Canad. Math. Bull. Vol. **57** (4), 2014 pp. 877–883 http://dx.doi.org/10.4153/CMB-2013-041-8 © Canadian Mathematical Society 2013

On Convolutions of Convex Sets and Related Problems

Tomasz Schoen

Abstract. We prove some results concerning convolutions, additive energies, and sumsets of convex sets and their generalizations. In particular, we show that if a set $A = \{a_1, \ldots, a_n\}_{<} \subseteq \mathbb{R}$ has the property that for every fixed $1 \leq d < n$, all differences $a_i - a_{i-d}$, d < i < n, are distinct, then $|A + A| \gg |A|^{3/2+c}$ for a constant c > 0.

1 Introduction

We say that a set $A = \{a_1, \ldots, a_n\}$ of real numbers is *convex* if

$$a_i - a_{i-1} < a_{i+1} - a_i$$

for every 1 < i < n. It is known that sumsets of convex sets are large, see [2–8]. The current best bounds

$$|A - A| \ge |A|^{8/5 - o(1)}$$
 and $|A + A| \ge |A|^{14/9 - o(1)}$

were proved in [11]. Furthermore, it was proved in [3,8], that the additive energy of every convex set *A* satisfies $E(A) \ll |A|^{5/2}$. Very recently it was improved by Shkredov [12], who showed that

$$\mathsf{E}(A) \ll |A|^{32/13 + o(1)}$$

Solymosi [13] proposed to consider the following wide generalization of a convex set. We call a monotone increasing set $A = \{a_1, \ldots, a_n\} \subseteq \mathbb{R}$ a *dcd*-set (distinct consecutive differences) if all consecutive differences of A are distinct *i.e.*, $a_i - a_{i-1} = a_j - a_{j-1}$ implies i = j. Solymosi [13] proved that if A is *dcd*-set, then for every set B we have

$$|A + B| \gg |A| |B|^{1/2}$$
.

As showed by Ruzsa [13], the above bound is best possible. However, Solymosi conjectured that $|A + A| \gg |A|^{3/2+c}$. One cannot extend the method used in [11] for *dcd*-sets for many reasons. The simplest one is that there exist *dcd*-sets with large additive energy. Let us consider the following example of a *dcd*-set: $A = P_1 \cup P_2$, where

$$P_1 = \{n, 2n, \dots, (n/2)n\},\$$

$$P_2 = \{n - 1, 2(n - 1), \dots, (n/2)(n - 1)\},\$$

Received by the editors August 29, 2013.

Published electronically November 26, 2013.

The author is supported by NCN grant 2012/07/B/ST1/03556.

AMS subject classification: **11B99**.

Keywords: convex sets, additive energy, sumsets.

and *n* is an even integer. Since P_1 and P_2 are arithmetic progressions, we have $E(A) \gg |A|^3$.

Here we consider another generalization of convex sets. We impose a stronger condition than Solymosis's, which has a combinatorial nature rather than a geometric one. We call a monotone increasing set $A = \{a_1, \ldots, a_n\} \subseteq \mathbb{R}$, a *tdcd*-set (totaly distinct consecutive differences) if for every fixed $1 \leq d < n$, all differences $a_i - a_{i-d}, d < i < n$, are distinct. However, such sets have also a geometric motivation. In the well-known Szemerédi-Trotter theorem [14] one considers a system of pseudo-lines *i.e.*, a family of continuous plane curves with the property that each two curves share at most one point in common. Every convex set of reals generates a convex curve in a natural way; it is enough to take the graph of any convex function with $f(i) = a_i$. Then, clearly any family of shifts of a convex curve is a pseudo-line system. If we consider a discrete version of the above construction, then a family of shifts of discrete graph $(i, f(i)) + (\alpha, \beta), (\alpha, \beta) \in X$, is a discrete pseudo-line system if for all $(\alpha, \beta), (\alpha', \beta') \in X$ there is at most one solution to the equation

$$(i, f(i)) + (\alpha, \beta) = (j, f(j)) + (\alpha', \beta'),$$

which is equivalent to being f(i) a *tdcd*-set.

We shows that there is a deeper difference in additive behavior of *dcd*-sets and *tdcd*-sets. We prove that for a *tdcd*-set *A* we have even $E(A) \ll |A|^{5/2-c}$ for a constant c > 0, which clearly implies that $|A \pm A| \gg |A|^{3/2+c}$.

Furthermore, we will also study the additive energy of sets introduced by Bochkarev in [1]. For a given $\alpha > 0$, we call a set $A = \{a_1, \ldots, a_n\}$, α -set if for every i > jthe equation $a_i - a_j = a_r - a_s$ with $r > s \ge j$ has $O((i - j)^{\alpha})$ solutions. Hence if i = j+1, there are O(1) solutions, so every α -set is almost a *dcd*-set for any α . Bochkarev, among other things, proved that if A is any α -set then $E(A) \ll |A|^{3-\frac{1}{1+\alpha}-c}$ for a constant c > 0depending on α only.

Notation By A(x) we denote the indicator function of a set $A \subseteq \mathbb{R}$. Let

$$(A * A)(x) = \sum_{t} A(t)A(x - t),$$

$$(A \circ A)(x) = \sum_{t} A(t)A(x + t).$$

The additive energy of a set A is defined by

$$E(A) = \sum_{x} (A \circ A)(x)^2 = \sum_{x} (A * A)(x)^2.$$

We will also use higher additive energy introduced in [9, 11]

$$\mathsf{E}_3(A) = \sum_x (A \circ A)(x)^3.$$

2 Auxiliary Results

Let $A = \{a_1, \dots, a_n\}$ be a set of real numbers, $a_i > a_{i-1}$. Let $A - A = \{x_1, \dots, x_s\}$ and

$$(A \circ A)(x_1) \ge (A \circ A)(x_2) \ge \cdots \ge (A \circ A)(x_s).$$

The first result we will use is a version of Garaev's result (see [4, Theorem 2]), who used it to bound the additive energy of convex sets. Let J_H denote the number of solutions to

(2.1)
$$a_i - a_j = a_{i+h_1} - a_{j+h_2}, \quad 1 \le h_1, h_2 \le H.$$

Lemma 2.1 Let $A \subseteq \mathbb{R}$ be a finite set. Then for every H

$$(A \circ A)(x_r) \ll \frac{n}{H} + \frac{J_H}{r}.$$

Lemma 2.2 Let $A \subseteq \mathbb{R}$ be a finite tdcd-set. Then $(A \circ A)(x_r) \ll |A|/r^{1/3}$. In particular, $E(A) \ll |A|^{5/2}$ and $E_3(A) \ll |A|^3 \log |A|$.

Proof By the definition it follows that for fixed i, h_1 , and h_2 there is at most one jsuch that

$$a_i - a_j = a_{i+h_1} - a_{j+h_2}, \quad 1 \le h_1, h_2 \le H.$$

Thus, we have at most $\leq H^2 n$ solutions to (2.1), hence by Lemma 2.1,

$$(A \circ A)(x_r) \ll \frac{n}{H} + \frac{H^2 n}{r}$$

Putting $H = \lceil r^{1/3} \rceil$, we obtain the required bound.

Lemma 2.3 Let $A \subseteq \mathbb{R}$ be a finite α -set. Then

$$(A \circ A)(x_r) \ll |A|/r^{1/(1+\alpha)}$$
.

 $(A \circ A)(x_r) \ll |A|/r^{1/(1+\alpha)}.$ In particular $\mathsf{E}(A) \ll |A|^{3-\frac{1}{1+\alpha}}$ and $\mathsf{E}_{2+\alpha}(A) \ll |A|^{2+\alpha} \log |A|.$

Proof The number of solutions to (2.1) equals the number of solutions to

$$a_{i+h_1} - a_i = a_{j+h_2} - a_j, \ 1 \le h_1, h_2 \le H.$$

Again, by the definition, assuming i > j, for fixed j and h_2 there are $O(h_2^{\alpha}) = O(H^{\alpha})$ such solutions, so that by Lemma 2.1

$$(A \circ A)(x_r) \ll \frac{n}{H} + \frac{H^{1+\alpha}n}{r}$$

Putting $H = \lceil r^{1/1+\alpha} \rceil$, we obtain the required bound.

It is easy to observe that Lemma 2.2 holds for (A * A) as well.

By a *consecutive difference* in a set $A = \{a_1, \ldots, a_n\}_{<}$ we mean any difference of the form $a_i - a_{i-1}$. The next result can be easily extracted from the main theorem of [13].

Lemma 2.4 Suppose that $A \subseteq \mathbb{R}$ has $\delta|A|$ distinct consecutive differences. Then for every finite set $B \subseteq \mathbb{R}$, $|A + B| \gg \delta |A| |B|^{1/2}$.

As mentioned in the introduction, for any α , each α -set A has $\Omega(|A|)$ distinct consecutive differences and therefore by Lemma 2.4, for every finite set $B \subseteq \mathbb{R}$

$$|A + B| \gg |A| |B|^{1/2}$$

Lemma 2.5 Let $A \subseteq \mathbb{R}$ be a finite set and suppose that $A' \subseteq A$, $|A'| = \delta |A|$. If A is a tdcd-set, then A' has at least $\frac{1}{2}\delta |A'| - 1$ distinct consecutive differences. If A is an α -set then A' has at least $\Omega((\delta/2)^{\alpha}(\frac{1}{2}\delta |A'| - 1))$ distinct consecutive differences.

Proof Write $A' = \{a_{i_1}, \ldots, a_{i_t}\}$, then $\{i_1, \ldots, i_t\} \subseteq [n], t \ge \delta n$. Since

$$\sum_{k=2}^t (i_k - i_{k-1}) \le n,$$

it follows that at least $\frac{1}{2}t - 1$ differences $i_k - i_{k-1}$ are less than $2/\delta$. Therefore, there exist $1 \le d \le 2/\delta$ and a set $S \subseteq [t]$ such that $|S| \ge \frac{1}{2}\delta t - 1$, and for every consecutive elements *s* and *s'* in *S* we have $i_s - i_{s'} = d$. If *A* is a *tdcd*-set, then clearly, the consecutive differences $a_{i_s} - a_{i_{s'}}$ are distinct.

Next, if A is an α -set, then each consecutive difference has $O((i_s - i_{s'})^{\alpha}) = O((2/\delta)^{\alpha})$ representations in the form $a_{i_s} - a_{i_{s'}}$ and therefore A' has

$$\Omega((\delta/2)^{\alpha}(\frac{1}{2}\delta|A'|-1))$$

distinct consecutive differences.

The next two lemmas that we will use in the proof of our main theorems were proved in [12, Theorem 34] and [10, Theorem 54], respectively.

Lemma 2.6 Let A be a subset of an abelian group. Suppose that $E(A) = |A|^3/K$ and $E_3(A) = M|A|^4/K^2$. Then there exists $A' \subseteq A$ such that

$$|A'| \gg |A|/M^{11}$$
 and $|kA' - lA'| \ll M^{60(k+l)}K|A'|$,

for every $k, l \in \mathbb{N}$.

Lemma 2.7 Let A be a subset of an abelian group and $\alpha > 1$. Suppose that $E(A) = |A|^3/K$ and $E_{2+\alpha}(A) = M|A|^{3+\alpha}/K^{1+\alpha}$. Then there exists $A' \subseteq A$ such that

$$|A'| \gg M^{-\frac{b\alpha-3}{\alpha(\alpha-1)}}|A| \quad and \quad |kA' - lA'| \ll M^{6(k+l)\frac{4\alpha-1}{\alpha(\alpha-1)}}K|A'$$

for every $k, l \in \mathbb{N}$.

3 **Proofs of the Main Results**

Theorem 3.1 Let $A \subseteq \mathbb{R}$ be a finite tdcd-set. Then there exists a positive constant c such that $E(A) \ll |A|^{5/2-c}$.

Proof Write $E(A) = |A|^3/K$ and $M = K^2|A|^{-1}\log|A|$. Then by Lemma 2.6 there exists $A' \subseteq A$ such that

$$|A'| \gg |A|/M^{11}$$
 and $|kA'| \ll M^{70k}K|A'|$,

for every $k \in \mathbb{N}$. By Lemma 2.5 the set A' has at least $\Omega(|A'|/M^{11})$ distinct consecutive differences. By a straightforward induction and Lemma 2.4 we infer that

$$|kA'| \gg M^{-22} |A'|^{2-2^{-k+1}},$$

for every $k \in \mathbb{N}$. Comparing the upper and the lower bound on |3A'| we obtain that $K \ge |A|^{1/2+c}$ for some positive constant *c*.

As an immediate consequence we obtain that there exists a constant c > 0 such that for every finite *tdcd*-set $A \subseteq \mathbb{R}$, we have $|A \pm A| \gg |A|^{3/2+c}$.

Theorem 3.2 Let $\alpha \ge 1$. Then there exists a positive constant $c = c(\alpha)$ such that for every α -set, $A \subseteq \mathbb{R} E(A) \ll |A|^{3-\frac{1}{1+\alpha}-c}$.

Proof Write $E(A) = |A|^3/K$ and $M = K^{1+\alpha}|A|^{-1}\log|A|$. For $\alpha = 1$ we apply Lemma 2.6 as in Theorem 3.1, so we can assume that $\alpha > 0$. Then by Lemma 2.7 there exists $A' \subseteq A$ such that

$$|A'| \gg M^{-\frac{6\alpha-3}{\alpha(\alpha-1)}}|A| \quad \text{and} \quad |kA'| \ll M^{7k\frac{4\alpha-1}{\alpha(\alpha-1)}}K|A'|,$$

for every $k \in \mathbb{N}$. By Lemma 2.5 the set A' has at least $\Omega((2M)^{-1-\frac{6\alpha-3}{\alpha-1}}|A'|)$ distinct consecutive differences. By a straightforward induction and Lemma 2.4 we infer that

$$|kA'| \gg (2M)^{-2 - \frac{12\alpha - 6}{\alpha - 1}} |A'|^{2 - 2^{-k+1}}$$

for every $k \in \mathbb{N}$. Again, comparing the upper and the lower bound on |3A'| we obtain that $K \ge |A|^{\frac{1}{1+\alpha}+c}$ for some positive constant *c*, and the proof is completed.

Using a standard argument we get an estimate on L_1 -norm of exponential sums over *tdcd*-sets and α -sets.

Corollary 3.3 Let $A \subseteq \mathbb{R}$ be a finite tdcd-set. Then there exists a constant c > 0 such that for arbitrary coefficients $\gamma(a)$, $|\gamma(a)| = 1$,

$$\int_0^1 \left| \sum_{a \in A} \gamma(a) e^{2\pi i a x} \right| dx \gg |A|^{1/4+c}.$$

If $A \subseteq \mathbb{R}$ be a finite α -set, then there exists a constant $c = c(\alpha) > 0$ such that for arbitrary coefficients $\gamma(a), |\gamma(a)| = 1$

$$\int_0^1 \left| \sum_{a \in A} \gamma(a) e^{2\pi i a x} \right| dx \gg |A|^{\frac{1}{2(1+\alpha)}+c}.$$

Proof By the Parseval formula and Hölder's inequality we have

$$\begin{aligned} |A| &= \int_0^1 \left| \sum_{a \in A} \gamma(a) e^{2\pi i a x} \right|^2 dx \\ &\leq \Big(\int_0^1 \left| \sum_{a \in A} \gamma(a) e^{2\pi i a x} \right|^4 \Big)^{1/3} \Big(\int_0^1 \left| \sum_{a \in A} \gamma(a) e^{2\pi i a x} \right| dx \Big)^{2/3} \\ &\leq \mathsf{E}(A)^{1/3} \Big(\int_0^1 \left| \sum_{a \in A} \gamma(a) e^{2\pi i a x} \right| dx \Big)^{2/3}. \end{aligned}$$

Now the required inequality follows from Theorem 3.1. The second assertion can be proved in the same way.

4 Maximal Value of Convolution of Convex Sets

Here we are interested in the largest number of representation of a number as a sum of two elements from a convex set *A*. In particular, our bound improves Lemma 2.2 for $r \ll |A|$; however, it does not provide any better estimate for the additive energies.

Theorem 4.1 Let $A \subseteq \mathbb{R}$ be a finite convex-set. Then for every *x*, we have

 $(A * A)(x) \ll |A|^{2/3}.$

Proof Suppose that $x \in \mathbb{R}$ has *t* distinct representations in A + A,

$$x = a_{i_1} + a_{j_1} = \cdots = a_{i_t} + a_{j_t},$$

where $i_1 < \cdots < i_t$ and $i_1 \le j_1, \ldots, i_t \le j_t$. Observe also that $i_u - i_v \ge j_u - j_v$ for all u > v. Arguing as in Lemma 2.5, there exist $1 \le d \le 2n/t$ and a set $S \subseteq [t]$ such that $|S| \ge \frac{t^2}{2n} - 1$ and for all $s \in S$ we have $i_s - i_{s-1} = d$. Thus, there are $m \gg t^2/n$ numbers $k_{i-1} < k_i \le l_i$ and $l'_i < l_i < l_{i-1}$, $i = 2, \ldots, m$ such that

$$x = a_{k_i} + a_{l_i} = a_{k_i+d} + a_{l'_i}.$$

Observe that by convexity

$$a_{l'_{i-1}} - a_{l_{i-1}} = a_{k_{i-1}+d} - a_{k_{i-1}} < a_{k_i+d} - a_{k_i} = a_{l'_i} - a_{l_i}$$

so that $l'_{i-1} - l_{i-1} < l'_i - l_i$. Therefore, we have

$$d = (k_m + d) - k_m \ge l_m - l'_m > \cdots > l_1 - l'_1 > 0,$$

hence $t^2/n \ll m \le d \le 2n/t$, and the assertion follows.

Unlike Lemma 2.2, the above theorem does not hold for the convolution $(A \circ A)(x)$. To see this consider the following simple example. Let $k, l, m \in \mathbb{N}$ be such that

$$kl + 2\binom{k-1}{2} - \binom{k-2}{2} < m < kl + \binom{k-1}{2} + l + 1$$

and let $a_i = il + \binom{i-1}{2}$. Put

$$A = \{a_1, \ldots, a_k\} \cup \{m + a_1, m + a_3, \ldots, m + a_t\},\$$

where $t = 2\lceil k/2 \rceil - 1$. Then clearly *A* is a convex set, and $(A \circ A)(m) = \lceil k/2 \rceil \gg |A|$. Furthermore, Theorem 4.1 cannot be extended for *tdcd*-sets. Indeed, let *k* and *m*

be positive integers such that $2^{2k} < m$ and let

$$A = \{1, 2, 2^2, \dots, 2^{2(k-1)}\} \cup \{m - 2^{2(k-1)}, m - 2^{2(k-2)}, \dots, m - 2^2, m - 1\}.$$

We denote by *X* and *Y* the first and the second parts of the set *A*, respectively. Inside *X* and *Y* all differences are distinct, so it is enough to check the *tdcd* condition between *X* and *Y*. If $a_i, a_{i+d} \in X$ and $a_j, a_{j+d} \in Y$, then

$$a_{i+d} - a_i = 2^{i+d} - 2^i \neq 2^{2(2k-j)} - 2^{2(2k-j-d)} = a_{j+d} - a_j$$

for d > 0. Next, if $a_i, a_j \in X$ and $a_{i+d}, a_{j+d} \in Y$ then it is easy to see that

$$a_{i+d} - a_i = m - 2^{2(2k-i-d)} - 2^i \neq m - 2^{2(2k-j-d)} - 2^j = a_{j+d} - a_j.$$

https://doi.org/10.4153/CMB-2013-041-8 Published online by Cambridge University Press

		J	

The condition is also satisfied for $a_i, a_j, a_{i+d} \in X$ and $a_{j+d} \in Y$ or $a_i \in X$ and $a_j, a_{j+d}, a_{i+d} \in Y$, because $m > 2^{2k}$. Thus, A is a *tdcd*-set, and clearly $(A * A)(m) \gg |A|$.

Acknowledgements I would like to thank Sergei Konyagin and Ilya Shkredov for drawing my attention to Bochkarev's paper.

References

- S. W. Bochkarev, *Multiplicative inequalities for L₁-norm, applications to analysis and number theory.* (Russian) Tr. Mat. Inst. Steklova 255(2006), Funkts. Prostran., Teor. Priblizh., Nelinein. Anal., 55–70; translation in Proc. Steklov Inst. Math. 2006, no. 4(255), 49–64.
- [2] G. Elekes, M. Nathanson, and I. Z. Ruzsa, *Convexity and sumsets*. J. Number Theory 83(2000), no. 2, 194–201. http://dx.doi.org/10.1006/jnth.1999.2386
- M. Z. Garaev, On lower bounds for L₁-norm of exponential sums. (Russian) Mat. Zametki 68(2000), no. 6, 842–850; translation in Math. Notes 68(2000), no. 5–6, 713–720. http://dx.doi.org/10.4213/mzm1006
- [4] ______, On a additive representation associated with L₁-norm of exponential sum. Rocky Mountain J. Math. 37(2007), no. 5, 1551–1556. http://dx.doi.org/10.1216/rmjm/1194275934
- [5] _____, On the number of solutions of Diophantine equation with symmetric entries. J. Number Theory 125(2007), no. 1, 201–209. http://dx.doi.org/10.1016/j.jnt.2006.09.018
- [6] M. Z. Garaev and K-L. Kueh, On cardinality of sumsets. J. Aust. Math. Soc. 78(2005), no. 2, 221–224. http://dx.doi.org/10.1017/S1446788700008041
- [7] N. Hegyvári, On consecutive sums in sequences. Acta Math. Hungar. 48(1986), no. 1–2, 193–200. http://dx.doi.org/10.1007/BF01949064
- [8] V. S. Konyagin, An estimate of L₁-norm of an exponential sum. In: The theory of approximations of functions and operators. abstracts of papers of the international conference dedicated to Stechkin's 80th Anniversay [in Russian]. Ekaterinburg, 2000, pp. 88–89.
- [9] T. Schoen and I. D. Shkredov, Additive properties of multiplicative subgroups of F_p. Q. J. Math. 63(2012), no. 3, 713–722. http://dx.doi.org/10.1093/qmath/har002
- [10] _____, Higher moments of convolutions. J. Number Theory 133(2013), no. 5, 1693–1737. http://dx.doi.org/10.1016/j.jnt.2012.10.010
- [11] _____, On sumsets of convex sets. Combin. Probab. Comput. 20(2011), no. 5, 793–798. http://dx.doi.org/10.1017/S0963548311000277
- [12] I. D. Shkredov, Some new results on higher energies. arxiv:1212.6414
- [13] J. Solymosi, Sum versus product. (Spanish) Gac. R. Soc. Mat. Esp. 12(2009), no. 4, 707–719.
- [14] E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry. Combinatorica 3(1983), no. 3–4, 381–392. http://dx.doi.org/10.1007/BF02579194

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland

e-mail: schoen@amu.edu.pl