/Q. •

3. Eigenvectors and normal elements

3.1. Throughout this section we will assume that R is a commutative algebra over a
field k. We will show that (with suitable restrictions on the action of G on R), every
factor B/A with A<B^T contains a G-eigenvector, and that this eigenvector is a
normal element of the ring T/A. This will allow us to use the Principal Ideal Theorem
to get a grip on the heights of prime ideals of T, and to show that T is sometimes
catenary. The condition required on G is as follows.

Definition 3.2. Let A be a fc-algebra, where k is a field, and let H be a subgroup of
AuttA The action of H on A is said to be locally finite-dimensional if every element of A
is contained in a finite-dimensional ff-stable fe-subspace of A.

Examples 33. (i) It is easy to see that any finite group of automorphisms of a ring
A has a locally finite-dimensional action: if H = {hlt...,hr} and aeA then a is contained
in the //-stable subspace fe^' + ka*2-! \-kahr, which clearly has dimension at most r
over k.

(ii) Let a be an automorphism of a commutative polynomial algebra A = k[x\. If a
satisfies

aeA => degff(a)^dego,

then if a is an element of degree m we have
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{a"(a):neZ}ck@kx@kx2@---@kxm,

a finite dimensional a-stable subspace of A. It follows that any group of automorphisms
of /c[x] which is generated by degree-preserving automorphisms has a locally finite-
dimensional action. A similar statement is true for polynomial algebras in several
variables, where we consider automorphisms which preserve total degree.

3.4. The following well-known result allows us to construct G-eigenvectors in R
when the action of G on R is locally finite-dimensional.

Lemma. / / V is a finite-dimensional vector space over an algebraically closed field k
and H is a finitely generated abelian subgroup of Endfc V then V contains a (nonzero)
H-eigenvector. In other words, there exists ve V\0 such that TVekv for all xeH.

Proof. The result can be deduced from [4, Proposition 15.4], for example. •

3.5. We wish to show that if the action of G on T is locally finite-dimensional then
T is "polynomial", in an appropriate sense.

Definition. An element x of a ring A is normal if xA = Ax. We will say that a ring A
is polynomial (respectively, polycentral) if, whenever I<J are two-sided ideals of A, there
exists x e J\I such that x +1 is a normal (respectively, central) element of the ring A/1
(note that xA + I is then a two-sided ideal of A). We say that a ring is normally
separated (respectively, centrally separated) if the condition above holds for all pairs of
prime ideals I <J.

3.6. We must carry out some explicit calculations in T and T+, and we need a fine
measure of degree in order to do this.

Definition. Let n ̂  1 and let / e Z". The norm of / is ||/|| = |i'i| + — + \in\- The Dixmier
ordering on Z" is defined as follows:
If /, J e Z" then / < J if either

(0 II'IMI'II
or (ii) ||/|| = \\J\\ and / precedes J in the lexicographic ordering on Z" (i.e., if / # J and

h <A> where k is the least integer with

It can be shown that Z" (with the Dixmier ordering) is order-isomorphic to N; thus if
t = £ Q1rl e T, we can compare the 0' by using the Dixmier ordering. This allows us to
speak of the degree and the leading coefficient (with respect to the Dixmier ordering) of
an element of T. Furthermore, if X is any subset of T then the subset of Z" consisting of
the degrees of elements of X has minimal elements. If the Dixmier ordering is restricted
to N n sZ" then similar comments apply to the ring T+.
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3.7. For the first part of the next theorem we temporarily relax the requirement that
the ring R be commutative.

Theorem. Suppose that k is an algebraically closed field and that the action of G on R
is locally finite-dimensional.

(i) / / A,Be£fG(T+) with B<A then there exists aeA\B such that a + B is a
G-eigenvector in T+/B and aT+ +Be&G(T+).

(ii) If R is commutative and A, B^GT+ with B<A then the element a above can be
chosen to be normal modulo B; thus T+ (and hence T) is a polynomial ring.

Proof. Let / be the minimal degree (with respect to the Dixmier ordering) of
elements of A\B, say

- eA\B,

where "..." denotes terms of degree lower than /. Put

A0 = {leading coefficients of elements of A of degree /} u {0}

and

B° = {leading coefficients of elements of B of degree /} u {0}.

It is easily seen that A0 and B° are G-stable right ideals of R with B°£/4° and
y e A°\B°. Since the action of G on R is locally finite-dimensional, there exists a G-stable
finite-dimensional fc-subspace, V, say, of R which contains y; replacing V by V n A0 we
may assume that V^A°.

Since G is a finitely generated abelian subgroup of EndtK (V + B°)/B° contains a
nonzero G-eigenvector a + fl°, with a e V, by Lemma 3.4; thus there exist A,efc with

<Tj{a)-AjOLeB° V/. (1)

Note that Aj#O; otherwise we would have OjixeB0 and then <xeB°. Since ae .4 0 there
exists some aeA\B with a = 6'<x + ---. We have

aj(a) - Xfl = 0'(a,(a) - A,a) + • • -. (2)

Now by (1), ffj(a) — A,aeB°, and hence there exists bjSB with

&J. = 0VJ(a)-VO+"-. (3)

Now Oj(a)—Xja—bj lies in A: combining (2) and (3) we see that this element has degree
less than / and hence must lie in B, so that

https://doi.org/10.1017/S001309150001840X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001840X


310 K. W. MACKENZIE

Oj(a)-kjaeB Vj,

which is to say that a + B is a G-eigenvector in T+/B.
Clearly aT++B is a right ideal of T+, and Oj(aT+ +B) = Oj(a)T+ +B = XflT+ +B =

aT++B, so aT+ +Be£?G(T+).
(ii) Now suppose that R is commutative and that B<A~3GT+; we claim that the

element a provided by (i) is normal modulo B. Firstly,

(modulo B) V). (4)

Also, if r e R, then A contains

ra - aa'(r) = r(0'a + • • • ) - (0'a + • • V ( r )

= (0V(r )a+ • • • ) - ( 0 W ( r ) + • • •),

which has degree less than / (note that <rI(r)u—ourI(r) = O since we have assumed that R
is commutative), so that

ra-aa\r)eB VreR. (5)

Together, (4) and (5) show that a is normal modulo B, as claimed. •

Theorem 3.8. / / k is an algebraically closed field and the action of G on R is locally
finite-dimensional, then given A,B^T with B<A there exists aeA\B such that a is
normal modulo B; moreover, a can be chosen to centralise R modulo B.

Proof. Let B+=BnT+ and A+=AnT+, so that B+<A+-^GT+. Construct
a+ = 9'a+-- eA+\B+ (where aeR) as in the proof of Theorem 3.7, so that a+

satisfies

<x+6j-0jAja+eB+ Vj (1)

(where A,-efc) and

r a + - a V ( r ) e B + VreK. (2)

Let a = d~'a+ eA\B; if reR, (2) shows that ra-ar = r6~'a+ -0~'a+r=
0-'((j-'(r)a+ -a+r)e0-'B+ SB. Thus [R,d]^B. Also,

= d-'9jXja+ (modulo B+), by (1)
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Thus a 6 A\B is normal modulo B. •

Definition 3.9. The ring T = R[01,6il,02,0;1,...,0a,6;1;o1,o2,...,<rl,'], will be said
to be R-normally separated if, given prime ideals P, Qe Spec T with P<Q, there exists
ae()\Psuch that

(i) a is normal (and hence a non-zero-divisor) modulo P.
(ii) lR

Lemma 3.10. T is R-normally separated in either of the following cases:

(i) k is an algebraically closed field and the action of G on R is locally
finite-dimensional.

(ii) fc = Z and G is torsion (equivalently, finite).

Proof, (i) is immediate from Theorem 3.8.

In case (ii), R is an arbitrary commutative ring. Since G is torsion, there exist fc,eZ\0
with a)J=l. This means that 0jpeZ(T), the centre of T, and so T is a finite normalising
extension of the commutative ring /?[0i',...,0j"], and so T is a polynomial identity ring
and hence centrally separated (see [8, 13.1.13 and 13.6.4]). This clearly implies that T is
R-normally separated. •

3.11. We translate the property of R-normal separation to S.

Lemma. Suppose that T is R-normally separated. If I, JeSpecrS and I<J then there
exists c e J\I such that

(i)
(ii) c is regular modulo I.

Proof. Let P = <f>~lI and Q = <p~iJ. Then P and Q are prime ideals of T with P<Q
and hence there exists aeQ\P with a normal modulo P and [R,a]^P; note that
Ta + PS T. By Lemma 2.4, (f>(ta)-(f>(t)(l>(a)e/ for all teT. Thus <p(Ta + P) = <f>(T)(l)(a) + I
= S<p(a) + I is a T-stable ideal of S and <t>(t)<j>(a)el=>4>{ta)el=>taep=>tep=><l>(t)el, so
that c = (p(a) is regular modulo /, as required. D

4. Catenarity

4.1. In this section we will show that in certain circumstances the ring T is catenary.
We will do this by showing that the lattice of F-prime ideals of S is catenary. In order
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for the notion of "height" to make sense we assume from now on that R is a
(commutative) Noetherian ring. Recall from 1.1 that this means that both T and S are
also Noetherian rings.

We will have to deal with several different varieties of catenarity simultaneously, and
it will be convenient to describe these in an abstract framework.

Definition. Let A be a partially ordered set. If A^K are elements of A then a
descending chain of length t between A and K is a sequence (A,,..., Ao) of elements of A
with A = A,>A,_1> ••• > A 0 = K; this chain is saturated if for each i there does not exist
peA with A,->p>Aj_1. If Ae A then the height of A, ht A, is the supremum of the lengths
of chains descending from A: it is possible for an element to be of infinite height.

Now supose that A is a partially ordered set in which every element is of finite height.
It is clear that A satisfies the descending chain condition and that for every element A of
A there exists a minimal element n of A (i.e., an element of height zero) such that A ̂  fi.
We denote the set of minimal elements of A by Min A. The partially ordered set A is
catenary if, whenever X^.K are elements of A, all saturated chains between A and K are
of the same length (depending on the choice of A and K). If X is a subset of A then we
say that A is uniformly catenary over X if, whenever AeA, all descending chains from A
to some element x of X are of the same length, irrespective of the choice of the element x
from X. A is uniformly catenary if it is uniformly catenary over Min A. It is easily seen
that A is uniformly catenary if and only if, whenever AEA and fi e Min A with A ̂  fi, the
length of any saturated chain between A and \i is equal to the height of A.

We will apply the foregoing terminology to partially ordered sets consisting of ideals
in rings. For instance, a ring A will be said to be (uniformly) catenary if the partially
ordered set Spec A is (uniformly) catenary, and if P E Spec 4 then the height of P in A,
htAP, is the height of P when considered as an element of the partially ordered set
Spec A. Similarly, if T is some set of endomorphisms of A, then A is T-catenary if the
partially ordered set Specr4 is catenary, and if QeSpecF A then the T-height of Q,
T-ht Q, is the height of the element Q of the partially ordered set Specr A, and so on.

The classical Krull dimension of a ring A is

Cl.Kdim A = sup {ht P: P e Spec A}.

The adjective "classical" here is used to distinguish this dimension from the Krull
dimension in the sense of Gabriel and Rentschler.

Lemma 4.2. Let A be a partially ordered set in which every element has finite height.
Then A is catenary if and only if A is uniformly catenary over {/x} for every \i e Min A. In
particular, if A is uniformly catenary then A is catenary.

Proof. It is clear that if A is catenary then it is uniformly catenary over {/z} for each
H e Min A. Conversely, suppose that A is uniformly catenary over {fi} for each \i e Min A.
Choose elements A^K and fix //eMinA with K^.(I. Let A = AS>AS_1>-->A0 = K and
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A = p , > p , _ ! > ••• >pQ = K be saturated chains between X and K. Using the descending
chain condition for elements of A, construct a saturated chain K = Kr > • • • > K0 = p.. We
n o w h a v e t w o s a t u r a t e d c h a i n s X = k s > X s - i > ••• > k o = t c r > ••• > K 0 = p. a n d k = p t >
p,-i> ••• > p o = K;r> ••• >K0 = fi, and since A is uniformly catenary over {p.} we have

= t + r, and so s = t. Thus A is catenary. •

Lemma 43. Let A be a partially ordered set in which every element has finite height.
Then the following are equivalent:

(i) A is uniformly catenary.

(ii) If X~^.K are elements of A with htA/K=l then htA = h t K + l , where htA/ic denotes
the height of (the image of) the element k in the partially ordered set

Proof. The proof is similar to that of Lemma 4.2. D

4.4. We now give some examples of types of commutative rings which are
(uniformly) catenary.

Examples, (i) If A is a caternary domain than it is clear that A is uniformly
catenary.

(ii) Suppose that A is a commutative Cohen-Macaulay ring: then A is catenary by [6,
Corollary VI.3.15]. If geSpecA then AQ is a local Cohen-Macaulay ring, so that
Cl.Kdim/4Q = Cl.Kdim(/lQ/B) = ht/,g for all minimal prime ideals B of AQ (see [6, p.
188]). Thus if Q = Qt>Q,-i>-- >Qo = p is a saturated chain of prime ideals with P
minimal, we have htAQ = Cl.Kdim(/lQ/PG) = t (since A is catenary). Thus A is uniformly
catenary.

(iii) Suppose that A is an affine algebra over a field k, and that G ^ Autt A is a group
of Jt-automorphisms of A. Let Q e Spec0 A and let X be the set of prime ideals minimal
over Q, so that Q = PG for every P e X. We claim that A is uniformly catenary over X. If
Be Spec A and PeX then [6, Corollary II.3.5] shows that any saturated chain between
B and P is of length Cl.KdimX/P-Cl.Kdim/1/B; this is clearly independent of the
choice of the chain, so that A is catenary. Now if F is another element of X then
P' = P9 for some geG and so A/P^A/P' via a+P^aP + P9. It follows that any saturated
chain of prime ideals from B to F is of length Cl.Kdim A/F - Cl.Kdim A/B =
Cl.Kdim/4/P — Cl.Kdim/1/B: this quantity is therefore independent of the choice of
PeX and so A is uniformly catenary over X.

4.5. In order to use the results above we need some information about F-primes and
G-primes of S.

Lemma, (i) Ifl^R then SI^ S and S/SIs(R/I)[xfx,...,x*'].
(ii)
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(Hi) IfI^GR then
(iv) IfQeSpecGS then QnReSpec0R.
(v) IfPe Spec0 R then SQ e Spec0 S.

Proof. (i)-(iv) can be proved by standard methods.

(v) Suppose that QeSpecG R: then SQ^GS and S/SQ^(R/Q)[_x^1,...,x^1']. Thus it
suffices to prove that if R is a G-prime ring then so is S. So suppose that R is G-prime
and that A and B are G-ideals of S with AB=0. Let A' be the set of elements of R
which occur as leading coefficients of elements of A (with respect to the Dixmier
ordering on Z") and similarly let B' consist of leading coefficients of elements of B.
Clearly A' and B' are G-stable ideals of R and A'B' = 0. Since R is a G-prime ring we
have A'=0 or B' = 0, and this clearly implies that A=0 or B=0. •

Corollary 4.6. (i) IfQe Spec1" S then QnRe Spec0 R.
(ii) 7/PeSpecGR then SPeSpecrS; in fact, SP is a T-stable G-prime ideal of S.

Proof. Firstly, note that if / is any ideal of R then xr(S/) = Zr(S)/£S7 for every reR.
Thus if 7 is a G-ideal of R then SI is in fact a F-ideal of S (c.f. 4.5(iii)).

(i) Suppose that QeSpecrS and that A and B are G-ideals of R with ABcQnR.
We have SA.SB^Q, and since we have just observed that SA and SB are F-ideals of S
we have AzQnR o r f l c g n R . Thus Qr>R is G-prime.

(ii) If 7>eSpecGJ? then 4.5(iv) shows that SP eSpec°S; however, we know that SP is
F-stable, and it is clear that F-stable G-primes are F-prime. •

Corollary 4.7. Min Specr S coincides with Min Spec0 S.

Proof. Suppose that Q is a minimal F-prime of S; (i) and (ii) of 4.6 show that
Q n Re Spec0 R and that S(QnR) is a F-stable G-prime of S. Since S{QnR) is a
F-prime contained in the minimal F-prime Q we must have Q = S(Q n R); thus Q is a F-
stable G-prime of R.

A similar argument using 4.5(iv) and 4.6(ii) shows that if P is any minimal G-prime of
S then P = S{P n R) is also a F-stable G-prime.

Now suppose again that Q is a minimal F-prime of S, so that Q is also G-prime. If Q
contains some G-prime P then S(P n i?) is F-prime by 4.5(iv) and 4.6(ii), and the
minimiality of Q forces Q = P = S(P n /?). Thus every minimal F-prime of S is not only
G-prime, but is in fact minimal in the set of G-primes of S.

Using (i) and (ii) of 4.6, a similar argument shows that every minimal G-prime of S is
a minimal F-prime of S, and the results follows. •

4.8. To be able to use Corollary 4.7 and the results in 4.1 and 4.2, we must show
that all elements of the sets Spec0 S and Specr S are of finite height.
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Lemma. Every G-prime ideal of S has finite G-height.

Proof. It follows from Theorem 1.3 that there is an epimorphism of lattices
Spec S-»Spec0 S given by P\-*PG. Since every prime ideal in the commutative
Noetherian ring S is of finite height (see e.g. [1, Corollary 11.12]), it follows that every
G-prime ideal of S is of finite G-height. •

Lemma 4.9. Every prime ideal of T has finite height and hence every T-prime ideal of S
has finite T -height.

Proof. We will actually prove the following more general statement:

Let A be a Noetherian ring in which every
prime ideal has finite height. If ae Aut A and . .
B = A[9,0"1] then B is also a Noetherian ring (*'
in which every prime ideal has finite height.

The lemma will then follow because we can regard T as an iterated skew Laurent
extension T = R[_9*1;<rl~\-•'[6*1;on'], and every prime of R is of finite height, as in the
proof of Lemma 4.8. So let A and B be as in (*). Suppose that QeSpecB is of infinite
height; then there exist arbitrarily long chains of primes descending from Q. Choose
neN and fix a (possibly non-saturated) chain P0<Pt<-- <P2n = Q of prime ideals in
B. It follows from [8, 10.6.4, 10.6.6] that we have a chain of (j-prime ideals
PonR<P2nR<-< P2n nR = QnR. This chain is of length n, and since n was
arbitrary, Q n R is of infinite G-height. The argument of Lemma 4.8 shows that this is
impossible, so (*) is true. •

4.10. The condition of /^-normal separation allows us to pass between the lattices
Spec S and Specr S without losing too much information about height.

Lemma. Let T be R-normally separated. If I<JeSpecrS with r-ht(J//) = l and
are minimal over I and J respectively then ht(Q/P) = 1.

Proof. By Lemma 3.11 there exists ceJ\I such that c is regular modulo / and
cS + / -3 r S . Note that c$P since P consists of zero-divisors modulo /; thus by the
Principal Ideal Theorem ([7, Theorem 13.5] or [8, 4.1.11]) it will suffice to show that Q
is minimal over cS + P. Choose Be Spec S with B^Q and B minimal over cS + P, and
let E be the largest T-ideal contained in B: note that cS + P s B so that cS + I^E. By
Corollary 2.10, J is the largest T-ideal contained in Q and it follows that £ s J . Now
suppose that K, LSrS and that KLzE. Since ££BeSpecS either K or L must be
contained in B; as E was defined to be the largest F-ideal contained in B we must have
KQE or L s £ . Thus £ is a T-prime ideal. Since 7 < £ s 7 and r-ht(J//) = l we must
have E=J, so that J^B^Q. Since Q is minimal over J we must have Q = B. Thus Q is
minimal over cS + P, as required. •
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4.11. We now have enough information to enable us to prove that the ring T is
catenary in certain circumstances. We require one more definition.

Definition. If I^S then J?(I) = {PeSpecS:I^P and P/IeMinSpecS/I}, the set of
prime ideals minimal over /.

Theorem 4.12. / / T is R-normally separated and S is uniformly catenary over Jt{Q)
for every QeMin Specr S = Min Spec0 S then S is Y'-catenary and hence T is catenary.

Proof. By Lemma 4.2, it suffices to show that S is uniformly F-catenary over {/} for
each minimal F-prime /. Choose a F-prime J of S and a minimal F-prime / contained
in J. Fix a prime ideal Q minimal over J. Suppose that

is a saturated chain of F-prime ideals of S. Using the descending chain condition for
prime ideals in S, construct a chain of prime ideals

say, with Qt minimal over Jt for each i. Theorem 4.10 shows that all of the inclusions
above are proper and that the chain (**) is saturated, and since S is uniformly catenary
over Jt{Y) we have t = ht(Q/P), which is independent of the choice of the chain (*). It
follows that S is F-catenary, and Theorem 2.8 now shows that T is catenary. •

Remark. A similar proof shows that if S is uniformly catenary then T is also
uniformly catenary.

4.13. Recall that a Noetherian ring A is said to be universally catenary if every
finitely-generated /1-algebra is catenary (see [7, §§15.3, 32]).

Corollary. Let R be a commutative Noetherian algebra over an algebraically closed
field k and let oi,...,on be commuting k-automorphisms of R. If the action of each aj on R
is locally finite-dimensional then the skew Laurent polynomial ring

is a catenary ring in any of the following circumstances:
(i) R is a universally catenary domain.

(ii) R is a Cohen-Macaulay ring.
(iii) R is affine over k.

Proof. It is clear that if R is either universally catenary or affine over k then the
same is true of S. If R is Cohen-Macaulay then [7, Theorem 17.7] shows that S is also
Cohen-Macaulay. The theorem now follows from Theorem 4.12, Lemma 3.10(i) and the
examples in 4.4. fj
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Note, (a) In cases (i) and (ii), Example 4.4 and the remark after Theorem 4.12 show
that T is actually uniformly catenary.

(b) We can use (ii) of Theorem 3.10 to prove that T is catenary if G is finite and R is
a Z-algebra which satisfies one of (i), (ii) or (iii) above. However, we have not really
gained anything by this as in this case T is an affine Pi-ring (as pointed out in 3.10),
and a well-known theorem of Schelter states that all affine Pi-algebras are catenary: see
[8, 13.10.12, 13.10.13].

Remark 4.14. A. D. Bell and G. Sigurdsson have shown that if R is the commutative
polynomial ring fe[s, t, w] and a is the fc-automorphism of R given by

then R[6,Q~l;o~\ is not catenary (see [2, Example 3.10] for details). Thus the hypothesis
of local finite-dimensionality cannot be omitted from Theorem 4.13.
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