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Abstract

We give two applications of the 2-Engel relation, classically studied in finite and Lie groups, to the
4-dimensional (4D) topological surgery conjecture. The A–B slice problem, a reformulation of the
surgery conjecture for free groups, is shown to admit a homotopy solution. We also exhibit a new
collection of universal surgery problems, defined using ramifications of homotopically trivial links.
More generally we show how n-Engel relations arise from higher-order double points of surfaces in
4-space.
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1. Introduction

Forty years ago Andrew Casson taught us [Cas73] that singularities of surfaces
and the fundamental group of their complements are intimately related. We study
a classical group relation, 2-Engel, and the corresponding surface singularities.
The results include two surprises (to us) regarding topological surgery. What
direction they point is presently unknown. They might later be seen as: a step in
proving the full surgery conjecture, or contrariwise as pointing toward a surgery
obstruction, or possibly as mere curiosities. The purpose of this paper is to explain
these surprises and reconsider fundamental conjectures and constructions in this
new light.
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Topological surgery is known to work in dimension 4 for a class of ‘good’
fundamental groups. Originally this was established in the simply connected
setting by the first author in [Fr82a]. It has since been shown [Fr83] that
elementary amenable groups, and more recently [FT95a, KQ00] the groups of
subexponential growth are good in this sense. The validity of surgery for arbitrary
fundamental groups remains a central open problem. Surgery may be reduced to
a collection of universal problems [CF84, Fr83] with free fundamental groups;
therefore, the validity of surgery for (nonabelian) free groups is the key open
question. It has been reformulated [Fr86a, Fr86b] in terms of the A–B slice
problem for a family of links, the ‘generalized Borromean rings (GBR).

We give applications of the group-theoretic 2-Engel relation both to the A–B
slice problem and to construction of model surgery problems. The study of the
universal relation, stating that all 3-fold commutators of the form [[y, x], x]] are
trivial in a group G, dates back to the work of Burnside [Bur02]. It is easily seen
to be equivalent to the relation that every element x in G commutes with all of its
conjugates x y . A restricted version of this relation is familiar in low-dimensional
topology: when applied to a set of preferred normal generators x of a group G, it is
a defining relation of the Milnor group MG; see [Mil54] and Section 2 below. The
results of imposing the relation in these two settings turn out to be quite different:
the free Milnor group on n generators, MFn , is nilpotent of class n. On the other
hand, the free group Fn modulo the universal 2-Engel relation is nilpotent of class
3, independent of n (see Section 2). This is the property of the Engel relation that
we exploit in our applications.

To formulate our first result, we briefly recall the A–B slice problem (a detailed
discussion is given in Section 3). Surgery for free groups predicts the existence of
topological 4-manifolds M which are homotopy equivalent to a wedge of circles
and whose boundary is the zero-framed surgery on a Whitehead double of L ,
for each L in the collection of GBRs. These links (GBRs) are obtained from the
Borromean Rings by ramification and Bing doubling. Following [Fr86a, Fr86b]
consider the resulting free group action on the end-point compactification of the
universal cover M̃ , which is homeomorphic to the 4-ball. Choosing a fundamental
domain for this action, one is led to the notion of a decomposition D4 = A ∪ B
of the 4-ball into two codimension zero smooth submanifolds, extending the
standard genus one Heegaard decomposition of ∂D4. Given an n-component GBR
L , the existence of the free group action is then equivalent to the existence of n
decompositions D4 = Ai ∪ Bi and a disjoint embedding problem for these 2n
submanifolds into D4, with the boundary condition given by the link L and its
parallel copy. If this embedding problem has a solution, the link L is called A–B
slice.

Considering handle decompositions of the submanifolds, one gets a pair of
links, which we call a ‘stabilization’, corresponding to the 1- and 2-handles. The
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embedding question can then be reformulated [FL89] as a relative-slice problem
for a certain collection of link pairs corresponding to a GBR L . A key feature
of the GBRs is that they are homotopically essential in the sense of Milnor.
Therefore, it is a natural question whether there is a link-homotopy obstruction
in the A–B slice problem; in other words, whether the relevant relative-slice
problems do not even admit a link-homotopy solution. The evidence thus far has
pointed to an affirmative answer: partial obstructions of this type have been found
for many families of decompositions; see for example [FL89, Kr13]. Surprisingly,
here we construct the first examples of decompositions giving rise to a homotopy
solution to the A–B slice problem.

THEOREM 1. The GBRs, a collection of links forming universal surgery problems,
are homotopy A–B slice.

We present two possible notions of a ‘homotopy solution’, one in the sense of
link homotopy, and a stronger one in terms of disjoint homotopy of 2-handles; see
Definitions 3.8, 3.10 in Section 3. The theorem is true for both notions.

The action of the free group on D4 by covering transformations is encoded in
the requirement that the disjoint embeddings of the Ai , Bi in D4 are standard;
in other words isotopic to the original embeddings corresponding to the given
decompositions D4 = Ai∪Bi . It was observed in [Kr08] that there exist solutions
to the embedding problem if this requirement is omitted. (However, the existence
of a solution without the equivariant feature does not have a direct implication
for surgery.) Our proof of Theorem 1 satisfies the homotopy analogue of the
standard embedding requirement; see Definition 3.10 and the proof of Theorem 1
in Section 4.

One way to view Theorem 1 is as evidence toward the validity of the surgery
conjecture. There is a well-established hierarchy of 2-complexes, defined in
terms of gropes and capped gropes (see [FQ90]), extrapolating between disjoint
surfaces and disjoint embedded disks. It seems possible that a homotopy solution
to the A–B slice problem may be further improved using group-theoretic methods.
For example, n-Engel relations, n > 2, are candidates for such an approach;
however, these higher relations are not as well understood algebraically. We refer
the reader to [Tra11] for a recent survey of the subject. It is an open question
whether a homotopy solution may be improved to a stage that would imply an
actual embedded solution to the A–B slice problem. To assist the reader who
would like to solve this problem we discuss in Appendix A how n-Engel relations
relate to higher-order self-intersections of a disk.

It has been shown in [FT95b] that Whitehead doubles of (homotopically
trivial)+ links (a class of links just slightly smaller than homotopically trivial
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links) are topologically slice. Therefore, (even a strong version of) the A–B slice
problem has a solution for (homotopically trivial)+ links. Viewing our present
work in the context of the relative-slice problem, discussed in Section 3, for each
GBR we find a stabilization so that the resulting link is homotopically trivial. As
remarked above, starting with a (homotopically trivial)+ link a stabilization may
be found so that the result is slice. There is gap corresponding to the+ assumption,
but it is an interesting question whether the two stabilizations may be combined
to give a solution.

Overall, the key open problem is to determine whether there still is an
obstruction to the A–B slice problem in terms of nilpotent invariants of links,
specifically Milnor’s µ-invariants. Our results here suggest µ̄ invariants with
repeating coefficients are not necessarily more fragile than nonrepeating and
should play a role in a surgery obstruction—if in fact there is one. The upshot
is that the repeating/nonrepeating dichotomy now seems false. Of course such an
obstruction would give a counterexample to surgery for free groups. Conversely,
as discussed above the ability to ‘improve’ a homotopy solution could lead to the
resolution of the surgery conjecture in the affirmative. An axiomatic framework
in terms of topological arbiters for an obstruction in the A–B slice program has
been introduced in [FK12]. Since our Theorem 1 constructs a solution up to
homotopy, there is no topological arbiter satisfying an extended ‘Bing doubling
axiom’ [FK12] defined in terms of µ̄-invariants with nonrepeating coefficients.
Since the method of proof of Theorem 1 does not extend to the relevant
stabilized link together with parallel copies of its components, µ-invariants with
repeating coefficients remain a candidate for a surgery obstruction. But if such an
obstruction is produced it will not be to homotopy solutions but actual standardly
embedded solutions to the strong A–B slice problem.

It is interesting to compare the complexity of the homotopy solution to the
A–B slice problem constructed in Theorem 1 with the current state of knowledge
about general decompositions D4 = A∪B. A recent paper [Kr13] gave a thorough
analysis of the decompositions of the 4-ball where A has two 2-handles and one 1-
handle. The answer is quite subtle and the analysis relies on delicate calculations
in commutator calculus. (It is important that a certain system of cubic equations
has no integral solutions whereas it manifestly has a solution over Z[1/4].) In the
relevant decomposition D4 = A ∪ B used for the Borromean rings in the proof
of Theorem 1 (see Section 4), the side A has two 2-handles and 36 1-handles.
(The B-side has a handle decomposition with the number of 1- and 2-handles
reversed.) It seems likely that a novel algebraic structure will be needed to gain
further insight into the problem.

In Section 5, we describe a slicing problem for a link in a 4-manifold, the
‘round handle problem’ (RHP), where the existence of a solution depends not just
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on surgery but also on the 5-dimensional (5D) s-cobordism conjecture. At first
sight this problem appears similar to the relative-slice formulation of the A–B
slice problem for GBRs; however, the proof of Theorem 1 does not extend to
this setting. This suggests a subtle distinction between the two problems, with the
possibility that a link-homotopy obstruction is still possible to the combination
of surgery and s-cobordism conjectures. That is, nonrepeating µ̄ invariants might
still form the basis of an obstruction to the RHP for the GBRs.

Another application of the 2-Engel relation yields a new set of universal
surgery problems. The ‘usual’ model surgery kernels [FQ90] are given by
S2 ∨ S2-like capped gropes. They are universal in the sense that if solvable they
imply solutions to all 4-dimensional (4D) surgery problems with the vanishing
Wall obstruction; see Section 7. There is a corresponding collection of slicing
problems for links {Wh(Bing(Hopf))} (where the slice complement in the 4-ball
is required to have free fundamental group, generated by the meridians). The
links in question are Whitehead doubles of the GBRs mentioned above and
discussed further in Section 7. We introduce a new collection of universal slicing
problems:

THEOREM 2. There is a family of links {K } for which the problem of constructing
free slices constitutes a universal problem, where each K ∈ {K } is of
the form:

D(Ram(h-triv)),

a generalized (genus one) double of a ramified homotopically trivial link.

The ‘double’ in this statement is a generalization of the notion of a Whitehead
double of a link, introduced in Section 5.2. The key (and surprising) feature of
this new collection of links is that they are defined starting from homotopically
trivial links; see Remark 7.1.

The organization of the paper is as follows. Section 2 discusses the 2-Engel
relation. A proof is given that 2-Engel groups are 3-nilpotent. We wish to note
that Peter Teichner was already aware of this fact in the 1990s. In Section 3, we
recall the formulation of the A–B slice problem with a particular focus on the
notions of a homotopy solution and a standard embedding, which are important
for Theorem 1. The proof of Theorem 1 is given in Section 4. Section 5 formulates
the Round Handle Problem, providing a comparison of our results with the setting
of the s-cobordism theorem. In Section 6, we define a very strong equivalence
relation on links in S3, called weak link homotopy (WLH0). Using this relation,
new model surgery problems are constructed in Section 7. In Appendix A we
show how n-Engel relations correspond to higher-order intersections of disks.
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2. The 2-Engel relation

The Milnor group provides a convenient setting for the analysis of the 2-Engel
relation and for the main results of the paper. We start by briefly reviewing the
Milnor group and link homotopy in Section 2.1; the reader is referred to [Mil54]
for a detailed introduction. Section 2.2 presents the 2-Engel relation and shows
that 2-Engel groups are 3-nilpotent. A geometric realization of this relation, weak
homotopy of links, is discussed in Section 6.

2.1. The Milnor group.

DEFINITION 2.1. Let G be a group normally generated by a fixed finite collection
of elements g1, . . . , gn . The Milnor group of G, defined with respect to the given
normal generating set {gi}, is given by

MG := G/〈〈[gi , gy
i ] i = 1, . . . , n, y ∈ G〉〉. (2.1)

The Milnor group MG is generated by g1, . . . , gn . Moreover, it is a finitely
presented nilpotent group of class 6 n, see [Mil54]. We remind the reader that a
group G is said to be nilpotent of class n if the (n + 1)st stage Gn+1 of its lower
central series vanishes; see Section 2.2.

Given an n-component link L in S3, let G denote π1(S3 r L). Consider
meridians gi to the components li of L: gi is an element of G obtained by
following a path αi in S3 r L from the basepoint to the boundary of a regular
neighborhood of L , followed by a small circle (a fiber of the circle normal bundle)
linking li , then followed by α−1

i . G is normally generated by the elements g1, . . . ,

gn . Then MG, defined with respect to the meridians, is called the Milnor group
M L of the link L .

Denoting by Fg1,...,gn the free group generated by the {gi}, i = 1, . . . , n, consider
the Magnus expansion

M : Fg1,...,gn −→ Z[[x1, . . . , xn]] (2.2)

into the ring of formal power series in noncommuting variables {xi}, defined by

M(gi) = 1+ xi , M(g−1
i ) = 1− xi + x2

i − x3
i ± · · · .

The Magnus expansion induces a homomorphism

MFg1,...,gn −→ Rx1,...,xn , (2.3)

into the quotient Rx1,...,xn of Z[[x1, . . . , xn]] by the ideal generated by all mono-
mials xi1 · · · xik with some index occurring at least twice. The homomorphism
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Figure 2.1. An illustration of a nongeneric ‘crossing time’ during a link homotopy.
The based curve γ in the link complement, corresponding to the defining relation
[gi , gy

i ] of the Milnor group, becomes trivial after a self-intersection of the
component li .

(2.3) is well defined and injective [Mil54]. Using the Magnus expansion it is not
difficult to see that the Milnor group MFn of the free group Fn on n generators is
nilpotent of class precisely equal to n.

The defining relations of the Milnor group (2.1) are well suited for studying
links L in S3 up to link homotopy. Recall that two links are link-homotopic if they
are connected by a 1-parameter family of link maps where different components
stay disjoint for all values of the parameter; see Figure 2.1. If L , L ′ are link-
homotopic then their Milnor groups M L , M L ′ are isomorphic, and moreover an
n-component link L is homotopically trivial (link-homotopic to the n-component
unlink) if and only if M L is isomorphic to the free Milnor group MFm1,...,mn .

The Milnor group is also useful for studying surfaces Σ in the 4-ball where
the components are disjoint but may have self-intersections. In this context the
Clifford tori (see [FQ90, page 32]) linking the double points in D4 give rise to the
relations (2.1) in Mπ1(D4 rΣ). Link-homotopy theory may be interpreted as the
study of links up to singular concordance (links L ⊂ S3 × {0}, L ′ ⊂ S3 × {1}
bounding disjoint maps of annuli into S3 × [0, 1]). In particular, a link L is
homotopically trivial if and only if its components bound disjoint immersed disks
∆ in D4, and in this case Mπ1(S3 r L) ∼= Mπ1(D4 r∆) ∼= MFn .

2.2. 2-Engel groups. We start off by fixing the notation. The lower central
series of a group G is defined inductively by G1 = G,Gn = [Gn−1,G]. Given
g1, . . . , gn ∈ G, the commutator [[. . . [g1, g2], . . . , gn−1], gn] will be concisely
denoted [g1, g2, . . . , gn].
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The main focus of this section is on 2-Engel groups, that is groups satisfying
the universal relation [y, x, x] = 1, or equivalently [x, x y] = 1. Unlike the setting
of the Milnor group (2.1), this relation is universal in the sense that it holds for
all elements x, y of a 2-Engel group.

In [Bur02] (which is at the foundation of the subject of Engel groups), Burnside
showed any elements of a 2-Engel group G satisfy the identities

[x, y, z] = [y, z, x], [x, y, z]3 = 1.

In a later paper [Ho29], Hopkins showed that 2-Engel groups G have nilpotency
class 6 3, that is G4 = {1}. (Also see [Lev42].) We give a proof of this result
below in the context of the Milnor group, to establish a reference point for
geometric applications in later sections. Corollary 2.3 summarizes the relevant
facts.

It is interesting to note that the 2-Engel relation is functorial, that is any
group homomorphism G −→ H induces a homomorphism of groups modulo
the relation. This contrasts the Milnor group setting (2.1): only homomorphisms
taking chosen generators of G to the chosen generators of H are guaranteed
to induce a homomorphism of the Milnor groups, MG −→ M H , defined with
respect to these generators. It follows that the quotient needed for making the
theory functorial necessarily kills most of nonabelian information:

LEMMA 2.1. Any 2-Engel group is nilpotent of class 6 3.

We use the following basic result about Milnor groups. Given a group G
normally generated by g1, . . . , gn , consider ‘basic commutators’ [gi1, . . . , gim ].

PROPOSITION 2.2. Any basic commutator [gi1, . . . , gim ] where at least two of the
indices coincide, i j = ik for some j 6= k, is trivial in the Milnor group MG.

One way to prove this fact is to use the Magnus expansion. Every monomial
(other than 1) in the expansion of [gi1, . . . , gim ] has a variable xi j = xik occurring
at least twice. Since the Magnus expansion (2.3) is injective it follows that [gi1,

. . . , gim ] = 1 ∈ MFg1,...,gn .
One can also use the commutator identities (2.5) below to show directly that
[gi1, . . . , gim ] with repeating labels is a product of the defining relations (2.1) of
the Milnor group.

Proof of Lemma 2.1. We use the Hall–Witt identity (2.4) and basic commutator
identities (2.5); see [MKS66, Theorem 5.1].

[x, y, zx ] · [z, x, yz] · [y, z, x y] = 1, (2.4)
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[x, yz] = [x, z] [x, y]z, [xz, y] = [x, y]z [z, y], [x−1, y] = [y, x]x−1
. (2.5)

It suffices to show that the free group Fn = Fg1,...,gn modulo the 2-Engel relation
is nilpotent of class 3. This quotient factors through the Milnor group MFn . Using
the identities (2.5) and Proposition 2.2, (MFn)

4 is seen to be normally generated
by commutators [gi1, . . . , gi4] with nonrepeating indices. It suffices to show that
F4, the free group on 4 generators is nilpotent of class 3, after dividing out by the
2-Engel relations.

Denote the generators of F4 by x, y, z, w. First we focus on 3-fold commutators.
Denoting by ‘≡’ the equivalence up to the 2-Engel relation and reserving ‘=’ for
equality in the free Milnor group MF4, one has, by definition:

1 ≡ [z, xy, xy]. (2.6)

Expanding this commutator according to (2.5) yields a product of four terms
(where the conjugations are omitted, for a reason discussed below) in (2.7). The
second equality follows from Proposition 2.2:

[z, xy, xy] = [z, x, x] · [z, x, y] · [z, y, x] · [z, y, y] = [z, x, y] · [z, y, x]. (2.7)

It is a basic fact that conjugation as in (2.4), (2.5) may be disregarded in Milnor
group calculations of this type, as they contribute corrections in the kernel
(F4 −→ MF4). One way to see this is to consider the Magnus expansion (2.3).
The effect of conjugation is an introduction of higher-order terms. Each higher-
order monomial that comes up in applications of the identities (2.5)–(2.7) has
repeated indices, so is trivial in the target ring R of the Magnus expansion. Since
the expansion (2.3) is injective, it follows that conjugation resulting from the
commutator identities (2.5) does not change the terms appearing in (2.7).

It follows from (2.6), (2.7) that

[z, x, y] ≡ [z, y, x]−1 = [y, z, x]. (2.8)

Similarly,

1 ≡ [x, yz, yz] = [x, y, z] · [x, z, y], so [x, y, z] ≡ [x, z, y]−1 = [z, x, y].
(2.9)

Then the Hall–Witt identity (where conjugation is again irrelevant) implies:

1 = [x, y, z] · [z, x, y] · [y, z, x] ≡ [x, y, z]3. (2.10)

Using (2.5) and disregarding conjugation in the Milnor group as above, it follows
that 4-fold commutators are also of order 3:

[x, y, z, w]3 = [[x, y, z]3, w] ≡ 1. (2.11)
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The first equality is obtained from two applications of the middle identity of
(2.5). Next we show that 4-fold commutators are also of order 4. The Hall–Witt
identity (2.4) (applied to [x, y], z, w) implies in the Milnor group MF4:

[x, y, z, w] · [w, [x, y], z] · [z, w, [x, y]] = 1.

Now interchange the order of the terms w, [x, y] in the second commutator above
(this inverts the term) and expand the last commutator using the Hall–Witt identity
(applied to x, y and [z, w]):

[x, y, z, w] · [x, y, w, z]−1 · [z, w, x, y] · [z, w, y, x]−1 = 1. (2.12)

Again applying (2.5) twice and dropping terms with repeated letters, the first
two terms of (2.12) reduce to [x, y, zw, zw] ≡ 1, a 2-Engel relation, and therefore
cancel in the quotient. Similarly, it follows from [z, w, xy, xy] ≡ 1 that the last
two terms are equal. Denoting P := [x, y, z, w], Q := [z, w, x, y], the equation
(2.12) then asserts: P2 Q2 = 1.

It follows from the 2-Engel relation [y, xz, xz] that [xz, y, xz] ≡ 1 and [xz,
y, xz, w] ≡ 1. Therefore, [x, y, z, w] ≡ [z, y, x, w]−1. Similarly, y and w can
also be interchanged at the expense of inverting the term. This implies P ≡ Q, so
P4 = [x, y, z, w]4 ≡ 1.

Therefore, [x, y, z, w] is both of order 3 and 4, so is trivial. It follows that all
4-fold commutators in Fx,y,z,w are trivial mod the 2-Engel relation. This concludes
the proof of Lemma 2.1.

The following corollary of the proof of Lemma 2.1 will be used in later sections.

COROLLARY 2.3. Suppose G is a group normally generated by g1, . . . , gn . Let
g ∈ Gk be an element of the kth term of the lower central series, 4 6 k 6 n.
Then g may be represented in the Milnor group MG as a product of (conjugates
of) k-fold commutators of the form [h1, . . . , hk] where two of the elements hi are
equal to each other and to a product of two generators, h j = hm = gi1 gi2 for some
j 6= m, and each other element hi is one of the generators g1, . . . , gn .

Proof of Corollary 2.3. First consider the case k = 4. Then g, considered as an
element of (MG)4, equals a product of conjugates of 4-fold basic commutators
[gi1, . . . , gi4] with distinct indices. Therefore, it suffices to consider g = [x, y,
z, w] where x, y, z, w are distinct normal generators. The triviality modulo the 2-
Engel relation, g ≡ 1, was established in the proof of Lemma 2.1 as a consequence
of g = g4 · g−3, where g4 ≡ 1 and g3 ≡ 1.

The proof that g may be represented as stated in the corollary follows from a
direct inspection of the instances where the 2-Engel relation is used: equations
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Figure 2.2. γ = [x, y, z, w].

(2.6), (2.9) and two paragraphs following (2.12). A priori there are two types of
usage of the 2-Engel relation. One type is immediately in the form of a 4-fold
commutator, as claimed in the statement of the corollary; see [x, y, zw, zw] ≡ 1
in the paragraph following (2.12). The other type is a 3-fold commutator, for
example (2.6), considered within a 4-fold commutator in (2.11). More precisely,
the equations (2.6)–(2.9) express [x, y, z]3 in the Milnor group as a product of 3-
fold commutators of the form [z, xy, xy] and [x, yz, yz]. Using (2.5) as in (2.11),
with the conjugation disregarded in the Milnor group, g3 = [[x, y, z]3, w] is then
expressed as a product of [z, xy, xy, w] and [x, yz, yz, w].

For any k > 4, g (considered as an element of (MG)k) equals a product of
conjugates of k-fold basic commutators [gi1, . . . , gik ] with distinct indices. The
argument for k = 4 shows that ‘the initial segment’ [gi1, . . . , gi4] of each factor is
a product

∏[h j1, . . . , h j4]. Then as in the previous paragraph, using the identities
(2.5), in the Milnor group one has [gi1, . . . , gik ] = [

∏[h j1, . . . , h j4], gi5, . . . ,

gik ] =
∏[h j1, . . . , h j4, gi5, . . . , gik ].

The following observations are useful for estimating the number of
commutators [h1, . . . , hk] needed for a given element g ∈ Gk . Since the statement
takes places in the Milnor group, it may be assumed that all generators gi that
appear in each commutator h1, . . . , hk are distinct. Also, it suffices to consider
commutators where (in the notation of the corollary) 1 6 j,m 6 4.

It is useful to illustrate the links which are a geometric analogue of the
commutators appearing in the statement of Corollary 2.3. Figure 2.2 shows a 5-
component link (obtained by iterated Bing doubling the Hopf link) where the
left-most component is denoted γ and the meridians to the other 4 components
are labeled x, y, z, w. Then γ reads off the commutator [x, y, z, w] in the
complement of the other 4 components.

The ‘elementary’ 2-Engel links, geometric analogues of the commutators
[h1, . . . , h4] that come up in the proof of Corollary 2.3 for k = 4, are obtained
by band-summing two components at a time and then taking a parallel copy, as
shown in Figure 2.3. All the links in Figures 2.2, 2.3 have nonzero nonrepeating µ̄
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Figure 2.3. (a) γ1 = [x, yz, yz, w], (b) γ2 = [x, y, zw, zw],
(c) γ3 = [x, yw, z, yw].

invariants. It is a very salient feature, as we shall see, that for the links in Figure 2.3
the 3-manifold obtained by 0-framed surgery is also obtained by 0-framed surgery
on a link with vanishing nonrepeating µ̄ invariants: merely slide one of the parallel
copies over the other to obtain a homotopically trivial link (see Figure 4.2).

3. The A–B slice problem

We start by recalling the definition of an A–B slice link from [Fr86b].
Section 3.1 summarizes the relative-slice formulation of the A–B slice problem,
and Section 3.2 defines the notion of a homotopy A–B slice link, used in
Theorem 1.

DEFINITION 3.1. A decomposition of D4 is a pair of compact codimension zero
smooth submanifolds with boundary A, B ⊂ D4, satisfying conditions (1)–(3)
below. Denote

∂+A = ∂A∩∂D4, ∂+B = ∂B∩∂D4, ∂A = ∂+A∪∂−A, ∂B = ∂+B∪∂−B.

(1) A ∪ B = D4,

(2) A ∩ B = ∂−A = ∂−B,

(3) S3 = ∂+A ∪ ∂+B is the standard genus 1 Heegaard decomposition of S3.
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Figure 3.1. A decomposition in two dimensions: D2 = A ∪ B, B is shaded. α, β
are linked 0-spheres in ∂D2. The notation for handles is discussed in Section 3.1.

Each side A, B of a decomposition has an attaching circle (a distinguished
curve in the boundary: α ⊂ ∂A, β ⊂ ∂B) which is the core of the solid torus
∂+A, respectively ∂+B. The two curves α, β form the Hopf link in S3 = ∂D4.
Figure 3.1 illustrates the notion of a decomposition in 2 dimensions. The ‘trivial’
decomposition of D4 is given by (A, α)= unknotted 2-handle: (D2×D2, ∂D2×0)
and (B, β) = collar: (S1× D2× I, S1× 0× 0). See [FL89, Kr08], and Section 4
below for interesting examples of decompositions.

Given an n-component link L = (l1, . . . , ln) ⊂ S3, consider its untwisted
parallel copy L ′ = (l ′1, . . . , l ′n).

DEFINITION 3.2. The link L is A-B slice if there exist decompositions (Ai , Bi),
of D4 and self-homeomorphisms φi , ψi of D4, i = 1, . . . , n such that all sets
in the collection φ1 A1, . . . , φn An, ψ1 B1, . . . , ψn Bn are disjoint and satisfy the
boundary data: φi(∂

+Ai) is a tubular neighborhood of li and ψi(∂
+Bi) is a tubular

neighborhood of l ′i , for each i .

The restrictions φi |Ai , ψi |Bi give disjoint embeddings of the entire collection of
2n manifolds {Ai , Bi} into D4. Moreover, these re-embeddings are standard: they
are restrictions of self-homeomorphisms of D4, so the complement D4 r φi(Ai)

is homeomorphic to Bi , and D4 r ψi(Bi) ∼= Ai . Analogues of this condition in
the homotopy context are introduced in Definitions 3.8, 3.10.

References [Fr86a, Fr86b] reformulated the 4D topological surgery conjecture
for free groups in terms of the A–B slice problem for GBRs. Figure 4.1 shows a
representative link from this family. The proof of Theorem 1 will use the relative-
slice formulation of the A–B slice problem, discussed next.
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3.1. The relative-slice problem. Our summary of this approach to the A–B
slice problem follows [FL89]; the reader is referred to this reference for further
details.

Given a decomposition D4 = A ∪ B, without loss of generality it may be
assumed [FL89] that each side A, B has a handle decomposition (rel. collar
S1 × D2 × I ) with only 1- and 2-handles. Fix the notation: A = (∂+A) × I ∪
H1 ∪ H2. As usual in Kirby calculus [GS99], the 1-handles will be considered as
standard 2-handles H∗1 removed from the collar, A = (∂+A× I \H∗1)∪H2. In the
illustration in Figure 3.1 the side A has three 2-handles and a single 1-handle.

DEFINITION 3.3. If h2 is an embedded 2-handle in D4 (within any handle
decomposition) and h∗1 is a 2-handle deleted from a collar as above, we say h2

does not go through h∗1 if h2 is disjoint from cocore(h∗1).

Consider a slightly smaller 4-ball D′, equal to the original D4 minus the collar
(∂+A) × I . The removed handles H∗1 may be considered as 2-handles attached
(with zero framing) to D′. Note that in Figure 3.1 none of the 2-handles H2

go through H∗1. This condition does not have to be satisfied for an arbitrary
handle decomposition of a given submanifold of D4, but it will hold for all
decompositions constructed in this paper, as stated in Condition 3.5.

REMARK 3.4. The details of the embeddings of {Ai , Bi} into D4 are important
in the A–B slice problem. It was shown in [Kr08] that any link L = (l1, . . . , ln)

with trivial linking numbers is weakly A–B slice: there exist n decompositions
D4 = Ai ∪ Bi and disjoint embeddings of the entire collection of {Ai , Bi} into
D4 with the boundary data given by L and its parallel copy. To be relevant to the
surgery conjecture, these disjoint embeddings have to be standard, as discussed in
the paragraph following Definition 3.2. We record the relevant information about
embeddings in Condition 3.5; analogous statements in the relative-slice setting
and in the homotopy context are given in Conditions 3.7 and 3.9, respectively.

CONDITION 3.5. For each side C = A, B of a decomposition D4 = A ∪ B, the
2-handles H2 of C do not go over the handles H∗1 corresponding to the 1-handles
of C . (N.B. 2-handles of Ai may certainly pass through both 1-handles H ∗1 of B j

and the 1-handles of A j , for all j 6= i .)

Beyond this requirement, in our decompositions each 2-handle of C is
embedded in a standard way (that is unknotted) in D4 \collar on ∂+C . It follows
that (except for a single 2-handle) the 1-handles of each side are in one-to-one
correspondence with the 2-handles of the complement. We treat this as an
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additional convenient property, but not part of the definition. (But note that an
easy subdivision argument allows any decomposition to be reduced to one of this
type at the expense of increasing the number of handles.) In the decompositions
introduced in Section 4, the A-side has a zero-framed 2-handle attached to the
core of the solid torus ∂+A; this is the ‘distinguished’ handle of A which does
not have a counterpart on the B-side.

Usually a Kirby diagram is a labeled link in S3, thought of as S3 = ∂D4. To
describe A and B in Kirby notation we consider labeled links in the solid torus
∼= S1 × D2, now thought of as the inner boundary, ∂−, of a collar (S1 × D2)× I .
In our applications the (isotopy class of the) product structure S1 × D2 is fixed
by the embedding in S3, so integer framing coefficients are interpreted as usual
(self-linking numbers). Similarly, an unlink consisting of dot-bearing components
means: delete standard 2-handles from the collar. The outer boundaries of these
collars are ∂+A and ∂+B, together ∂+A∪∂+B = S3. One may think of surgery on
the core circle of ∂+A (that is the effect of 2-handle attachment) as transforming
∂+A into (something isotopic rel boundary to) ∂+B.

A Kirby diagram for B may be obtained by taking a Kirby diagram in the solid
torus for A, performing the surgery as above, and replacing all zeros with dots, and
conversely all dots with zeros. (Note that the 2-handles in all our decompositions
are zero-framed.) To fix the notation, denote the distinguished 2-handle of A by
H2 (as in Figure 3.1), and the rest of the 2-handles of A by H2.

Suppose an n-component link L is A–B slice, with decompositions D4 =
Ai ∪ Bi and homeomorphisms φi , ψi , for i = 1, . . . , n. Denote by D4

0 the
smaller 4-ball obtained by removing from D4 the collars on the attaching regions
φi(∂

+Ai), ψi(∂
+Bi) of all 2n submanifolds {φi(Ai), ψi(Bi)}. Let H2 denote the 2-

handles of all these submanifolds, and H∗1 the 2-handles removed from the collars,
corresponding to the 1-handles. As above, consider H∗1 as zero-framed 2-handles
attached to D4

0 .
A more precise description of H2, H∗1 may be given as follows. Add the

superscript i to the handle notation: the 2-handles of Ai are Hi
2 = H i

2 ∪Hi
2, where

H i
2 is a ‘distinguished’ 2-handle of Ai , and 1-handles of Ai correspond to Hi∗

1 .
Then

H2 =
⋃

i=1,...,n
φi(Hi

2)
⋃

i=1,...,n
ψi(Hi∗

1 ), H∗1 =
⋃

i=1,...,n
φi(Hi∗

1 )
⋃

i=1,...,n
ψi(Hi

1). (3.1)

Consider the following two links J, K in S3 = ∂D4
0 , which may be read off

from the Kirby diagrams of the {Ai , Bi}. Let J denote the attaching curves of
the 2-handles H2, and K the attaching curves of the 2-handles H∗1. (Note that
H2 ⊂ D4

0 , and H∗1 are attached with zero framings to D4
0 along K .) The

components belonging to J and K will be labeled accordingly in the figures in
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Figure 3.2. Stabilizing components added to an A–B slice link L = {li}: link pairs
(Ji , Ki) ⊂ neighborhood of a meridian to li , (K̂i , Ĵi) ⊂ solid torus neighborhood
of a parallel copy l ′i . (The parallel copy l ′i is not part of the link.) A diffeomorphism
between the solid tori exchanging their meridian and longitude takes Ki to K̂i

and Ji to Ĵi . (To relate this to the notation in Definition 3.6: J = L ∪i Ji ∪i K̂i ,
K = ∪i Ki ∪i Ĵi .)

this paper; the link K is traditionally drawn in red on blackboards. We refer to the
pair (J, K ) as the ‘stabilization’ of the original link L . (Note that L is included in
J as the attaching curves of the distinguished 2-handles {H i

2}.) The structure of
the stabilization links, which is a consequence of the duality between the 1- and
2-handles of the two sides of each decomposition, is shown in Figure 3.2.

DEFINITION 3.6. A link pair (J, K ) in S3 = ∂D4
0 is called relatively slice if the

components of J bound disjoint, smoothly embedded disks in the handlebody

HK := D4
0 ∪ zero-framed 2-handles attached along K .

If a link L is A–B slice, by construction the associated link pair (J, K ) is then
relatively slice. Moreover, since the embeddings φi(Ai), ψi(Bi) are restrictions
of self-homeomorphisms φi(Ai), ψi(Bi) of the 4-ball, the following analogue of
Condition 3.5 holds for the relative slicing (J, K ).

CONDITION 3.7. Let S be any submanifold in the collection {φi(Ai), ψi(Bi)}.
Then after an isotopy (depending on S) of the embedded handlebody HK =
D4

0 ∪K (2-handles) the slices for the components of J corresponding to S do
not go through the 2-handles {H} attached to D4

0 along the components of K
corresponding to the same submanifold S.

Note that the statement of Condition 3.7 in general indeed requires an isotopy:
as illustrated in Figure 3.3, 2-handles of S may link other submanifolds S′. There
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Figure 3.3. An illustration of Condition 3.7: the 2-handles of a submanifold S may
‘go over its 1-handles’ and link another submanifold S′ in D4 (left). However they
do not go over its 1-handles after an isotopy (right), where other submanifolds are
disregarded.

is an isotopy ‘straightening out’ the 2-handles of S as shown on the right in the
figure, but the condition may not be achieved simultaneously for all submanifolds
{φi(Ai), ψi(Bi)}.

3.2. Homotopy A–B slice problem. We now turn to the definition of a
homotopy A–B slice link, referred to in the statement of Theorem 1. In fact, we
state two natural versions of the definition. It will be shown in Section 4 that
Theorem 1 holds in both contexts. The first notion is motivated by link-homotopy
theory (Section 2.1):

DEFINITION 3.8 (Link-homotopy A–B slice). An n-component link L is link-
homotopy A–B slice if there exist decompositions D4 = Ai ∪ Bi , i = 1, . . . , n
and handle decompositions of the submanifolds Ai , Bi so that the corresponding
relative-slice problem (J, K ) has a link-homotopy solution. That is, in the
notation of Definition 3.6 the components of J bound disjoint maps of disks ∆ in
the handlebody HK . Moreover, the disks ∆ are subject to Condition 3.9 below.

Recall that the free group action in the context of the A–B slice problem
is encoded in Condition 3.7. A stronger version of that condition is to omit a
reference to an isotopy and require that for no S do its 2-handles pass over the
dual representation of its 1-handles. We use this stronger version to define an
analogue for a link-homotopy A–B slice link:

CONDITION 3.9. Let S be any submanifold in the collection {φi(Ai), ψi(Bi)}.
Then the maps of disks ∆ for the components of J corresponding to S do not go
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through the 2-handles attached to D4
0 along the components of K corresponding

to the same submanifold S.

Theorem 1 will be established for a stronger version of a homotopy solution
which is defined next. Suppose a possibly disconnected codimension zero
submanifold (C, ∂+C) ⊂ (D4, S3) is given, together with a 1, 2-handle
decomposition of (C, ∂+C). As in the beginning of Section 3.1, consider the
4-ball D′ = D4 r (∂+C)× I , and consider the 1-handles of C as standard slices
H∗1 removed from the collar. We say that a map f : (C, ∂+C) −→ (D4, S3) is
homotopy standard if there exists a 1-parameter family of maps ft connecting f
and id : C ⊂ D4 such that

(1) the restriction of ft to (∂+C)× I r H∗1 is the identity map for all t ; and

(2) the images of the 2-handles are contained in D′ and are disjoint for all t .

DEFINITION 3.10 (Homotopy A–B slice). An n-component link L is homotopy
A–B slice if there exist decompositions D4 = Ai ∪ Bi , a 1, 2-handle structure
for each submanifold Ai , Bi , and disjoint maps of all 2n submanifolds {Ai , Bi}
into D4 with the boundary data corresponding to L and its parallel copy (as in
Definition 3.2), such that the restriction to each Ai , Bi , i = 1, . . . , n is homotopy
standard.

Here is a brief outline of the way (singular) slices will be found for a homotopy
solution to the relative-slice problem in Theorem 1. One may band sum the
components of J with (an arbitrary number of) parallel copies of the components
of K . These bands correspond to index 1 critical points of the slices with respect
to the radial Morse function on D4

0 . Parallel copies of each component Ki bound
disjoint copies of the core of the 2-handle attached to Ki . For a suitable choice
of band sums, the resulting band-summed link J ′ will be null-homotopic. Then
the construction of singular slices is completed by capping off the components
of J ′ with disjoint maps of disks in D4

0 . Of course the crucial part of the proof
is the construction of the decompositions D4 = Ai ∪ Bi enabling this strategy to
succeed.

4. Proof of Theorem 1: a homotopy solution to the A–B slice problem

As discussed in the introduction, the GBRs {Bing(Hopf)} form a collection
of model surgery problems. We start by noting that highly Bing doubled links
in {Bing(Hopf)} are still universal for surgery. In the setting of capped gropes
this follows from grope height raising: for any n > 3 the attaching curve of a
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Figure 4.1. A link L ∈ {Bing(Hopf)}5.

capped grope gc of height 3 bounds a capped grope of height n in the (untwisted)
thickening of gc [FQ90, Proposition 2.7]. (The proof of [FQ90, Theorem 5.1A]
explains how to get a capped grope of height 3, starting from a surgery kernel.)

PROPOSITION 4.1. Let n > 5 be fixed. Denote by {Bing(Hopf)}n the links L in
{Bing(Hopf)} satisfying M L/(M L)n ∼= MF/(MF)n . Then {Bing(Hopf)}n forms a
collection of model surgery problems.

The Milnor group condition picks out the class {Bing(Hopf)}n , obtained from
the Hopf link by (ramified) Bing doubling performed at least n − 2 times.
The usually referenced [Fr83] class of universal problems is, in this notation,
{Bing(Hopf)}3, but grope height raising [FQ90] allows one to restrict to any
coinitial segment, such as {Bing(Hopf)}n , n > 5. For our purposes, in light
of Proposition 6.7, it suffices to consider n = 5. In the proof of Theorem 1
first consider the case where L ∈ {Bing(Hopf)}5 is almost homotopically trivial,
meaning absent any component the link becomes homotopically trivial. (In this
collection of links this is equivalent to L being Brunnian). This means that L
is obtained from the Hopf link by iterated Bing doubling without ramification.
This case captures the idea of the proof; at the end of this section we show what
adjustments need to be made in the general case. To be very specific, consider
one of the smallest representatives of {Bing(Hopf)}5, the 5-component link in
Figure 4.1. The reason 5 suffices is that l1 lies in the 4th term of the lower central
series of π1(S3 r (l2 ∪ · · · ∪ l5)), and Corollary 2.3 gives a useful way of writing
such elements in terms of 2-Engel relations.

To define the decompositions giving a homotopy A–B slice solution for L ,
consider the links in Figure 4.2. These links should be compared with the links in
Figure 2.3. The crucial difference is that now the band-summed curves are taken
without a parallel copy, and unlike the links in Figures 2.3 each of the three links
in Figure 4.2 is homotopically trivial.
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Figure 4.2. Homotopically trivial analogues of links in Figure 2.3.

We are now in a position to define the relevant decompositions of the 4-ball. For
the components li , 2 6 i 6 5 consider the trivial decomposition D4 = Ai ∪ Bi

where Ai = unknotted 2-handle, Bi = collar on the attaching curve. For the
first component consider the decomposition determined by the side A1 shown
in Figure 4.3. There is one zero-framed 2-handle and 12 × 3 = 36 1-handles.
(This very specific handle description is given for the 5-component link in
Figure 4.1 in part to take a note of the complexity of our homotopy A–B slice
solution. The definition for a general L ∈ {Bing(Hopf)}5 is given at the end of the
proof.) The curves representing 1-handles are dotted (standard notation in Kirby
calculus [GS99]). They are traditionally drawn red on the blackboard due to the
role they play in the relative-slice setting.

A precise definition of the construction in Figure 4.3 is as follows. The Kirby
diagram is drawn in the solid torus neighborhood of the attaching curve (∂+A in
the notation of Definition 3.1). Start with a single curve, the zero-framed attaching
curve for the 2-handle of A1, given by the core of the solid torus. Consider a total
of 12 links embedded in disjoint 3-balls in (solid torus r its core): six copies of
the link (a′) in Figure 4.2, four copies of (b′) and two copies of (c′). The proof
below shows how the number and types of links are determined by the algebraic
structure of the 2-Engel relation (seen in the proof of Lemma 2.1). In each of these
12 links the left-most component is band-summed with the previously chosen core
curve. It is convenient to use the bands shown in Figure 4.3, so that the resulting
band-summed curve c is isotopic to the original core curve of the solid torus. To
fix the embedding of this handlebody A1 into D4 we specify that the 2-handle
is embedded into the 4-ball in a standard (unknotted) way. This determines the
decomposition D4 = A1 ∪ B1.
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Figure 4.3. Part A1 of the decomposition D4 = A1 ∪ B1.

PROPOSITION 4.2. There exist disjoint, homotopy standard maps (in the sense of
Definition 3.10) of A1, . . . , A5 into D4 with the boundary data corresponding to
the link L in Figure 4.1.

Proof. The relative-slice problem is an embedding question for disks obtained by
embedding the link in Figure 4.3 in a neighborhood of l1 in Figure 4.1. Proposition
4.2 solves this problem in the weaker context of disjoint maps. We identify the
curve c with the component l1. Then the relative-slice problem concerns the pair
of links (J, K ) where J = L is the link in Figure 4.1, and K consists of the
36 (red) dotted curves in Figure 4.3, embedded in a neighborhood of l1. More
precisely, K = ∪i Ki consists of 12 links Ki .

Using the commutator notation from Section 2.2, the component l1 of the link
L in Figure 4.1 represents the element

l1 = [[m2,m3], [m4,m5]] = [m2,m3,m4,m5] · [m3,m2,m4,m5]−1 (4.1)

in the free Milnor group Mπ1(S3 r (l2 ∪ · · · ∪ l5)) ∼= MFm2,...,m5 . The second
equality above follows from the Hall–Witt identity (2.4) where, as usual in the
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Milnor group setting, conjugation may be omitted. The choice of a basepoint
for l1 also does not affect the expression (4.1) since these commutators are of
maximal length in the Milnor group; this is discussed further in Remark 4.2.
Detailed calculations of this type may be found, for example, in [Kr13], where
the algebra is related to grope geometry.

Apply Corollary 2.3 to g = l1 ∈ (MFm2,...,m5)
4. It is not difficult to see the

number and the types of such commutators [h1, . . . , h4] that come up, going
through the proof of Lemma 2.1. Specifically, consider each of the two basic
commutators in (4.1), for example start with [m2,m3,m4,m5]. To match the
current notation with that of Lemma 2.1, set

x = m2, y = m3, z = m4, w = m5. (4.2)

Lemma 2.1 establishes that P := [x, y, z, w] ≡ 1 (is trivial mod the 2-Engel
relation) by showing P3 ≡ 1 and P4 ≡ 1. P3 ≡ 1 is proved in (2.8)–(2.11) by
representing P in the free Milnor group as a product of two commutators [h1, . . . ,

h4] corresponding to the link (a) in Figure 2.3. Then P4 ≡ 1 is proved in the two
paragraphs following (2.12) using commutators corresponding to one copy of (a),
two copies of (b) and one copy of (c). Establish a 1-1 correspondence between
the commutators [h1, . . . , h4] appearing in the proof and six of the links Ki in the
definition of A1.

We implement the algebraic argument above geometrically as follows. In the
relative-slice setting the slices for J may go multiple times over the 2-handles
attached to K ; we exploit this by band-summing J to the components of K and
their parallel copies. Each link Ki consists of three (dotted) components; denote
by K ′i the 4-component link obtained by adding to it a parallel copy of the ‘long’
band-summed curve in Ki . (Note that this ‘reconstructs’ the links in Figure 2.3.)
Every time a commutator [h1, . . . , h4] is used in the proof of Lemma 2.1, perform
a band-sum joining l2, . . . , l5 with the corresponding link K ′i , paying a careful
attention to the order of indices discussed next.

The first such commutator that comes up in the proof (line (2.6), understood as
a 4-fold commutator as in (2.11)) is [z, xy, xy, w]. Keeping in mind the notation
(4.2), take a band sum of l4 with the component of K1 labeled z in Figure 4.3.
Then band sum l2 (respectively l3) with the ‘long component’ of K1 labeled x, y
(respectively its parallel copy). Finally band sum l4 with the component of K1

labeled w. There is a ± choice for each band sum depending on orientations, this
choice is discussed in Remark 4.1.

The next commutator appearing in the proof is [x, yz, yz, w], and there
is a corresponding link K2 reserved for band-summing into, as indicated in
Figure 4.3. Proceeding in this manner, perform band-summing into K ′1, . . . , K ′6
corresponding to the proof of Lemma 2.1 for [m2, . . . ,m5]. There is another
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elementary commutator, [m3,m2,m4,m5] in the expression (4.1) for l1. Its
triviality modulo 2-Engel relations similarly gives rise to band sums into K ′6, . . . ,
K ′12.

Denote the result of band-summing l2, . . . , l5 with all {K ′i } by l ′2, . . . , l
′
5. The

link (l2, . . . , l5), as well as each K ′i , is an unlink. For a suitable choice of bands,
l ′2, . . . , l

′
5 is also the unlink. (But even with an arbitrary choice of bands, its Milnor

group is free: Mπ1(S3 r (l ′2 ∪ · · · ∪ l ′5)) ∼= MFm2,...,m5 .)

REMARK 4.1 (Orientations). One aspect of commutator calculus and of band
summing was implicit in the argument above. The choice of a meridian (generator
of the Milnor group) to each link component depends on the orientation of the
based loop representing it. For example, we used expressions for commutators,
such as (4.1) and the commutators in Figure 2.3, which do not involve negative
exponents of the meridians. These expressions assumed a particular choice of
orientations. Similarly, different choices of orientations of the link components
result in different orientation-preserving band sums. The commutator identity

[x−1, y] = [y, x]x−1
(4.3)

(see [MKS66]) is useful in this context. Conjugation may be omitted in the Milnor
group (see Remark 4.2), so an iterated application of this identity implies that
changing the orientation of any one meridian m i j in a commutator [m i1, . . . ,

m ik ] inverts the commutator. Therefore, various choices of orientations for each
such commutator have two possible outcomes overall: [m i1, . . . ,m ik ]±1. We make
a choice of orientations so that the commutators [h1, . . . , h4] in the paragraph
following Remark 4.2 have the correct exponent to match the calculation in the
proof of Lemma 2.1.

REMARK 4.2 (Conjugation). It is useful to note another basic fact that
conjugations that come up at various points in the proof do not affect calculations
in the Milnor group in our setting. The key point is that the component
l1 of the link L (Figure 4.1) is in the 4th term of the lower central series
(MF4)

4 := (MFm2,...,m5)
4. The same comment applies to each curve γi in the links

in Figure 2.3. The Milnor group MF4 is nilpotent of class 4, that is (MF4)
5 = {1}.

All calculations take place in the abelian group (MF4)
4, so conjugation does not

have any effect. In particular, the conjugations (of the commutators [h1, . . . , h4])
that appear in the statement of Corollary 2.3 may be omitted in our present case.

The link (l1, l ′2, . . . , l
′
5) defined before Remark 4.1 may be viewed as a band

sum of the 5-component link L with 12 five-component links contained in disjoint
3-balls: the component l1 is band-summed with the left-most component of each
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link as in Figure 4.3, and the components l2, . . . , l5 are band-summed with the
dotted curves and their parallel copies as described above. The algebraic outcome
is that the original element (4.1) representing l1 in MFm2,...,m5 is multiplied by the
inverse of the product of the commutators [h1, . . . , h4] that appear in the proof
of Corollary 2.3 for g = l1. This may be seen directly by reading off the element
represented by l1 in Mπ1(S3 r (l ′2 ∪ · · · ∪ l ′5)); this is also a special case of the
additivity of µ̄-invariants of links under band summing [Co90, Kr98]. Therefore,
l1 is trivial in Mπ1(S3r(l ′2∪· · ·∪l ′5)), and the link (l1, l ′2, . . . , l

′
5) is homotopically

trivial. Capping it off with disjoint null homotopies in D4
0 gives the desired disjoint

singular slices for the link L .
It is immediate from the construction that Condition 3.9 is satisfied: the slice

for l1 does not go over the 2-handles attached along K . (And there is nothing
to check for A2, . . . , A5 since they do not have any 1-handles.) Moreover, each
constructed map fi : Ai −→ D4, i = 1, . . . , 5, is homotopy standard. Indeed,
the singular disks completing the construction of the slices are contained in D4

0
(the original 4-ball minus collars on the attaching regions), a contractible space.
The null homotopy completing the construction is homotopic within D4

0 to the
unknotted disks corresponding to the original embedding Ai ⊂ D4, and since each
Ai has a single 2-handle there is no disjointness to keep track of. This concludes
the proof of Proposition 4.2.

To complete the proof of Theorem 1 for the link L we need to consider all
10 submanifolds {Ai , Bi}. Since B2, . . . , B5 are collars, they do not affect the
embedding problem. The handlebody B1 has 36 two-handles and no 1-handles.
A Kirby diagram for B1 is obtained from that of A1 (Figure 4.3) by performing
zero-framed surgery on the curve c and replacing the dots with zeros. Denote
the zero-framed link corresponding to Ki by K i . Composing null homotopies
in the 12 disjoint solid tori, we see that the resulting link K := (K 1 ∪ · · · ∪
K 12) is null-homotopic (in the sense of Milnor) in the solid torus ∂−B1. The null
homotopies give rise to a map (B1, ∂

−B1) −→ (D4, S3)whose image is contained
in a collar on the attaching solid torus, and where the 2-handles of B1 are mapped
in disjointly. The result thus far shows that the link L is link-homotopy A–B slice
(Definition 3.8).

The missing ingredient in establishing the homotopy A–B slice condition is
checking that the constructed map f : B1 −→ D4 is homotopy standard, as
required in Definition 3.10. Since there are no 1-handles, one has to check
only that there is a homotopy from f to the original embedding B1 ⊂ D4

(corresponding to the decomposition D4 = A1 ∪ B1), keeping all 2-handles
disjoint. This original embedding consists of disjoint, unknotted 2-handles
attached to K . (The link K ⊂ (solid torus ∂−B1) is the unlink when considered
in the ambient 3-sphere= ∂D4.)
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Figure 4.4. The link K 10 in the solid torus S3r (neighborhood of d). W is a
Whitney disk for a null homotopy.

For example, the link K 10 is shown in Figure 4.4. This link is considered in the
solid torus= complement of a neighborhood of the curve d . We remind the reader
that to establish the homotopy standard condition (see the paragraph preceding
Definition 3.10), one needs to find a homotopy between the immersed disks
bounded by K 10 in the solid torus ∂−B1, constructed in the link-homotopy A–
B slice solution on one hand, and the standard disks bounded by K 10 in D4 on the
other hand. Moreover, the disks are required to be disjoint during the homotopy.
The entire 4-ball (minus the collar on ∂B+1 ) may be used for the homotopy: all
other submanifolds Ai and B j , j 6= 1 are disregarded here.

The required homotopy will be guided by a suitably chosen Whitney disk.
The obvious Whitney disk W for the null homotopy of c3, seen in Figure 4.4,
intersects c2. The link (d, c1, c2, c3) is homotopically essential, so there is no
Whitney disk disjoint from the rest of the link. However, after d is omitted, W
is isotopic rel boundary to a Whitney disk W ′ whose interior is disjoint from
c1, c2, c3. Therefore, c1, c2 bound disjoint embedded, unknotted disks D1, D2 in
D4 and c3 bounds a disk D3 with self-intersections which are paired up with a
Whitney disk W ′ whose interior is disjoint from each Di . A Whitney move on
D3 along W ′ gives a homotopy from the constructed map

∐
Di −→ D4 to three

disjoint unknotted disks bounding (c1, c2, c3). This is a homotopy rel boundary
keeping the disks disjoint at all times, as required in the definition of ‘homotopy
standard’.

Analogous arguments apply to each link K i , and moreover all resulting disks
and Whitney disks in D4 are disjoint from each other. It follows that the map
f : B1 −→ D4 is homotopy standard, establishing that the link L in Figure 4.1 is
homotopy A–B slice.

The proof for an arbitrary link L = (l1, . . . , ln) ∈ {Bing(Hopf)}5, defined by
Bing doubling without ramification, is directly analogous. The decompositions
D4 = Ai∪Bi , i = 2, . . . , n may be taken to be the trivial decomposition, 2-handle
∪ collar. The decomposition D4 = A1∪ B1 has one 2-handle and its 1-handles are
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defined by the links Ki whose number and type are determined, as above, by the
proof of Corollary 2.3.

Finally, consider an arbitrary n-component link L = (l1, . . . , ln) in
{Bing(Hopf)}5. In this general setting L is not assumed to be almost
homotopically trivial, but by assumption all µ̄-invariants of L of length 6 4
vanish. Let k + 1 be the minimal number of components in L forming a
homotopically essential link (by assumption k > 4). Choose such a (k + 1)-
component sublink L ′ of L; renumbering the components if necessary, L ′ = (l1,

. . . , lk+1). Note that L ′ is almost homotopically trivial.
Based component l1 represents an element of the kth term of the lower central

series of Mπ1(S3 r (l2 ∪ · · · ∪ lk+1)). Corollary 2.3 expresses it as a product of
conjugates of the commutators of the form [h1, . . . , hk]. Recall the ‘elementary
Engel links’ in Figure 2.3, corresponding to 4-fold commutators [h1, . . . , h4]
in Corollary 2.3. There are analogous (k + 1)-component links corresponding
to k-fold commutators [h1 . . . , hk] for any k > 4. Now consider the proof in
the 5-component case above, directly adapted to the (k + 1)-component link
L ′. Specifically, for each factor [h1 . . . , hk] in the expression for l1, consider a
corresponding k-component dotted link Ki as in Figure 4.3, contained in a solid
torus neighborhood of a meridian to l1. Just as in the main body of the proof
above, band sums of l2, . . . , lk+1 with the dotted links Ki yield a homotopically
trivial link (l1, l ′2, . . . , l

′
k+1). (The band sums are taken in the complement of the

remaining components lk+2, . . . , ln of L .) Note that the band sums are taken with
a dotted link which by itself (omitting l1) is an unlink. Such band summing may
create higher nonrepeating µ̄-invariants which involve all of the components l1,

. . . , lk+1, and in addition some of the other components of L .
Now consider the entire resulting link l1 ∪ L := (l1, l ′2, . . . , l

′
k+1, lk+2, . . . , ln).

The argument in the preceding paragraph was used to kill µ̄1,2,...,k+1. If l1 is trivial
in the Milnor group of the rest of the entire link Mπ1(S3 r L), perform link
homotopies on L and contract l1 in the complement. If l1 is part of another
homotopically essentially sublink, pick such a homotopically essential, almost
trivial c-component sublink (c > k+1) and repeat the argument from the previous
paragraph.

With l1 gone, consider the remaining (n − 1)-component link L̃ . Since the
only operations applied to l2, . . . , ln to form L̃ were band-sums with unlinks and
link homotopy, the nonrepeating µ̄-invariants of L̃ of length 6 4 are trivial. The
same argument as above now applies to L̃ . Proceeding by induction, the link
is eventually reduced to a 4-component link. The condition on nonrepeating µ̄-
invariants ensures that it is homotopically trivial.

The number and types of elementary Engel links that come up in this process
for L are determined by the proof of Lemma 2.1. Each of the elementary links
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Figure 4.5. D4 = Ai ∪ Bi , i = 2, 3.

has a null-homotopic counterpart, illustrated in Figure 4.2. The decompositions
D4 = Ai ∪ Bi , i = 1, . . . , n are then defined analogously to Figure 4.3: each
Ai has a single zero-framed 2-handle, and the {Ai} incorporate all dotted links
that are needed in the algebraic argument. The proof of Proposition 4.2 then goes
through to give disjoint, homotopy standard maps of A1, . . . , An into D4. The
proof that the submanifolds Bi admit homotopy standard maps into the collar is
directly analogous to that in the almost trivial case considered above.

REMARK 4.3. The proof of Theorem 1 essentially relied on the asymmetry of
the roles played by the 1- and 2-handles of the submanifolds Ai , Bi . Specifically,
many parallel copies of each dual 1-handle core are used in the relative slicing
(in the proof of Proposition 4.2 the link J is band-summed into the components
of K and their parallel copies), whereas a single copy of each 2-handle must be
mapped disjointly. This should be compared with the statement of the RHP in
Section 5 where the analogous links are in fact Symmetric; see Remark 5.6.

4.1. A link-homotopy solution for the Borromean rings. In light of
Proposition 4.1, in the proof of Theorem 1 it sufficed to consider links in
{Bing(Hopf)}5. The Borromean rings (Bor) is the simplest and best known
example of a link in {Bing(Hopf)}, however since Bor is not in {Bing(Hopf)}5,
the proof did not apply directly to this link. We sketch a modification needed to
give a link-homotopy solution of the A–B slice problem for Bor.

Consider the decomposition D4 = A1 ∪ B1 as in the proof of Theorem 1. For
i = 2, 3 let D4 = Ai ∪ Bi where Bi = T × D2 is a thickening of the torus T
with a single boundary component, embedded in a standard way in D4. Then Ai

is obtained from the collar on the solid torus ∂+Ai by attaching two zero-framed
2-handles to the Bing double of the core, Figure 4.5.

The link in Figure 4.1 is obtained from Bor by Bing doubling two of the
components. This Bing doubling is incorporated in the definition of A2, A3, so
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Figure 4.6. The Borromean rings and a parallel copy.

Proposition 4.2 applies directly to yield a link-homotopy solution for A1, A2, A3:
disjoint maps fi : Ai −→ D4 so that the attaching curves {αi}i=1,2,3 form the
Borromean rings, all 2-handles of {Ai} are mapped in disjointly, and Condition
3.9 is satisfied.

Since each component of Bor bounds a genus one surface in the complement
of the other components (Figure 4.6), the submanifolds B2, B3 admit disjoint
embeddings in the complement of

∐
fi(Ai). Since B1 is a collar, it does not affect

the embedding problem. This completes a link-homotopy solution for Bor.

5. The round handle problem, 5D s-cobordisms, and general doubles

5.1. The round handle problem. We call attention to an explicit construction
of a smooth 4-manifold M with ∂M ∼= S0(W h(L)), the zero-framed surgery
on the Whitehead double of an initial k-component link L ⊂ S3. (As seen in
Figure 5.1 W h(L) is not defined until the clasp signs ±1 on each component
are specified. We drop this detail from our notation, but point out where in the
construction of M these signs are seen. Assertions about W h(L) apply to all sign
choices.) Whitehead doubling replaces each component li of L with a satellite:

M is the source of an Fk (free group)—surgery problem, rel boundary, with
target \k

i=1S1 × D3. The problem has vanishing (Wall) surgery obstruction if and
only if all the linking numbers (li , l j) = 0, 1 6 i, j 6 k. Solving this surgery
problem constructs a slice complement for W h(L). The well-known universal
surgery problems [Fr83] arise when L is some ramified Bing double of the Hopf
link: [ . It is routine to build the maps and cover them with required normal
data, so we only describe the construction of M .

By definition M = M(L) is obtained (see Figure 5.2) by attaching k pairs of
plumbed 2-handles to D4. The attaching circles are 2L , that is the link L and a
parallel copy with all framings equal to zero. There is a sign choice, ±, at each
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Figure 5.1. Whitehead doubling.

Figure 5.2. Schematic of M .

plumbing point. This is the place where the sign of the clasp in the Whitehead
double is determined and will not be commented on again.

LEMMA 5.1. ∂M ∼= S0(W h(L)).

The proof is given below (following Definition 5.5) and repeats [FT95b].
Henceforth assume all linking numbers (li , l j) = 0. From this we see k hyperbolic
pairs (one displayed using dotted lines in Figure 5.2) over Z[Fk], that is
2k spherical classes of the form (2-handle core) ∪ cone to origin (∂ core),
representing

⊕
k

(
0 1
1 0

)
. Fk is the free fundamental group of M generated by the

plumbings. The nonsingularity of this form is equivalent to the natural map
α : ∂M −→ ]k S1 × S2 being a Z[Fk]-homology isomorphism.

A consequence of the (still open) topological surgery conjecture is that there
exist a topological 4-manifold N , ∂N = ∂M , with a homotopy equivalence β
extending α:

β : (N , ∂) −→ (\k S1 × D3, ]k S1 × S2).

The entire thrust of the A–B slice discussion was to find a way of contradicting
the existence of N using ‘low-tech’ nilpotent invariants of L . (It is an interesting
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question whether there is a ‘high-tech’ approach to refuting the surgery conjecture.
We know no useful reformulation in gauge theory.) The philosophy was that
W h(L) has little to grab onto, certainly no nilpotent invariants so it was preferable
to ‘undouble’ the problem and work directly with L where there are µ̄ invariants
to work with. In this section we describe a variant of this approach which
we call the ‘round handle problem’ (RHP). Like the A–B slice problem RHP
can be translated into a question about slicing some ‘stabilized’ version of L .
The advantage of the RHP variant is that the stabilization is better controlled—
the ramification of dotted (red) curves featured in the homotopy A–B slicing
(Section 4) cannot occur in the RHP context. Thus even nonrepeating µ̄-invariants,
associated with GBR, might possibly be used to formulate an obstruction. The
‘disadvantage’ of the new context is that such an obstruction to ‘stable slicing’
contradicts only the logical union (4D surgery conjecture ∧ 5D s-cobordism
conjecture) and we would not gain any information on which fails (However
see Remark 5.2.)—merely that something goes seriously wrong. (A statement of
these two famous conjectures are given concisely as follows. Surgery conjecture:
any degree one normal map (M, ∂M) −→ (X, ∂X) from a 4D topological
manifold to a Poincaré pair which is a Z[π1 X ]-homology equivalence over ∂X is
topologically normally bordant to a homotopy equivalence if and only if the Wall
obstruction in L4[π1 X ] vanishes. s-cobordism conjecture: assume (W ;M1,M2)

is a compact, topological 5D s-cobordism which is a product over the boundary
(that is ∂W r int(M1 ∪ M2) ∼= ∂M1× I ∼= ∂M2× I , ∼= meaning homeomorphic.)
Then W itself admits a compatible product structure W ∼= M1 × I ∼= M2 × I .)

REMARK 5.2 (Aside on proper s-cobordism). It is an old observation (see the
next paragraph) that the ‘proper 5D s-cobordism’ conjecture implies both 4D
surgery and 5D s-cobordism conjectures. So, if one insists, a specific failure could
be pointed to (if the RHP has no solution).

The proper or p-s-cobordism theorem was established by L. Taylor (Ph.D.
thesis, UC Berkeley, 1972) for p-s-cobordisms of dimension 6 and higher. It is
an open question whether his thesis result extends in the topological category to
dimension 5. The algebraic setting for the general obstructions is complicated a
bit by properness but the case of greatest interest is when the global fundamental
group is free and the fundamental group of the end also (the same) free group.
In [Fr82b] a variant of the low-dimensional surgery sequence is established. It
is straightforward that a successful extension of Taylor’s thesis (in the above free
case) would convert the published variant to the full topological surgery sequence
in these dimensions. It was considered so unlikely that this extension existed
when [Fr82b] was written that this point is not explicitly made in the paper.
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Figure 5.3. Attaching a round handle.

Again given L define R = D4 ∪ k round 1-handles. In this dimension a round
1-handle is (D1 × D2 × S1, S0 × D2 × S1). R is built by attaching the i th round
1-handle ri to a meridian m i to li and a parallel copy l ′i of li (lying beyond the
meridian), Figure 5.3.

Suppose the link L , considered as lying in ∂R, is slice in R, meaning
L bounds k disjoint, topologically flat 2-disks in R, equivalently bounds k
disjoint topological 2-handles in R. Let T be the ‘slice complement’, that is the
manifold with boundary obtained by deleting the interior of those k 2-handles,
T = R r int(

∐
k 2-handles). The proofs of the following two lemmas are

postponed until after the definition of the RHP (Definition 5.5).

LEMMA 5.3. ∂T ∼= ∂M.

Actually N is a candidate for the slice complement T . By this we mean, if N
exists we can reconstruct a manifold R′ very much like R by attaching k 2-handles
to N .

LEMMA 5.4. If N exists we can form R′ = N ∪ k (2-handles) so that there exists
a 5D s-cobordism W , which is a smooth product over the boundary, joining R′

to R.

Thus if we assume 4D surgery and 5D s-cobordism conjectures (we call this
package the surgery sequence conjecture (SSC)) then L is slice in R. The slice
disks S may be taken to be topologically transverse [FQ90] to the k cocores
(D2 × S1)i of ri , the round 1-handles. Cutting R open along the cocores recovers
the 4-ball D4 with the promised ‘stabilization’ L̂ of L , that is two copies of the 1-
manifolds= (slice disks)∩∐k

i=1(D
2×S1)i . The components of L̂ are now seen to

co-bound some disconnected planar surface P made from fragments of the slice
disks. To summarize: L = ∂S ⊂ R yields L̂ = ∂P ⊂ D4. One may understand the
combinatorial possibilities for L̂ and P and attempt to see if any are compatible
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with known properties of µ̄-invariants. The chief feature of L̂ is that L̂ = L∪Q∪Q̃
where Q is contained in the meridional solid tori Mi with core circles m i , and Q̃
is identical to Q but transported by the zero-frame preserving homeomorphism
from Mi to L ′i , the parallel solid torus with core l ′i (see Figure 5.3). In practice the
components of Q ‘help’ with the existence of P by canceling the µ̄-obstructions
but they beget harmful Q̃ with new µ̄-obstruction to bounding P .

DEFINITION 5.5. The RHP is to determine whether any link L with vanishing
linking numbers is slice (bounds disjoint topologically flat disks) in the
corresponding manifold R. A contradictory possibility is that some nontrivial µ̄
of L survive in all possible stabilization processes to prevent any L̂ bounding P
as described above.

REMARK 5.6. We summarize the difference between the link stabilization
formulations of the A–B slice problem and of the RHP. They have similar setups:
for each link component li of L both problems consider two solid tori Mi , L ′i ,
neighborhoods of a meridian m i to li and of a parallel copy l ′i ; compare Figures
3.2, 5.3. To begin with, in both setups there are identical ‘stabilization’ links
in the solid tori {Mi , L ′i}, and the question is whether the link L bounds planar
surfaces in D4 whose other boundary components correspond to the stabilization
links. The distinction between the two is that in the A–B slice problem one is
allowed to take an arbitrary number of parallel copies of the ‘helping’ red curves
(corresponding to the passage of the slices over the 2-handles attached along
these curves), while their counterpart curves in the dual solid tori do not have
to be ramified. In the RHP the curves in Mi , L ′i match precisely, corresponding
to the passage of the slices over the round handles. The proof of Theorem 1 in
Section 4, using the 2-Engel relation, crucially relies on taking parallel copies, so
it does not go through in the RHP setting. This is the basis for our comment
in the introduction: after stabilization nonrepeating µ̄-invariants may reappear
as repeating; there is no sharp dichotomy. Embedded disks are stronger than
disjoint maps of disks, and intermediate is disjoint maps on many link parallels.
It seems further progress on the homotopy approach to the A–B slice problem
would require studying parallels, that is repeating µ̄-invariants. Definition 5.5
is motivated by another line of thought: perhaps if one is satisfied with an
obstruction to the logical union (surgery∨ s-cobordism) then one might still work
in the simpler world of nonrepeating µ̄-invariants.

Proof of Lemma 5.1. We use the usual conventions (see [GS99]) for handle
diagrams (Kirby calculus). The argument is a local handle computation inside
each of the k solid torus neighborhoods L i of li . We draw dual circle marked d to
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Figure 5.4. Proof of Lemma 5.1.

Figure 5.5. Proof of Lemma 5.1, continued.

Figure 5.6. A handle diagram for round handle attachment.

define—via its complement—the solid torus L i . The plumbed pair is diagrammed
as two zero-framed 2-handles and one 1-handle (circle with dot) in L i , Figure 5.4.

As far as the boundary is concerned, we may cancel the hyperbolic pair and
replace the dot with a zero, obtaining Figure 5.5.

Notice that the calculation did not assume unknottedness of li , it takes place in
the solid torus L i , re-embedded as unknotted for convenience only.

Proof of Lemma 5.3. Again the calculation can be localized to the solid tori L i .
The round handle attachment indicated in Figure 5.3 is shown in terms of ordinary
handles in Figure 5.6.
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Slicing li has the effect, in so far as the boundary is concerned, of placing either
a dot or a zero on that component, returning us to the first panel of Figure 5.4, that
is a diagram of ∂M .

Proof of Lemma 5.4. We define a diffeomorphism d : ∂R −→ ∂R′ by starting
with: ∂T ∼= ∂M ∼= ∂N and propagating the attachments of the 2-handles, h1,

. . . , hk , of R r T from ∂T to ∂N . The first step is to extend this to a simple
homotopy equivalence h : (R, ∂R) −→ (R′, ∂R′). R′ is homotopy equivalent to
(∨k S1) ∨ (∨k S2), so the only possible obstruction to extending d as a map is
O ∈ H 3(R, ∂R;π2 R′).

The boundary of a basis of these relative 3-cocycles are the 2-sphere Si factors,
1 6 i 6 k, in ∂R ∼= S0(L)](]k S1 × S2). N has k distinguished tori Ti , the natural
genus one Seifert surface for W h(li) capped off by surgery on li . In R′ = N ∪ k
2-handles, the 2-handles hi surger (along a copy of li ) Ti into a 2-sphere S′i and
d(Si) = S′i . We use the notation:

∂(Ti × [0, 1] ∪ h−i ) = Ti × 0 ∪ S′i ,

where

h−i = (D2 × D1, ∂D2 × D1) ⊂ (D2 × D1 × D1, ∂D2 × D1 × D1) = hi .

Since each Ti is null-homotopic in N , S′i bounds a singular 3-ball bi in N lying in
(Ti × [0, 1] ∪ h−i ) ∪Ti×0 (Cone(Ti)), showing O = 0.

Since R′ is also homotopy equivalent to (∨k S1) ∨ (∨k S2) and d : ∂R −→ ∂R′

lines up the generators bijectively, h is automatically a homotopy equivalence.
Since W h1(Fk) = 0 [Sta65], h is also a simple homotopy equivalence.

Covering each map with (arbitrary) normal data we obtain two structures on
(R′, ∂):

id : (R′, ∂) −→ (R′, ∂), and h : (R, ∂) −→ (R′, ∂).

The possible obstructions to a relative normal cobordism between id and h
lies in [(R′, ∂), (G/TOP, ∗)]. The Postnikov tower for G/TOP begins with a
K (Z2, 2) which detects Arf invariants for the possible 2-dimensional (2D)
splitting problems, and then a K (Z, 4) which detects signature differences for
the possible 4D splitting problems [KS77]. Let us consider the obstructions to
making h normally bordant to id. The first obstruction is

o2 ∈ H 2(R′, ∂;π2(K (Z2, 2))) ∼= Hom(H2(R′, ∂;Z2),Z2).

The cocores c1, . . . , ck of h1, . . . , hk (under the identification ∂T ∼= ∂N )
are a basis for H2(R′, ∂;Z) and o2([hi ]) is (Arf h−1(ci) − Arf (ci)) =
(0 − 0) = 0 since h−1(ci) ⊂ R is itself homologous to the cocore ci , again
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identifying ∂N ∼= ∂T . The second obstruction may be identified as
signature(R)−signature(R′)=0, so it vanishes as well. Thus id and h are
normally cobordant, rel boundary, via W 5. According to Wall [Wal70] there
is a surgery obstruction σ(W ) ∈ L s

5(Fk) ∼= Lh
5({e})

⊕k
i=1 Lh

4({e}), by the splitting
principle [Cap71]. Lh

5({e}) ∼= 0 and Lh
4({e})i ∼= 8Z given by the signature of the

spin 4-manifold dual to each free generator. It is possible to modify our choice
of W to W ′ to kill these k surgery obstructions. To change the i th obstruction by
±8 replace an embedded S1 × D4 parallel to the i th free group generator with
an embedded S1 × (E8-manifoldrḊ4). Knowing σ(W ′) = 0 ∈ L s

5(Fk), W ′ is
normally cobordant, rel its boundary, to an s-cobordism W ′′ from R′ to R.

5.2. General doubles. In the early days of 4-manifold topology
decomposition theoretic properties of Whitehead doubling played a key
role [Fr82a]. But in the current study of nonsimply connected surgery we
are completely divorced (and perhaps it is our loss) from point set topology so
it becomes a hindrance to adhere to the literal meaning of ‘Whitehead double’.
We suggest a more algebraic generalization (in fact two) which will be exploited
in Section 7. Surface genus is a natural parameter in the generalization and we
only exploit the genus one case so the reader may restrict the definition below
accordingly. The purpose of Whitehead doubling, from our current perspective
is to weaken a link L so that the problem of slicing its replacement W h(L) can
be expressed as an (unobstructed) 4D surgery problem (which if solved would
produce a candidate manifold for the link slice complement.) The construction of
M (see Figure 5.2) illustrates this strategy. But if this is all we want then we may
define a ‘general double’ as follows.

Consider a (usually) disconnected surface S =∐k
i=1 Si ⊂ S3, with ∂Si a simple

closed curve, ∂S =: K is a k-component link. The case used in Section 7 is where
genus(Si) = gi = 1. We assume that in some basis of simple closed curves on S
the Seifert form is:

J⊕
j=1

x j y j

x j 0 ±1
y j 0 0 , J =

k∑
i=1

gi .

This makes K a ‘good boundary link’ (GBL) [Fr82b]. When L has vanishing
linking numbers, K = W h(L) has an obvious Seifert surface showing it is of this
type. GBLs are known to admit unobstructed surgery problems for constructing a
slice complement. (It is not known, in general, when these surgery problems have
topological solutions.)

Assume gi = 1, then each surface Si is a ± plumbing of two untwisted bands
which when pushed off according to the lower left Seifert matrix entry, are disjoint
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and with linking number 〈xi , y−i 〉 = 0. (〈xi , y+i 〉 = ±1, the upper right entry of
the Seifert matrix.)

DEFINITION 5.7 (Generalized double, genus one case (gi = 1)). With the
notation above, we say a GBL K admitting a Seifert surface S where each
component Si has genus g(Si) = 1 is the generalized double of the set of disjoint
simple closed curve pairs {(x1, y−1 ), . . . , (x J , y−J )}. (In the case of unramified
Whitehead double W h(K ), K = {K1, . . . , K J }, xi = Ki and y−i = 0-linking
parallel(Ki), 1 6 i 6 J .)

LEMMA 5.8. S0(K ) ∼= ∂M where M is obtained from D4 by attaching k
±plumbed pairs of 2-handles. M is the source of an unobstructed surgery problem
for building a slice complement for K . Each pair is attached to zero-framed xi

and y−i .

Proof of Lemma 5.8. The schematic for M is very similar to Figure 5.2, except
now xi , y−i are not necessarily li and a parallel copy l ′i as implied in that figure.
As in the proof of Lemma 5.1 we can localize the Kirby calculation, this time to
a genus two handlebody H (rather than a solid torus) containing a component Ki

of K . We show initial and final Kirby diagrams in H are boundary equivalent; see
Figure 5.7.

The statement about surgery is immediate: π2 is a free module over Z[Fk] and
the intersection form is manifestly hyperbolic.

Note. The proof shows that the diffeomorphism type of S0(K ) does not depend
on the choice of arcs which join xi to y−i and define the plumbing, similarly for
M in Lemma 5.8.

DEFINITION 5.9 (Generalized double, no genus restriction). A general GBL K
with Seifert surface S as above is said to be a generalized double of the set

{[(x1, y−1 ), . . . , (xg1
, y−g1

)], . . . , [(x J−gk
, y−J−gk

), . . . , (x J , y−J )]}.
(Note the set does not fully specify K . For each component Si of S in addition to
the i th bracket [. . .] of plumbed pairs, gi − 1 bands must be chosen to build Si as
a band sum from these gi plumbed pairs.)

Now dropping the genus restriction, the analogous surgery problem source M
has some further 2-handles. Beyond the ± plumbed pairs for each (xi , y−i ) when
more than one, say gi , pairs lie on Si we must add an additional gi−1 2-handles to
add relations collapsing the gi free generators e1, . . . , egi dual to these plumbings
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Figure 5.7. Shaded tubes are removed from their balls, creating genus.

to one. The relations can be taken to be a chain of loops in the simplest possible
form (shown in Figure 5.8) which read e1e−1

2 , . . . , egi−1e−1
gi

.

LEMMA 5.10. Now considering general doubling (without genus restriction), we
have defined a 4-manifold M (the details of the attaching circles for the last
2-handles {h} are as specified in Figure 5.8). Again M is the source for an
unobstructed surgery problem for building a slice complement (with π1 freely
generated by meridians). S0(K ) ∼= ∂M.

Proof of Lemma 5.10. For gi > 1 the required calculation takes place in a genus
2gi handlebody H and is given in Figure 5.8.

Note on terminology. General doubles generalize Whitehead doubles but have
little relation to Bing doubles. Bing doubles do not really weaken links but merely
push nilpotent invariants further down the lower central series.
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Figure 5.8. Proof of Lemma 5.10.

6. Weak link homotopy

6.1. Definition of weak link homotopy. This section defines an equivalence
relation, weak link homotopy (WLH0—we explain the zero), for k-component
links L in an oriented 3-manifold M . It is slightly stronger than cobordism by
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Figure 6.1. A 3-branched disk. The central disk D2
1/2 is shaded.

disjoint embedded surfaces in M × I , but considerably weaker than Milnor’s link
homotopy. To give the definition we need some preliminary notions.

We call the following space ∆ a k-branched disk:

∆ =
(

k∐
i=1

D2
i

)
/(ρ, θ, i) ≡ (ρ ′, θ ′, i ′) iff ρ = ρ ′ 6 1/2, θ = θ ′, 1 6 i, i ′ 6 k,

where D2
i is one of k copies of the unit 2-disk, Figure 6.1.

We say ∆ = (central disk) ∪ (fringe) = D2
1/2 ∪ ∆r D2

1/2. Consider a map
f : ∆ −→ M × I which is an ‘embedding’ except for transversal double points

with preimages in the common disk of radius 1/4, D2
1/4 ⊂ ∆. We put ‘embedding’

in quotes since we design in a certain lack of smoothness along ∂D2
1/2. Restricted

to each D2
i , 1 6 i 6 k, f is piecewise smooth with a crease along ∂D2

1/2, so
that the k inward normals to the fringe are always distinct and always outside the
tangent space to D2

1/2.
The normal bundle to f (D2

1/2) has a unique trivialization up to homotopy (since
∆ is contractible). Since the k nonvanishing sections determined by the fringe are
all in the same homotopy class, they define a homotopy class of trivialization over
∂D2

1/2. Comparing the two yields an integer which we call the relative Euler class
χ of f . Maps f as above with χ = 0 are called admissible.

DEFINITION 6.1 (WLH0). Two links L0 = (l0
1, . . . , l

0
n) and L1 = (l1

1, . . . , l
1
n) in

M are WLH0 equivalent if there exists an embedding

g :
((

n∐
i=1

S1
i

)
× [0, 1]

)
−
↪→ M × [0, 1],

with g((
∐n

i=1 S1
i ) × j) = L j , j = 0, 1, identifying M ∼= M × 0 ∼= M × 1. The

− subscript indicates the n cylinders are multiply punctured. The punctures are
grouped in an arbitrary manner into sets of cardinality {k1, . . . , ks} and each of
these s groups is matched up to disjoint admissible maps f1, . . . , fs , disjoint
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Figure 6.2. An elementary weak homotopy. The based curve γ in the link
complement, corresponding to the 2-Engel relation [x, x, y] = [x, x y], becomes
trivial after the indicated move. (Compare with Figure 2.1 illustrating link
homotopy.)

from g, except where they are matched along the s fringes. So the final result is a
map which is an embedding except for double points in s disks {D2

1/4,l, 1 6 l 6 s}
of a complex that is made from (

∐n
i=1 S1

i )×[0, 1] by pressing in s places k j sheets
together, 1 6 j 6 s. There is no restriction on the orientation of sheets or how
many k j come together on each of the s occasions. We call the union of maps
f ∪ g = h, and may regard it as h : ((∐n

i=1 S1
i )× [0, 1]) −→ M × [0, 1].

REMARK 6.2. There is an equivalent definition of WLH0 where one further
requires that h is level preserving. The reduction to level preserving form is an
application of general position, following the argument of [Gif79, Gol79] for
‘concordance implies homotopy’. A weak null homotopy may be presented as
a sequence of elementary weak homotopies, illustrated in Figure 6.2.

REMARK 6.3. Instead of zero, any subset of allowed integer relative Euler classes,
closed under x 7→ −x , could be used to define a version of weak link homotopy.
In such generalizations linking is not conserved and we have not investigated
these.

REMARK 6.4. The WLH0 equivalence relation was our pathway into studying
the 2-Engel relation, but in the end it is not essential to the logical structure of the
paper. In Section 7, the 2-complex called the ‘Engel mess’ X (see Figure 7.4) is
the image of a null WLH0.
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REMARK 6.5. In an earlier version of the paper we did not state the framing
assumption χ = 0. We thank the referee for pointing out this omission.

We have not fully calculated WLH0 even for M = S3, but consider this a nice
open problem. A few comments on WLH0 in S3 come next.

6.2. Comments on WLH0 in S3. WLH0 is a coarser equivalence relation than
Milnor’s link homotopy [Mil54], so it is of interest which µ̄-invariants (of link
homotopy) survive to WLH0, and which do not.

The zero-framed condition implies linking numbers µ̄i j , i 6= j survive, that is
distinguish WLH0 classes of links. Less trivially, µ̄123 also survives to WLH0.

PROPOSITION 6.6. Milnor’s invariant µ̄123, with its usual indeterminacy, is an
invariant of WLH0.

Proof. It is sufficient to consider three component links. The relations in
π1(S3 × [0, 1] r image(h)), associated to the transverse double points of
f1, . . . , fs , are of the 2-Engel form [x, x, y].

If we denote by 2E(π) the normal closure of 2-Engel relations within a group π ,
and recall π 2 = [π, π], . . . , π j = [π j−1, π] as our notation for the lower central
series, then

π 3 ⊇ 2E(π) ⊇ π 4. (6.1)

The first inclusion is immediate since the 2-Engel relations are 3-fold
commutators. The second was proved in Section 2. (Corollary 2.3 contains
more refined information.)

Turning now to µ̄123, let m = g.c.d.(µ̄12, µ̄23, µ̄13). Up to sign, for a 3-
component link L0 = (l0

1, l
0
2, l

0
3)

µ̄123 = r ∈ Z/mZ where [l0
1] = rg ∈ C, (6.2)

where g is a generator of the center C of the class two nilpotent group N0,

1 −−−−→ Zm −−−−→ N0 −−−−→ Zm × Zm −−−−→ 1∥∥∥
C

(6.3)

corresponding to a generator of H 2(Zm × Zm;Zm),

N0 = (π1(S3 r (l0
2 ∪ l0

3))/π1(S3 r (l0
2 ∪ l0

3))
3)⊗ Zm . (6.4)
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(This tensor operation may be defined on nilpotent groups via the composition
series, or more simply by imposing the relation gm = 1, for all g.)

Let h : (S1
1 ∪ S1

2 ∪ S1
3) × I −→ M × I be a WLH0 from L0 to L1 and h23

be the restriction of h to the last two components. (And let h1, h2 and h3 be the
restrictions to the first, second and third sheets, respectively.) Note that N0

∼= N1,
where

N1 = (π1(S3 r (l1
2 ∪ l1

3))/π1(S3 r (l1
2 ∪ l1

3))
3)⊗ Zm . (6.5)

Of course,

N := N0/2E(N0) ∼= N1/2E(N1) ∼= N1
∼= N0. (6.6)

The only nonspherical homology of M × I r image(h23), not coming from
the top or bottom levels, is generated by the linking tori around the double points
of image(h23). These realize 2-Engel relations which by (6.6) are trivial in N ,
and by [Kr98, Lemma 13] do not affect the class two nilpotent quotient. Thus N
accepts a map π1(M × I r image(h23)) −→ N . Now l0

1 and l1
1 bound a multiply

punctured cylinder γ mapping into M × I r image(h23). The top and bottom
are ∂0γ = l0

1 and ∂1γ = l1
1 . The punctures {∂iγ }, i > 1, correspond to sheets of

h1(S1× I ) which are involved in weak homotopies (that is in the source of a map
g as above.)

Since ∂iγ , i > 1, has zero linking number with image(h2) and image(h3), each
[∂iγ ] ∈ C . In fact, examining the local geometric model, one sees that each
[∂iγ ], i > 1, is a conjugate of a loop of the form [w,wα], a 2-Engel relation.
The required local model for k = 2 sheets is shown in part (d) of Figure 7.6. In
this model [∂iγ ] becomes a (k + 1)st (3rd) parallel round circle in the rightmost
panel of the figure. It bounds a punctured torus T− in the complement of other
components. The curvesw andwα are visible on T− as a dual pair of small linking
circles to the dotted component. This verifies that [∂iγ ] = [w,wα]. It follows that
[∂iγ ], i > 1, is trivial in C . Therefore, [∂0γ ] = [∂1γ ] ∈ C , so µ̄123 is invariant.

The calculations in Section 2 suggest that certain fourth order µ̄ invariants
might also persist as mod 3 invariants of WLH0, but we have not checked this.
On the other hand, we have:

PROPOSITION 6.7. Any link L ⊂ S3, whose µ̄-invariants of length four and less
vanish, is trivial under WLH0.

Proof. By reordering components, it is sufficient to consider a first nonzero
invariant, µ̄12...n for n > 5. The vanishing of lower µ̄-invariants implies that
[l1] ∈ π n−1, π := Mπ1(S3 r (l2 ∪ · · · ∪ ln)), and µ̄12...n depends only on this
element. Since n > 5, line (6.1) implies π n−1 ⊆ 2E(π).
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Choose a sequence of elementary weak homotopies (Figure 6.1) which add the
necessary relations which trivialize [l1]. Then contract l1 in the complement of
this weak homotopy of l2 ∪ · · · ∪ ln . Finally reverse the sequence to obtain a link
with n − 1 components. Proceed in this way until the number of components
reaches four. At this point the link is actually homotopically trivial since the
µ̄ invariants of length 6 4 vanish. Composing these homotopies and weak
homotopies provides the claimed weak null homotopy of L .

7. New universal surgery problems

For us surgery problems (‘problems’) are in 4 dimensions and, as studied
in [Wal70], nonsingular over the integral group ring of the target. It is irrelevant
whether they arise in a closed or bounded context, the setup being a normal
map f : M −→ P from a 4-manifold to a Poincaré space (or pair, but we
drop the boundary from the notation). A ‘solution’ is a normal cobordism
to a simple homotopy equivalence. In attempting to solve a given problem
one typically struggles to embed 2-complexes X in the source M of the
surgery problem, where X in some sense approximates S2 ∨ S2. There is
considerable universality governing which 2-complexes turn up, for example
S2 ∨ S2-like capped gropes [FQ90], and the neighborhoods N (X) = M ′ of these
standard examples are then themselves sources of bounded surgery problems to a
P ′ ' ∨S1. (The right hand side of Figure 7.2 is a height = 1S2 ∨ S2-like capped
grope.) This set {M ′ −→ P ′} or in abbreviation {M ′} constitutes a countable,
but easily parametrized list of surgery problems, called ‘universal’ (also called
‘model’ or ‘complete’) which if solvable imply all unobstructed problems are
solvable. Solutions are transitive (see Lemma 7.3): if M ⊂ M ′ (and captures the
surgery kernel) then a solution to M ′ solves M as well.

The usual list of universal surgery problems is {Wh(Bing(Hopf))}. One starts
with the Hopf link:[ , then does any (nonzero) amount of iterated ramified Bing
doubling. For example, Bing doubling the right component with ramification two
(and no iteration) yields the link in Figure 7.1.

Finally, W h means apply (without iteration) ramified±Whitehead doubling to
each component. See Figure 7.2 for an example.

The surgery problems M are exactly the M as in Figure 5.2 and Lemma 5.1
where L = Bing(Hopf) (possibly ramifying the components with parallel copies),
and by Lemma 5.1 solving M produces a ‘free’ slice complement, that is one with
free π1, freely generated by meridians, for Wh(Bing(Hopf)), that is constructs a
manifold ' ∨S1 (generators = meridians) with boundary S0(Wh(Bing(Hopf))).

There is a natural partial order on capped gropes under inclusion: higher
genus for surface stages and more double points for caps means ‘inside’.
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Figure 7.1. A link in Bing(Hopf).

Figure 7.2. The link on the left is obtained by Bing doubling both components of
the Hopf link, and then Whitehead doubling each resulting component. The figure
on the right illustrates the corresponding surgery kernel.

Contraction [Fr83, FQ90] of capped gropes at grope tips, together with grope
height raising [Fr83, FQ90], show that both lower and higher stage capped gropes
may lie inside a given one. (In terms of links, more stages corresponds to more
ramified Bing doubling.) Any coinitial segment {M ′}will be universal for surgery,
so to solve surgery it is sufficient to handle cases with arbitrarily high (ramified)
Bing doubling before ramified Whitehead doubling.

There seems to be a hierarchy of links (with all linking numbers vanishing). The
strongest—hardest to slice their Whitehead doubles—are the ramified iterated
Bing doubles of Hopf, Bing(Hopf). These are universally hard. At the other
extreme are the (homotopically trivial)+—links L (triv+). By definition these
are the k-component links L which if turned into L+, a (k + 1)-component link
obtained by adding a parallel copy to any single component, L+ is homotopically
trivial in the sense of Milnor (see Section 2.1). It is known [FT95b] that for such
L the associated problem M can be solved. To be very explicit consider three
cases, Figure 7.3.

The basic Whitehead link is ‘held together’ by a nontrivial µ̄1122 but it is triv+

since both indices must be repeated to obtain a nonzero value. Whram, a temporary
notation for the 3-component link obtained by ramifying one component of
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Figure 7.3. A hierarchy of links.

Wh, shown as the middle figure in 7.3, still has no nontrivial µ̄ invariants with
nonrepeating indices, but it is no longer triv+. Despite 20 years of work its status
is still open: we do not know if the surgery problem M(Whram) is solvable or even
if Wh(Whram) is slice (with any fundamental group). Finally, the Borromean rings
seems typical (though at the top of the partial order) of links whose associated
surgery problems M form the universal family. Bor (and other members of
{Bing(Hopf)}) are held together by a nonrepeating µ̄ invariant.

In this section we exhibit new universal links which are general (see Section 5)
doubles of links L which are more like Whram than Bor. For convenience of the
reader we restate the theorem from the Introduction:

THEOREM 7.1. There is a family of links {K } for which the problem of
constructing free slices constitutes a universal problem, where each K ∈ {K } is
of the form:

D(Ram(h-triv)),

a generalized (genus one) double of a ramified homotopically trivial link.

REMARK 7.1. Any link L with a nontrivial µ̄ may be ramified to produce L ram

with a nontrivial nonrepeating µ̄, so Theorem 7.1 does not yield a universal set
of links based on general doubling of a link with all nonrepeating µ̄ invariants
vanishing. However, it was a surprise to see any collection of universal problems
tied so closely to homotopically trivial links. The new universal problems
certainly focus attention on the impact of ramification. This is the second surprise
and is perhaps the ‘other side of the coin’ to Section 4 where ramification is
exploited to construct an unexpected homotopy solution to the A–B slice problem.

REMARK 7.2. Part of what we have learned is that what 20 years ago was
regarded as a minor technical distinction — homotopically trivial versus
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(homotopically trivial)+ — may instead lie at the heart of the matter. (See [CP14]
for recent results related to this problem.) At present, Wh(Whram) is certainly the
most interesting link slice problem.

The next lemma expresses the transitivity of surgery solutions; we use it to pass
from the original to the new universal problems.

LEMMA 7.3 (Transitivity of surgery). Let f : M −→ P be an unobstructed
problem with surgery below the middle dimension completed so that f] is an
isomorphism on π1 and so that the kernel module

K ( f ) = ker(H2(M;Z[π1 P]) −→ H2(P;Z[π1 P]))
is a free module with hyperbolic intersection form λ and standard µ. Suppose
K ( f ) is represented by an embedded (possibly disconnected) 4-manifold
(W, ∂) ⊂ interior(M). Here ‘represented’ means that

H2(W ;Z[π1 P]) inc∗−→ H2(M;Z[π1 P])
is an isomorphism. We assume that π1(W ) ∼= Fk is free and W itself is the source
of an unobstructed problem, g : W −→ Q where Q = (\k S1 × D3, ]k S1 × S2).
Suppose g′ : V −→ Q is a solution to g, then there is a solution to f of the form
f ′ : M ′ := (M r W ) ∪ V −→ P.

Note. We have used notations in the statement and proof appropriate to the case
of orientable M . There is no difficulty extending to the nonorientable case.

Proof. Consider the two braided Mayer–Vietoris sequences below, where for ease
of reading we have suppressed the functor H∗(−;Z[π1 P]) applied to each space
and simply written a subscript for the value of ∗.

(MrW )2⊕W2
// M2 ∂

%%
(MrW )1⊕W1

// M1 ∂

%%
. . . // ∂W2

88

''
∂W1

88

''
∂W0

(MrW )2⊕V2
// M ′2

∂ 99

(MrW )1⊕V1
// M ′1

∂ 99

(7.1)
A theorem of Wall [Wal67] constructs 1-manifold 1-skeleton for Poincaré spaces
P so we may embed Q ⊂ P and thereby obtain maps from line (7.1) to line (7.2),
the corresponding Mayer–Vietoris sequence of Poincaré spaces.

. . . −→ ]k(S1 × S2)2 −→ (P r Q)2 ⊕ Q2 −→ P2
∂−→ ]k(S1 × S2)1

−→ (P r Q)1 ⊕ Q1 −→ P1 −→ ]k(S1 × S2)0
(7.2)
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Thus we now reinterpret line (7.1) not as homology groups but the kernel groups,
K∗( ;Z[π1 P]).

Since V ' ∨S1 ' Q, regardless of the cover π1 P induces on V and Q
the homotopy equivalence lifts to a homotopy equivalence Ṽ ' Q̃ implying
K∗(V ;Z[π1 P]) ∼= 0. In fact, the only nontrivial kernel group in line (7.1) is
K2(W ;Z[π1 P]). Thus K∗(M ′;Z[π1 P]) ∼= 0 for all ∗. Finally, a calculation using
van Kampen’s theorem implies that f] : π1 M ′ −→ π1 P is an isomorphism, so
f ′ : M ′ −→ P is a homotopy equivalence.

Armed with this lemma, and knowledge of the strength of the 2-Engel relation,
our task is now to draw a detailed schematic ‘spaghetti picture’ of a new class
of problems W inside M and carrying its kernel. M is a typical member of a
(coinitial) segment of the original universal problems based on Wh(Bing(Hopf))
and W will be a new problem based on D(Ram(h-triv)). Our spaghetti picture is
intended to capture all the important features. Once drawn we convert it into a
schematic Kirby link diagram about which we have enough precise knowledge to
prove Theorem 7.1.

We remember there is ramification but do not draw it in schematics. We start
with any element of Bing(Hopf) in which one component, for example l1 in
Figure 4.1, is trivial in the Milnor group of the remaining components modulo
the 2-Engel relation, as in Corollary 2.3. The simplest of these has 5 components,
and is drawn in Figure 4.1. We use this L for illustration but formally choose any
L ∈ {Bing(Hopf)} with all µ̄-invariants of length 6 4 vanishing.

This property that all µ̄-invariants of length 6 4 vanish for a link L is inherited
by all links P L , by definition the class of links where the initial k components of
L are arbitrarily ramified with parallel copies. P2 L means two parallels are taken.
Proposition 6.7 implies that not only is any element of P2 L trivial under WLH0

but trivial via geometric moves, 0-framed paired link homotopies, which are the
geometric counterpart of the algebraic factors enumerated in Corollary 2.3. The
totality of these moves is weak link homotopy (of a special form) and its general
position image in D4 will be denoted by X− and called the ‘Engel mess’. When
X− is joined to the cores of k plumbed 2-handles the result, X , is a singular image
of
⊔k

i=1(S
2 ∨ S2) in M(L), as pictured in Figure 7.4 (compare Figure 5.2).

The weak null homotopy in Figure 7.4 has (arbitrarily) 5 ordinary self-
intersections pictured and 3 sections where two strands run together for a bit
(they are called a ‘packet’ in Section 6, and drawn heavily in Figure 7.4) and
while fused have 6 (again arbitrary) self-intersections. Note two is not arbitrary
but the number of strands in a packet required by Corollary 2.3.

REMARK 7.4. The commutator identity (4.3) implies that the commutators
[h1, . . . , hk] in the statement of Corollary 2.3 may be assumed to involve only
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Figure 7.4. ‘Engel mess’ in D4.

the given normal generators {gi}, and not their inverses. It follows that the two-
strand ‘packets’ may be assumed to be of a single type, where (for some choice
of orientations) the orientations of the two strands match.

We call the 2-complex X pictured in Figure 7.4 the closed ‘Engel mess’. We
need to make it still messier so that it contains dual spheres. Actually Corollary
2.3 allows us to build the weak null homotopy so that each of the 2k longitudes
γ1, . . . , γ2k to P2 L lies in the kernel K :

1 −→ K −→ π1(S3 r P2 L) −→ π1(D4 r X) −→ 1. (7.3)

This is because each γi ∈ (π1(S3 r P2 L))4, which follows from the
formula [Mil54] for the behavior of µ̄-invariants under ramification.

Thus each of the 2k basic spherical classes Si in X contains a geometrically
dual sphere S⊥i in M (meeting X only in one point of the basis—sphere.) The null
homotopy of γi in (D4 r X) glued to the 2-handle core parallel to γi is one of
the geometric dual spheres. Of course these 2k dual spheres {S⊥} intersect and
self-intersect.

It is now a standard construction [Fr82a, FQ90] that the {S⊥} can be exploited
to add an additional layer of zero-framed caps (intersecting and self-intersecting)
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Figure 7.5. Note: type d 1-handles occur (numerous) times between all
(2k

2

)
pairs

of of types f curves.

to ‘kill’ all double points of X in D4 (the k double points in the plumbed handles
cannot be capped.) Let X+ = X∪ (caps) and W =Neighborhood(X+); Figure 7.5
exhibits the essential features of a handle diagram for any such W .

A slightly novel identity needed to draw Figure 7.5 is the effect of a double
point on a paired sheet, calculated in Figure 7.6.

Next we should Morse cancel 1-handles and 2-handles whenever possible in
Figure 7.5. The result is a bit complicated to draw but we can use a short hand
writing D whenever a component is ‘generalized double’ (see Section 5.2). In
some cases (look at (e) in Figure 7.5) this is precisely a Whitehead double—
the curve drawn in figure 6.7 should be doubled with itself (that is Whitehead
doubled) to produce the original curve (e). In other case, a, two separate curves are
generalized doubled, this indicated by the forked arrow in Figure 7.7 which points
to two curves representing bands to be plumbed. The boundary of this plumbing
is the dotted curve (a) in Figure 7.5. The b-curves in Figure 7.5 account for the
dotted curves labeled by D with a straight arrow. D2 means ‘double twice’. With
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Figure 7.6. Four types of singularities and their associated Kirby diagrams.

this notation Figure 7.5 becomes Figure 7.7 with ramification permitted before
each doubling step.

The only 1-handle components p1, . . . , pk (p for plumbing) not (twice)
doubled in Figure 7.7(b) can be thought of as doubles of a pair x, y− using the
obvious Seifert surfaces these components bound disjoint from the rest of the link
diagram, Figure 7.8.

Canceling all hyperbolic pairs and replacing pi as double (xi , y−i ) we get
Figure 7.9.

Figure 7.9 actually displays a link of the type claimed in Theorem 7.1. Leave xi

and y−i as they are and double each component labeled by a D2 once. The result
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Figure 7.7. The result of handle cancellation in Figure 7.5.

Figure 7.8. Seifert surface.

is a ramification of a homotopically trivial link—but not better (in our heuristic
hierarchy of Whitehead doubles introduced in this section; ‘better’ meaning
closer to being sliced by our current techniques.) Now all these components
are singly doubled (which includes the possibility of ramifying before taking
a generalized double) to obtain the link in Figure 7.9, showing that ∂W ∼=
S0(D(Ram(h-triv))), as desired.
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Figure 7.9. The result of canceling hyperbolic pairs in Figure 7.7.
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Appendix A. n-Engel relations

Since the 2-Engel relation is rather interesting in 4D topology, it is natural to
wonder what use higher n-Engel relations might have. First we summarize a bit
of what is known algebraically and raise some new questions natural when one
works (as so often in 4D topology) in the free Milnor group, rather than in the free
group.

The fact about 2-Engel groups that is crucially used in applications in this
paper is that the free group Fk modulo the 2-Engel relation is nilpotent of a
fixed class, independent of the number of generators k. It is known that 3-Engel
groups [Hei61] and also 4-Engel groups [HVL05] are locally nilpotent (that is
every finitely generated subgroup is nilpotent). The question for n-Engel groups,
n > 4 presently appears to be open. We do not know how the (local) nilpotency
class of the free group Fk mod the 3- or 4-Engel relation depends on k. Recall
(Section 2.1) that the free Milnor group on k generators, MFk , is nilpotent of
class k.
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Figure A.1. (a) The double point implies [x, x y] = 1 or equivalently [y, x, x] = 1.
(b) The second double point corresponds to [y, x, x, x, x] = 1. (c) The third
double point corresponds to [y, x, x, x, x, x, x] = 1, and so forth.

QUESTION A.1. Fix n > 3. Is the nilpotency class of MFk modulo the n-Engel
relation less than k? More specifically, is it independent of k?

An affirmative answer to this question could lead to an improvement of the
results of geometric applications of the 2-Engel relation in this paper. Another
possible way to refine the algebraic structure is to see if there is a way to restrict
(for example to a certain term of the lower central series) the group elements y
that come up in applications of the 2-Engel relation [y, x, x].

Returning to the first sentence of the introduction, we should follow Casson’s
philosophy and determine the local singular disk structure which enforces [y, x,
. . . , x], the n-Engel relation. This turns out to be rather easy beginning with the
‘kinky handle’ and then elaborating. The correspondence is laid out in Figure A.1.
(The n-ary kinky handle gives raise to the 2n-Engel relation.)

We sketch the calculation in (b). Denoting the meridian m1 to the secondary
kinky handle H in D4 by x , the meridian m2 equals x y , and m3 = (x y)x . Then a
meridian mw to the (shaded) Whitney disk reads off

mw = [m2,m3] = [x y, (x y)x ] = [x y, [x, x y]] = [x y, [x, [y, x]]].
Finally, the 2-cell of the Clifford torus of the second double point gives raise to a
relation [mw,m1] = [[x y, [x, [y, x]]], x] in π1(D4 r H). Using the commutator
identities (2.5), modulo higher-order commutators this gives the 4-Engel relation
[y, x, x, x, x].

A more rigorous Kirby diagram description (or if you like ‘definition’) of
higher-order kinky handles is given in Figure A.2. As usual we suppress
discussion of the ± sign at clasps, but we do pay careful attention to framings
so that the two components of the final, canceled down, link diagram are each
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Figure A.2. Kirby diagrams of higher-order kinky handles.

Figure A.3. The model n-ary kinky handle.

individually unknotted (as with the Whitehead link). This is a useful feature when
dualizing link diagrams.

Continuing in this way the model n-ary kinky handle is shown in Figure A.3.

REMARK A.1. It looks very likely that the least area unknotting disk for the
longer component as in [HST03] is exponential in n. Or put another way, if
that component is made round the link diagram will necessarily have > constn

crossings for some const > 1. The method of [HST03] looks relevant to this case
as well, but we did not succeed in adapting the argument. The new feature here is
that the bridge number of the diagram is not constant (as in [HST03]) but linear
in n.

These links are similar to Milnor’s family [Mil57, Figure 1], which arise from
thickenings of Figure A.1 with less favorable choices of framings.

It is a standard technique in link-homotopy theory to perform finger moves on
surfaces in 4-space in order to introduce Milnor relations (2.1) in the fundamental
group of the complement. We conclude this section by pointing out that there is an
analogous way of introducing higher Engel relations using iterated finger moves;
see Figure A.4.
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Figure A.4. Iterated finger moves giving raise to higher Engel relations: a spine
version on the left and a precise description using Kirby diagrams on the right.
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