Bull. Aust. Math. Soc. **97** (2018), 396–405 doi:10.1017/S0004972717001083

A GENERALISATION OF FINITE PT-GROUPS

BIN HU, JIANHONG HUANG[™] and ALEXANDER N. SKIBA

(Received 19 September 2017; accepted 17 October 2017; first published online 7 March 2018)

Abstract

Let *G* be a group and $\sigma = \{\sigma_i \mid i \in I\}$ some partition of the set of all primes. A subgroup *A* of *G* is σ subnormal in *G* if there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_m = G$ such that either $A_{i-1} \le A_i$ or $A_i/(A_{i-1})_{A_i}$ is a finite σ_j -group for some j = j(i) for $i = 1, \ldots, m$, and it is modular in *G* if $\langle X, A \cap Z \rangle =$ $\langle X, A \rangle \cap Z$ when $X \le Z \le G$ and $\langle A, Y \cap Z \rangle = \langle A, Y \rangle \cap Z$ when $Y \le G$ and $A \le Z \le G$. The group *G* is called σ -soluble if every chief factor H/K of *G* is a finite σ_i -group for some i = i(H/K). In this paper, we describe finite σ -soluble groups in which every σ -subnormal subgroup is modular.

2010 Mathematics subject classification: primary 20D10; secondary 20D15, 20D30.

Keywords and phrases: finite group, σ -subnormal subgroup, modular subgroup, quasinormal subgroup, *M*-group.

1. Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover, σ is some partition of the set of all primes \mathbb{P} , that is, $\sigma = \{\sigma_i \mid i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for $i \neq j$. If *G* is a σ_i -group for some *i*, we say that *G* is σ -primary [13]. Following [10, page 54], we call *G* an *M*-group if the lattice $\mathcal{L}(G)$ of all subgroups of *G* is modular.

A subgroup *H* of *G* is said to be *quasinormal* (Ore) or *permutable* (Stonehewer) in *G* if *H* permutes with every subgroup *L* of *G*, that is, HL = LH. Quasinormal subgroups possess many interesting and useful properties. Every quasinormal subgroup is subnormal (Ore [7]) and so it is also σ -subnormal in the following sense.

DEFINITION 1.1 [13]. A subgroup *A* of *G* is σ -subnormal in *G* if there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_n = G$ such that either $A_{i-1} \le A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for $i = 1, \dots, n$.

A subgroup M of G is called *modular in* G [9] if M is a modular element (in the sense of Kurosh [10, page 43]) of the lattice $\mathcal{L}(G)$, that is,

This research is supported by the NNSF of China (grant no. 11401264) and TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).

^{© 2018} Australian Mathematical Publishing Association Inc.

- (i) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ for all $X \le G, Z \le G$ such that $X \le Z$; and
- (ii) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $M \leq Z$.

It is easy to show that every quasinormal subgroup of G is modular in G. Moreover, the following very interesting fact is true.

THEOREM 1.2 [10, Theorem 5.1.1, page 43]. The subgroup M of G is quasinormal in G if and only if M is modular and subnormal in G.

The group G is called a PT-group [1, 2.0.2] if quasinormality is a transitive relation in G, that is, every subnormal subgroup of G is quasinormal in G. The description of PT-groups was first obtained by Zacher [15] for the soluble case (see Corollary 1.6 below), and by Robinson [8] for the general case on the basis of the classification of all nonabelian simple groups.

By Theorem 1.2, *G* is a *PT*-group if and only if every subnormal subgroup of *G* is modular in *G*. Bearing in mind this observation and the results in [8, 15], it seems to be natural to ask: what is the structure of *G* provided every σ -subnormal subgroup of *G* is modular in *G*? We will give a complete answer to this question in the case where *G* is σ -soluble in the following sense.

DEFINITION 1.3. The group *G* is σ -soluble [13] if every chief factor of *G* is σ -primary, and σ -decomposable (Shemetkov [11]), or σ -nilpotent (Guo and Skiba [4]), if $G = G_1 \times \cdots \times G_t$ for some σ -primary groups G_1, \ldots, G_t .

Before continuing, we consider some examples.

- **EXAMPLE 1.4.** (i) In the classical case, when $\sigma = \sigma^0 = \{\{2\}, \{3\}, \{5\}, \ldots\}$, the group *G* is σ^0 -soluble (respectively, σ^0 -nilpotent) if and only if *G* is soluble (respectively, nilpotent). A subgroup *A* of *G* is σ^0 -subnormal in *G* if and only if it is subnormal in *G*.
- (ii) In the other standard case, when $\sigma = \sigma^{\pi} = \{\pi, \pi'\}$, the group *G* is σ^{π} -soluble (respectively, σ^{π} -nilpotent) if and only if *G* is π -separable (respectively, π -decomposable, that is, $G = O_{\pi}(G) \times O_{\pi'}(G)$). A subgroup *A* of a π -separable group *G* is σ^{π} -subnormal in *G* if and only if there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that $A_i/(A_{i-1})_{A_i}$ is either a π -group or a π' -group for i = 1, ..., n.

(iii) In the theory of π -soluble groups $(\pi = \{p_1, \ldots, p_n\})$, we deal with the partition $\sigma = \sigma^{0\pi} = \{\{p_1\}, \ldots, \{p_n\}, \pi'\}$ of \mathbb{P} . Note that *G* is $\sigma^{0\pi}$ -soluble (respectively, $\sigma^{0\pi}$ -nilpotent) if and only if *G* is π -soluble (respectively, π -nilpotent, that is, $G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$). A subgroup *A* of *G* is $\sigma^{0\pi}$ -subnormal in *G* if and only if there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is a π' -group for i = 1, ..., n. Therefore, A is $\sigma^{0\pi}$ -subnormal in G if and only if it is \mathfrak{F} -subnormal in G in the sense of Kegel [6], where \mathfrak{F} is the class of all π' -groups.

[2]

[3]

(iv) Let p, q, r, t be distinct primes, where q divides p - 1 and t divides r - 1. Let Q be a simple $\mathbb{F}_q C_p$ -module which is faithful for C_p , let $C_r \rtimes C_t$ be a nonabelian group of order rt, and let $A = C_t$. Finally, let $G = (Q \rtimes C_p) \times (C_r \rtimes C_t)$ and let B be a subgroup of order q in Q. Then B < Q since p > q. It is not difficult to show that A is modular in G (see [10, Lemma 5.1.8]). On the other hand, A is σ -subnormal in G, where $\sigma = \{\{q, r, t\}, \{q, r, t\}'\}$, and so A is σ -quasinormal in G. Finally, note that B is subnormal but it is not modular in G by Lemma 2.2(i) below.

Now we can give an answer to the question posed above.

THEOREM 1.5. Let D be the σ -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N. If G is σ -soluble and every σ -subnormal subgroup is modular in G, then:

- (i) $G = D \rtimes L$, where D is an abelian Hall subgroup of G of odd order and L is a σ -nilpotent M-group;
- (ii) every element of G induces a power automorphism in D; and
- (iii) $O_{\sigma_i}(D)$ has a normal complement in a Hall σ_i -subgroup of G for all i.

Conversely, if (i), (ii) and (iii) hold for some subgroups D and L of G, then every σ -subnormal subgroup is modular in G.

In view of [10, 2.3.2, 2.4.4], if G is a nilpotent M-group, then G is an Iwasawa group [1, 1.4.2], that is, every subgroup of G is quasinormal in G. Therefore in the case $\sigma = \sigma^0$ (see Example 1.4(i)), Theorem 1.5 gives the following well-known result.

COROLLARY 1.6 (Zacher [15]). A group G is a soluble PT-group if and only if the following conditions hold:

- (i) the nilpotent residual $D = G^{\Re}$ of G is an abelian Hall subgroup of odd order;
- (ii) every element of G induces a power automorphism in D; and
- (iii) G/D is an Iwasawa group.

In the case $\sigma = \sigma^{\pi}$ (Example 1.4(ii)), Theorem 1.5 gives the following corollary.

COROLLARY 1.7. Suppose that G is π -separable and let D be the π -decomposable residual of G, that is, the intersection of all normal subgroups N of G with π -decomposable quotient G/N. Then every σ^{π} -subnormal subgroup of G is modular in G if and only if the following conditions hold:

- (i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order and $M = O_{\pi}(M) \times O_{\pi'}(M)$ and every element of G induces a power automorphism in D;
- (ii) $O_{\pi}(D)$ has a normal complement in a Hall π -subgroup of G;
- (iii) $O_{\pi'}(D)$ has a normal complement in a Hall π' -subgroup of G.

In the case $\sigma = \sigma^{0\pi}$ (Example 1.4(iii)), Theorem 1.5 gives the following corollary.

398

COROLLARY 1.8. Suppose that G is π -soluble and let D be the π -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with π -nilpotent quotient G/N. Then every $\sigma^{0\pi}$ -subnormal subgroup of G is modular in G if and only if the following conditions hold:

- (i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order and $M = O_{p_1}(M) \times \cdots \times O_{p_n}(M) \times O_{\pi'}(M)$ and every element of G induces a power automorphism in D;
- (ii) $O_{\pi'}(D)$ has a normal complement in a Hall π' -subgroup of G.

2. Preliminaries

If $G = A \rtimes \langle t \rangle$ is nonabelian, where A is an elementary abelian p-group and t is an element of prime order $q \neq p$ which induces a nontrivial power automorphism on A, then we say that G is a P-group of type (p, q) (see [10, page 49]).

LEMMA 2.1 [10, Lemma 2.2.2(d)]. If $G = A \rtimes \langle t \rangle$ is a P-group of type (p, q), then $\langle t \rangle^G = G$.

The next two lemmas collect the properties of modular subgroups which we use in our proofs.

LEMMA 2.2 [10, Theorems 5.1.14 and 5.2.5]. Let M be a modular subgroup of G. Then:

- (i) M/M_G is nilpotent and every chief factor of G between M^G and M_G is cyclic.
- (ii) If $M_G = 1$, then $G = S_1 \times \cdots \times S_r \times K$, where $0 \le r \in \mathbb{Z}$ and for all $i, j \in \{1, \dots, r\}$,
 - (a) S_i is a nonabelian P-group,
 - (b) $(|S_i|, |S_j|) = 1 = (|S_i|, |K|)$ for $i \neq j$,
 - (c) $M = Q_1 \times \cdots \times Q_r \times (M \cap K)$ and Q_i is a nonnormal Sylow subgroup of S_i ,
 - (d) $M \cap K$ is quasinormal in G.

LEMMA 2.3 [10, page 201]. Let A, B and N be subgroups of G, where A is modular in G and N is normal in G.

- (i) If B is modular in G, then $\langle A, B \rangle$ is modular in G.
- (ii) AN/N is modular in G/N.
- (iii) If $N \le B$ and B/N is modular in G/N, then B is modular in G.
- (iv) If $A \leq B$, then A is modular in B.

LEMMA 2.4 [13, Lemma 2.6]. Let A, K and N be subgroups of G. Suppose that A is σ -subnormal in G and N is normal in G.

- (i) If $N \le K$ and K/N is σ -subnormal in G/N, then K is σ -subnormal in G.
- (ii) $A \cap K$ is σ -subnormal in K.
- (iii) If A is a σ -Hall subgroup of G, then A is normal in G.
- (iv) If $H \neq 1$ is a Hall σ_i -subgroup of G and A is not a σ'_i -group, then $A \cap H \neq 1$ and $A \cap H$ is a Hall σ_i -subgroup of A.

- (v) AN/N is σ -subnormal in G/N.
- (vi) If K is a σ -subnormal subgroup of A, then K is σ -subnormal in G.
- (vii) If A is a σ_i -group, then $A \leq O_{\sigma_i}(G)$.

LEMMA 2.5 [5, Proposition 3.4]. Every subgroup of a σ -nilpotent group is σ -subnormal.

LEMMA 2.6 [13, Corollary 2.4 and Lemma 2.5]. The class of all σ -nilpotent groups \mathfrak{N}_{σ} is closed under taking products of normal subgroups, homomorphic images and subgroups. Moreover, if *E* is a normal subgroup of *G* and $E/E \cap \Phi(G)$ is σ -nilpotent, then *E* is σ -nilpotent.

We will use $G^{\mathfrak{N}_{\sigma}}$ to denote the σ -nilpotent residual of G. In view of Lemma 2.6, the following lemma is a consequence of [2, Proposition 2.2.8].

LEMMA 2.7. If N is a normal subgroup of G, then $(G/N)^{\mathfrak{N}_{\sigma}} = G^{\mathfrak{N}_{\sigma}}N/N$.

Lемма 2.8.

- (i) Every M-group is soluble.
- (ii) If $G = A \times B$, where A is a Hall subgroup of G and A and B are M-groups, then G is an M-group.
- (iii) Every subgroup and every quotient of an M-group is an M-group.

PROOF. Statements (i) and (ii) are corollaries of Iwasawa's theorem on the structure of *M*-groups [10, 2.4.4].

As in the Introduction, we use $\mathcal{L}(G)$ to denote the lattice of all subgroups of G. Suppose that R is a subgroup of an M-group G. Then $\mathcal{L}(R) \subseteq \mathcal{L}(G)$, so R is an M-group. Finally, suppose that R is normal in G. Then $\mathcal{L}(G/R)$ is isomorphic to the interval [G/R] in the modular lattice $\mathcal{L}(G)$. Hence G/N is an M-group. \Box

LEMMA 2.9 [12, Theorem A]. If G is σ -soluble, then G possesses a Hall σ_i -subgroup for all *i*.

A subgroup *H* of a σ -soluble group *G* is said to be σ -permutable in *G* [13] if *H* permutes with every Hall σ_i -subgroup of *G* for all *i*.

LEMMA 2.10 [14, Theorem A]. Suppose that G is σ -soluble and let $D = G^{\Re_{\sigma}}$. If D is nilpotent and every σ -subnormal subgroup of G is σ -permutable in G, then:

- (i) $G = D \rtimes L$, where D is an abelian Hall subgroup of G of odd order and L is a σ -nilpotent group;
- (ii) every element of G induces a power automorphism in D; and
- (iii) $O_{\sigma_i}(D)$ has a normal complement in a Hall σ_i -subgroup of G for all i.

PROPOSITION 2.11. Suppose that the subgroup H of G is modular and σ -subnormal in G. If G possesses a Hall σ_i -subgroup, then H permutes with every Hall σ_i -subgroup of G.

400

PROOF. Suppose the statement is false and let *G* be a counterexample of minimal order. Then $HV \neq VH$ for some Hall σ_i -subgroup *V* of *G*.

It is clear that V is a Hall σ_i -subgroup of $\langle H, V \rangle$. On the other hand, H is modular and σ -subnormal in $\langle H, V \rangle$ by Lemmas 2.3(iv) and 2.4(ii). In the case where $\langle H, V \rangle < G$, the choice of G implies HV = VH. Therefore $\langle H, V \rangle = G$.

Since *H* is σ -subnormal in *G*, there is a subgroup chain $H = H_0 \le H_1 \le \cdots \le H_n = G$ such that either $H_{i-1} \le H_i$ or $H_i/(H_{i-1})_{H_i}$ is σ -primary for $i = 1, \dots, n$.

We can assume without loss of generality that $M = H_{n-1} < G$. Then *H* permutes with every Hall σ_i -subgroup *U* of *M* for every *i*. Moreover, the modularity of *H* in *G* implies that

$$M = M \cap \langle H, V \rangle = \langle H, M \cap V \rangle.$$

On the other hand, by Lemma 2.4(iv), $M \cap V$ is a Hall σ_i -subgroup of M. Hence $M = H(M \cap V) = (M \cap V)H$. If $V \le M_G$, then $H(M \cap V) = HV = VH$ and so $V \le M_G$.

Now note that VM = MV. Indeed, if M is normal in G, it is clear. Otherwise, G/M_G is σ -primary and so G = MV = VM since $V \nleq M_G$ and V is a Hall σ_i -subgroup of G. Therefore

$$VH = V(M \cap V)H = VM = MV = H(M \cap V)V = HV.$$

This contradiction completes the proof of the lemma.

3. Proof of Theorem 1.5

PROOF OF NECESSITY. First suppose that G is a σ -soluble group such that every σ -subnormal subgroup of G is modular in G. We show that conditions (i), (ii) and (iii) hold for G. Assume that this is false and let G be a counterexample of minimal order. Then $D = G^{\Re_{\sigma}} \neq 1$, that is, G is not σ -nilpotent.

Claim (a). The hypothesis holds for every quotient G/N of G.

Let H/N be a σ -subnormal subgroup of G/N. Then H is a σ -subnormal subgroup of G by Lemma 2.4(i), so H is modular in G by hypothesis. Hence H/N is modular in G/N by Lemma 2.3(ii) and this proves (a).

Claim (b). G/D is an M-group and therefore $D \neq 1$.

In view of Lemmas 2.5 and 2.6, every subgroup of G/D is σ -subnormal in G/D. Therefore G/D is an *M*-group by claim (a), so $D \neq 1$ by the choice of *G*.

Claim (c). D is nilpotent.

Assume this is false and let *R* be a minimal normal subgroup of *G*. First note that $RD/R = (G/R)^{\Re_{\sigma}}$ is abelian by Lemma 2.7 and claim (a). Therefore $R \leq D$ and *R* is the unique minimal normal subgroup of *G*. For otherwise, if *N* is any other minimal normal subgroup of *G*, then $D \simeq D/1 = D/R \cap N$, so that *D* is abelian. Finally, $R \nleq \Phi(G)$ by Lemma 2.6. Therefore $C_G(R) \leq R$ by [3, A, 15.2]. Now let *V* be a maximal subgroup of *R*. Suppose that $V \neq 1$. Then $V_G = 1$ and $R \leq V^G$. Since *G* is σ -soluble, *R* is σ -primary and so *V* is σ -subnormal in *G* by Lemma 2.4(vi). Therefore

[6]

V is modular in *G* by hypothesis, so |R| = p for some prime *p* by Lemma 2.2(i). Hence $C_G(R) = R$ and so $G/R = C_G(R)$ is cyclic, which implies that *G* is supersoluble. But then $D = G^{\mathfrak{N}_{\sigma}} \leq G' \leq F(G)$ and so *D* is nilpotent, a contradiction. This proves (c).

Final contradiction for the necessity.

Since *G* is σ -soluble by hypothesis, from Lemma 2.9 and Proposition 2.11 it follows that every σ -subnormal subgroup of *G* is σ -permutable in *G*. Therefore, in view of Lemma 2.10 and claim (c), $G = D \rtimes L$, where $L \simeq G/D$ is an *M*-group and conditions (i), (ii) and (iii) hold for *G*.

PROOF OF SUFFICIENCY. Now we show that if conditions (i), (ii) and (iii) hold for some subgroups D and L, then every σ -subnormal subgroup H of G is modular in G. Suppose that this is false, that is, some σ -subnormal subgroup H of G is not modular in G. Let G be a counterexample with |G| + |H| minimal. Then $D \neq 1$. Moreover, G is soluble by Lemma 2.8, and the following statement holds.

Claim (1). *Either for some subgroups* $X \le G, Z \le G$, *where* $X \le Z$,

$$\langle X, H \cap Z \rangle \neq \langle X, H \rangle \cap Z, \tag{(*)}$$

or for some subgroups $X \leq G, Z \leq G$, where $H \leq Z$,

$$\langle H, X \cap Z \rangle \neq \langle H, X \rangle \cap Z.$$
 (**)

Claim (2). *The hypothesis holds on every quotient* G/N *of* G.

First note that $G/N = (DN/N) \rtimes (LN/N)$, where $DN/N \simeq D/D \cap N$ is an abelian Hall subgroup of G/N of odd order and $LN/N \simeq L/L \cap N$ is a σ -nilpotent *M*-group by Lemma 2.8(iii) and so condition (i) holds for G/N. Moreover, if V/N is any subgroup of DN/N, then $V = N(D \cap V)$ and so, in fact, V/N is normal in G/N since $D \cap V$ is normal in *G* by condition (ii). Hence condition (ii) holds for G/N.

Condition (iii) implies that $O_{\sigma_i}(D)$ has a normal complement *S* in a Hall σ_i -subgroup *E* of *G* for every *i*. Then *EN*/*N* is a Hall σ_i -subgroup of *G*/*N* and *SN*/*N* is normal in *EN*/*N*. Since *D* is nilpotent, $O_{\sigma_i}(D)N/N = O_{\sigma_i}(DN/N)$. Hence

$$(SN/N)(O_{\sigma_i}(DN/N)) = (SN/N)(O_{\sigma_i}(D)N/N) = EN/N$$

and

$$(SN/N) \cap O_{\sigma_i}(DN/N) = (SN/N) \cap (O_{\sigma_i}(D)N/N) = N(S \cap O_{\sigma_i}(D)N)/N$$
$$= N(S \cap O_{\sigma_i}(D))(S \cap N)/N = N/N.$$

Hence condition (iii) also holds on G/N.

Claim (3). $H_G = 1$.

Assume $H_G \neq 1$. The hypothesis holds for G/H_G by claim (2). On the other hand, H/H_G is σ -subnormal in G/H_G by Lemma 2.4(v) and so H/H_G is modular in G/H_G by the choice of G. But then H is modular in G by Lemma 2.3(iii), a contradiction, and this proves claim (3).

Claim (4). *H* is a σ_i -group for some *i* and $H \leq L^x$ for all $x \in G$.

Claim (3) implies that $H \cap D = 1$, so $H \simeq HD/D \le G/D$ is σ -nilpotent by Lemma 2.6 and hence $H = A_1 \times \cdots \times A_n$ for some σ -primary groups A_1, \ldots, A_n . Then $H = A_1$ is a σ_i -group for some *i* since otherwise *H* is modular in *G* by Lemma 2.3(i) and the choice of (G, H).

Let M_i be the Hall σ_i -subgroup of L and E be a Hall σ_i -subgroup of G containing M_i . Lemma 2.4(iv) implies that $H \le E^x$ for all $x \in G$. Therefore, if $E \cap D = 1$, then M_i is a Hall σ_i -subgroup of G and so $H \le L^x$ for all $x \in G$.

Now suppose that $E \cap D \neq 1$. Then $H \leq E^x = O_{\sigma_i}(D) \times M_i^x$ by condition (iii) since D is a nilpotent Hall subgroup of G, so $H \leq M_i^x \leq L^x$.

Claim (5). *The Hall* σ_i *-subgroups of G are M-groups for all j.*

Let *A* be a Hall σ_j -subgroup of *G*. If $A \cap D = 1$, then $A \simeq AD/D \le G/D$, where G/D is an *M*-group. Hence *A* is an *M*-group by Lemma 2.8(iii). Now let $A \cap D \ne 1$. Then $A = (A \cap D) \times S$ by condition (iii), where *S* is a Hall subgroup of *A*. Then *A* is an *M*-group by Lemma 2.8(ii) because $A \cap D$ and $S \simeq DS/D \le G/D$ are *M*-groups.

Claim (6). *The subgroup H is modular in every proper subgroup E of G containing H.*

It is enough to show that the hypothesis holds for *E*. First note that $D \cap E$ is a normal abelian Hall π -subgroup of *E* of odd order, where $\pi = \pi(D)$, and if *V* is a Hall π' -subgroup of *E*, then $V \leq L^x$ for some $x \in G$ since *G* is soluble and *L* is a Hall π' -subgroup of *G*. Therefore $E = (D \cap E) \rtimes V$, where *V* is an *M*-group by Lemma 2.8(iii). Hence condition (i) holds for $(E, D \cap E, V)$. It is clear also that condition (ii) holds for $D \cap E$. Finally, let $E_i \leq H_i$, where E_i is a Hall σ_i -subgroup of *E* and H_i is a Hall σ_i -subgroup of *G*. Then, by condition (iii), $H_i = O_{\sigma_i}(D) \times S$ and so $E_i = E_i \cap (O_{\sigma_i}(D) \times S) = (E_i \cap O_{\sigma_i}(D)) \times (E_i \cap S)$, where $E_i \cap O_{\sigma_i}(D) = O_{\sigma_i}(D \cap E)$. Hence condition (iii) also holds for $(E, D \cap E, V)$. This proves (6).

Claim (7). $\langle X, H \rangle = G$.

Suppose that $E = \langle X, H \rangle < G$ and let $Z_0 = Z \cap E$. Then *H* is modular in *E* by claim (6). In the case where $X \leq Z$,

$$\langle X,H\rangle \cap Z = Z_0 = Z_0 \cap \langle X,H\rangle = \langle X,Z_0 \cap H\rangle = \langle X,(Z \cap \langle H,X\rangle) \cap H\rangle = \langle X,H \cap Z\rangle,$$

contrary to (*). On the other hand, in the case where $H \leq Z$, similarly

$$\langle X, H \rangle \cap Z = Z_0 = Z_0 \cap \langle H, X \rangle = \langle H, Z_0 \cap X \rangle = \langle H, X \cap Z \rangle,$$

which is impossible by (**). Hence $\langle H, X \rangle = G$.

Claim (8). $D \leq X$.

It is clear that $X = (D \cap X) \rtimes X_1$, where $X_1 \leq L^x$ for some $x \in G$. Claim (4) implies that $H \leq L^x$. Hence $\langle X_1, H \rangle \leq L^x$ and, from claim (7),

$$G = \langle X, H \rangle = \langle (D \cap X) \rtimes X_1, H \rangle = (D \cap X) \langle X_1, H \rangle = D \rtimes L^x.$$

Thus,

404

$$D = D \cap (D \cap X)\langle X_1, H \rangle = (D \cap X)(D \cap \langle X_1, H \rangle) = D \cap X$$

and so $D \leq X$.

Claim (9). $Z \cap D = 1$ and therefore $Z \leq L^x$ for some $x \in G$.

Suppose that $Z_0 = Z \cap D \neq 1$. Claim (8) implies that $Z_0 \leq X$. In view of Lemma 2.4(v), HZ_0/Z_0 is σ -subnormal in G/Z_0 . Therefore from claim (2) and the choice of *G* it follows that HZ_0/Z_0 is modular in G/Z_0 . Hence in the case $X \leq Z$,

$$\langle X/Z_0, (HZ_0/Z_0) \cap (Z/Z_0) \rangle = \langle X/Z_0, HZ_0/Z_0 \rangle \cap (Z/Z_0),$$

which implies that

 $\langle X, (H \cap Z) \rangle = \langle XZ_0, H \cap Z \rangle = \langle X, Z_0(H \cap Z) \rangle = \langle X, HZ_0 \cap Z \rangle = \langle X, HZ_0 \rangle \cap Z,$

and so

$$\langle X, (H \cap Z) \rangle = \langle X, H \rangle \cap Z$$

since evidently

$$\langle X, H \cap Z \rangle \leq \langle X, H \rangle \cap Z.$$

In the case $H \leq Z$, similarly,

$$\langle H, X \cap Z \rangle = \langle H, Z_0(X \cap Z) \rangle = \langle HZ_0, X \cap Z \rangle = \langle HZ_0, X \rangle \cap Z = \langle H, X \rangle \cap Z.$$

But this situation is impossible by claim (1). This contradiction shows that $Z \cap D = 1$. Hence $Z \leq L^x$ for some $x \in G$ since G is soluble and L is a Hall π' -subgroup of G where $\pi = \pi(D)$.

Claim (10). $X \not\leq Z$.

Otherwise, we have $D \le Z$, which is impossible by claim (9) since $D \ne 1$.

Claim (11). $L^x = \langle H, L^x \cap X \rangle$.

Let $1 < Z_0 \le D$. Claim (2) and the choice of *G* imply that HZ_0/Z_0 is modular in G/Z_0 . Moreover, claims (1) and (10) imply that $H \le Z$. Also, in view of claim (4), $H \le L^x$. Therefore from claim (7),

$$L^{x}Z_{0}/Z_{0} = (L^{x}Z_{0}/Z_{0}) \cap \langle HZ_{0}/Z_{0}, X/Z_{0} \rangle$$

= $\langle HZ_{0}/Z_{0}, (L^{x}Z_{0}/Z_{0}) \cap (X/Z_{0}) \rangle = \langle HZ_{0}/Z_{0}, Z_{0}(L^{x} \cap X)/Z_{0} \rangle,$

and so

$$Z_0 \rtimes L^x = Z_0 \rtimes \langle H, (L^x \cap X) \rangle,$$

where L^x and $\langle H, (L^x \cap X) \rangle$ are Hall π' -subgroups of $Z_0 \rtimes L^x$ and $\pi = \pi(D)$. This proves (11).

Final contradiction for the sufficiency.

Claim (9) implies that $Z \leq L^x$ for some $x \in G$. Then

$$Z = \langle H, Z \cap (L^x \cap X) \rangle = \langle H, Z \cap X \rangle$$

by claim (11) since $L^x \simeq G/D$ is an *M*-group. But this is impossible by claims (1) and (10).

References

- [1] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, *Products of Finite Groups* (Walter de Gruyter, Berlin, 2010).
- [2] A. Ballester-Bolinches and L. M. Ezquerro, *Classes of Finite Groups* (Springer, Dordrecht, 2006).
- [3] K. Doerk and T. Hawkes, Finite Soluble Groups (Walter de Gruyter, Berlin, 1992).
- W. Guo and A. N. Skiba, 'Finite groups with permutable complete Wielandt sets of subgroups', J. Group Theory 18 (2015), 191–200.
- [5] W. Guo and A. N. Skiba, 'Finite groups whose *n*-maximal subgroups are σ -subnormal', Preprint, 2016, arXiv:1608.03353 [math.GR].
- [6] O. H. Kegel, 'Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten', *Arch. Math.* **30**(3) (1978), 225–228.
- [7] O. Ore, 'Contributions in the theory of groups of finite order', Duke Math. J. 5 (1939), 431-460.
- [8] D. J. S. Robinson, 'The structure of finite groups in which permutability is a transitive relation', J. Aust. Math. Soc. 70 (2001), 143–159.
- [9] R. Schmidt, 'Modulare Untergruppen endlicher Gruppen', Illinois J. Math. 13 (1969), 358–377.
- [10] R. Schmidt, Subgroup Lattices of Groups (Walter de Gruyter, Berlin, 1994).
- [11] L. A. Shemetkov, Formations of finite groups (Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978).
- [12] A. N. Skiba, 'A generalization of a Hall theorem', J. Algebra Appl. 15(4) (2015), 21–36.
- [13] A. N. Skiba, 'On σ -subnormal and σ -permutable subgroups of finite groups', J. Algebra 436 (2015), 1–16.
- [14] A. N. Skiba, 'Characterizations of some classes of finite σ -soluble $P\sigma T$ -groups', J. Algebra, to appear.
- [15] G. Zacher, 'I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali', Atti Accad, Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur. 37(8) (1964), 150–154.

BIN HU, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, PR China e-mail: hubin118@126.com

JIANHONG HUANG, School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, PR China e-mail: jhh320@126.com

ALEXANDER N. SKIBA, Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel 246019, Belarus e-mail: alexander.skiba49@gmail.com