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THE ARITHMETIC OF THE QUASI-UNISERIAL 
SEMIGROUPS WITHOUT ZERO 

ERNST AUGUST BEHRENS 

An element a in a partially ordered semigroup T is called integral if 

ax Ç % and X Û Ç X for every x £ T 

is valid. The integral elements form a subsemigroup S of T if they exist. Two 
different integral idempotents e and f in T generate different one-sided ideals, 
because eT = fT> say, implies e = fe Q f a n d / = ef Q e. 

Let M be a completely simple semigroup, ikf is the disjoint union of its 
maximal subgroups [4]. Their identity elements generate the minimal 
one-sided ideals in M. The previous paragraph suggests the introduction of the 
following hypothesis on M. 

Hypothesis 1. Every minimal one-sided ideal in M is generated by an integral 
idempotent. 

I t is the objective of this paper to derive the S-arithmetic of M, i.e. the theory 
of the lattice ordered semigroup Vs(M) of the S-ideals in M, in the case that 
the structure group G of M is the naturally ordered infinite cyclic group. 
Then the results of this investigation can be applied to the arithmetic of the 
D*-arithmetic prime rings (see, e.g., [2; 3]). 

Denote by {eu i € I) the set of the integral idempotents in M. Then, by 
the above remark, the set of the minimal right ideals and the set of the minimal 
left ideals in M can be indexed by I. Therefore in the Rees matrix representa
tion of M (see e.g., [5; 4]) the maximal subgroups H^ can be indexed by 
I X I, and the sandwichmatrix P is contained in GIXi where the structure 
group G of M is isomorphic to each Htj. The partial ordering C of M induces 
a partial ordering of G = Hn. 

Now take 

(1) G = S = {o>z:z£ Z } , 

the infinite cyclic group, (partially) ordered by 

(2) co* S coy <̂> x ^ y for x, y Ç Z. 

Then by the results of Behrens [1] the sandwichmatrix 

(3) P : (i,j) -> «<"> for (i,j) G I XI 
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in the Rees matrix representation M = M (S', I, I) P) has entries with 
exponents 0 S (ij) 6 Z, which have to satisfy the conditions 

(0. (w) = 0 
(4) \l. (ij) + m è (ik) 

(2. ( y ) + (ji) > 0,iii5*j, 

for i, j , k € I, and the partial order C in M is given by 

(«*; A, i) Ç (cô ; j , fe)^xè (A;) + y + (ki). 

The integral idempotents are 

et = (co°; i, i) for i Ç J 

and every element in M can be expressed uniquely by 

denning 

The subsemigroup of the integral elements in M consists of 

(5) 5 = {œseiej', 0 ^ s £ Z and i,7 Ç /J 

and 5 is quasi-uniserial (see [1]). Conversely every quasi-uniserial semigroup 
without zero can be derived in this way, up to isomorphism. The partial 
ordering C in M can be defined by 

(6) a Ç b <^ a 6 (6) = SbS for a,b £ M 

also, where SbS is the principal 5-ideal in M, generated by the element b £ M. 
S is not commutative (with the only exception of the case | / | = 1), but it 
satisfies 

(F2) (ab) = (a)(b). 

Therefore it is possible to make this paper self-contained by the introduction 
of the expressions coge^ as the elements of a semigroup M, where co2 Ç 3 
and the multiplication in M is given by 

(7) ù}xehei(avejek = of+v+W)+W)+u*)-W) 6hekt 

The sandwichmatrix P , determining the multiplication (7) is given in (3) 
and has to fulfill the conditions 0, 1 and 2 in (4). P can be assumed as 
1-normalized, i.e., (li) = 0 for i £ I, where 1 is a fixed index in / . 

Now define the subsemigroup 5 of M, by (5). Then (6) defines a relation 
C on M, which makes M a partially ordered semigroup with S as the set of 
its integral elements and satisfying hypothesis 1. The formula (F2) can be 
checked very easily. 
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Definition 1. An 5-ideal in M is a subset A of ilf, different from M, such 
that 5-4 ^ A and ,45 ^ 4 is valid. The 5-ideal A is integral if A ^ 5 . The 
principal 5-ideal, generated by b Ç M, is denoted by (&). 

The 5-ideals in M form a lattice ordered semigroup Fs(M) under the 
multiplication 

A -B = {aZ>;a 6 ,4,6 € 5} 

for 5-ideals ,4 and B, and their set theoretic union and meet as lattice opera
tions. The theory of Vs(M) can be called the arithmetic of the quasi-uniserial 
semigroup 5. It will be developed in this paper under the following hypothesis. 

Hypothesis 2. The exponents (ij) in the entries pti = œ(ij) of the sandwich-
matrix P are bounded. 

By the use of the metric 

à : (h j) -> (ij) + (ji) f o r h j & I 

on the set I , introduced in [1, §4] the hypothesis 2 reads: the distances of the 
elements in the set I , with respect to the metric ô on J, are bounded. 

At first we need a method which associates with every 5-ideal A a matrix A 
in SIXI such that the operations in Vs(M) are handled in SIXI

 m a simple 
manner. Every element in A is of the form 

œzeiej 

and A contains with ufetej, the principal 5-ideal coa(e^). Therefore the 
numbers 

(8) <Xij = min{£ £ Z; cofe^ Ç ,4} for i,j G I 

describe the ideal A completely and A possesses the representation 

(9) A = U ÙF'M, 

which is normalized in the sense that its (i,j)-component is maximal and 
therefore uniquely determined by A. The number atj exists because of hypo
thesis 2 and the following remark. The 5-ideal A contains with the element 
bfeieù the elements e^e^ef^ for every h, k Ç I. By (7) this is equivalent to 

(10) ah1i + (hk) = minttj{(hi) + atJ + (ij) + 0"*)}» 

and also to 
a** + (hk) = min,{ (hi) + ai1c + (ik)}, 

= min jlanj + (hj) + (jk)}, 

considering j = k and h — i respectively in the last two equations, h = k = 1 
in (10) proves that the set of numbers a^ + (ij) is bounded from below. 
Therefore the mapping 

(11) <p :A = U <*aiiM -> A = (û>ai'+(</)) 

https://doi.org/10.4153/CJM-1971-054-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-054-6


510 ERNST AUGUST BEHRENS 

maps the S-ideals A in M into a subset of the set SIXI* of those matrices in 
SIXI, the entries of which have exponents bounded from below for each 
matrix. 

The set SIXI*
 1S a lattice, if we define the (i,j,)-entry of the meet of A 

and B as the maximum of the (i, j)-entries of A and B and the join of A and B 
dually. Moreover the mapping <p becomes a lattice monomorphism of Vs(M) 
into Six*-

To exhibit the multiplication in Vs(M) in 3/x/*, combine (F2) with the 
formula (7) and the representations (9) for A and B in Vs(M), to obtain 

A-B = U U ^ y i W W 

= U <fhk{ehek). 
h,k 

Here 

yhk = mmij{aht + (hi) + (ij) + (jk) — (hk) + fij1c) 

implies that 

(12) yhk + (hk) = min^o^- + (hj) + $Jk + (jk)}, 

because by (10) 

mmi[ani + (hi) + (ij)} = ahj + (hj) 

is valid. 
This suggests the definition of a o-product in SIXI* by 

(13) (w*»0 o («*«'') = of"' with Tfj = minr{£ i r + g r y}. 

THEOREM 1. SIXI* ^s a lattice-ordered semigroup under the o-multiplication 
defined by (13). Moreover 

(14) A o [ B n r ] = A o B H A o r 

is valid for A, B, Y G c3/xi*« 

Proof. The proof is straightforward. 

THEOREM 2. 77ze mapping <p, defined by (11), w aw isomorphism of the lattice-
ordered semigroup Vs (M) of the S-ideals in M onto the subsemigroup 

(15) <P(V3(M)) = {AG â/x/*î P o A o P = A}, 

where 

(16) P = çS = P o P 

is £Â6 sandwichmatrix of M. 

Proof This follows from (12), (13) and (10). 
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THEOREM 3. The S-ideals co"^^) , a G Z and i,j £ I, are the only join-
irreducible S-ideals in M. Each S-ideal A in M possesses exactly one representation 

(17) A = U u*"(e0j) 

by its irreducible join-components, which is normalized in the sense that the atj 

are minimal with respect to A. 

Proof. The existence and the uniqueness of the representation (17) are 
derived in (9); (17) then shows that at most the principal S-ideals ofl(eiej) 
are join-irreducible. On the other hand 

«"Wi) = U BT 

implies that there exists a TO € T such that the S-ideal BTQ contains the element 
œaeiej and therefore the S-ideal coa(e^) also. 

To construct the meet-irreducible S-ideals in M, we look at first for the 
greatest S-ideal (17) in Af, which possesses o)a(ehe]ç) as its (ft, ft)-join-component. 
I t has to satisfy 

a ^ (hi) + atj + (ij) + (Jk) - (ft*) for i,j Ç 7, 

because otherwise the (ft, ft)-join-component of A would be greater. This is 
equivalent to 

atj + (ij) è a + (hk) - (hi) - (jk) for i,j 6 / . 

Now the equalities 

TU + (ij) = a + (hk) - (hi) - (jk) for i,j £ I 

define a matrix 

A a* — Ve0 ; t cO/xi 
with 

P o T w „ o P = T(tt)„. 

Set T»* = TM
(0). Then the S-ideal 

i- ftfc — U CO K^i^j) ~ W I M 
i . J 

is mapped under <p onto Tia\k. 

THEOREM 4. rfte on/j meet-irreducible S-ideals in M are the ideals o^T^, where 

(18) T„ = U w<«-<»«-«»-<>*> (e<e,) for h,k € I . 

Tfte;y are /fte greatest S-ideals in M possessing the (ft, k)-join-component, wa(ehek). 
Every S-ideal A in M possesses exactly one representation 

(19) A = fi «""r , , 
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by its irreducible meet-components, which is normalized in the sense that the ai:j 

are maximal with respect to (19). The exponents a^ in (19) and in the join-
representation (17) in Theorem 3 are the same. 

Remark. The mapping <p can be defined also by 

A = n coaîir0.->(co^'+(l7)). 
Proof. Because ofLi^Tij is the greatest 5-ideal with coa^'(e^;) as its (î',j)-join-

component, the (r, s)-join-component of A is contained in the (r, ^-join-
component of oûaiiTij for r, s Ç 7. Therefore the representation (19) follows 
from (17) immediately. At most the uaThk are meet-irreducible. Now uaThlc = 
C\ BT implies that there exists a r0 such that BT0 possesses ua(ehek) as its (/z, &)-
join-component and therefore is contained in a>aThk. 

Theorem 5 below will explain the rôle of the generating element co of 3 m 

the theory of the lattice-ordered semigroup Vs(M) of the 5-ideals in M in a 
more conceptual manner. 

Firstly, the ideal 5 is the identity element in Vs (M). The 5-ideals coa5, a Ç Z, 
form a cyclic subgroup C of Vs(M), generated by the 5-ideal W = co5. Then 
the representation of an 5-ideal A in M can be written in the form 

(20) A = O WaiiTtj. 
i,3 

THEOREM 5. The infinite cyclic group C = {Wa; a Ç Z j , W = co5, w £fte centre 
of the semigroup Vs(M) of the S-ideals in M. 

Proof. It is clear that C is contained in the centre of Vs(M). An 5-ideal A in 
M is an element of the centre of Vs(M), if and only if A • (ek) = (ek) • A is 
valid for every integral idempotent ek, k Ç 7, because (eief) = (ei)(ef) by 
(F2). Now the equality 

implies that 
E. = «>((«*)) = («<">+<**). 

Therefore 4̂ is in the centre of Vs(M) if and only if A = <pA satisfies 

(21) A o Ek = Ek o A for every k 6 I. 

By Theorem 2, the (i,j)-entries of A o Efc and of E* o A are respectively 

(22) min^a , ! + («?) + (kj)} and min r | (ifc) + (kr) + a r , } , 

and A o P = A = P o A i s valid. Set k = i. Then 

an + (ij) = mmt{ait + (ti)} + (ij) 
= (ii) + minr{ (kr) + arj} = a0-

follows from (21) and (22); analogously 

<*ij = (ij) + oijj if k = j . 
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This proves that 

a a + (ij) = ai j = (ij) + a^ for ij £ I 

and therefore 
a a = etjj — a and ai5 = a + (ij)-

In other words A = œaP and A = œaS. 

Perhaps it is worth comparing these results with the classical arithmetic in 
a commutative Dedekind domain, R. There, every fractional R-ideal a in the 
quotient field Q of R is uniquely representable as a product of powers of prime 
ideals. The sequence of the exponents in such a representation determines a 
and the multiplication of two ideals is given by the componentwise addition 
of their exponent sequences. In the above semigroup case, the sequence of 
exponents is replaced by the associated matrix <pA = A, with entries in the 
infinite cyclic group S — {coz;s G Z}, and the multiplication of two ideals is 
given by the o-multiplication of their associated matrices in Sixi*- Exactly 
those matrices in SIXI*

 a r e associated with 5-ideals in M which satisfy 
P o A o P = A, where P is the sandwichmatrix of M, governing the multi
plication in the completely simple semigroup M. Similar to the classical 
arithmetic, the prime ideals in S are linked to a localization theory. The first 
step consists in proving the following theorem. 

THEOREM 6. The prime ideals in S, i.e. the integral ideals $ 9^ S, which 
satisfy the implication 

(23) ( a ) , (b) £ $ = » a e % orb G $ 

for a,b G 5, a ^ b, are the maximal ideals in 5, namely 

(24) $t = S\eifori G I. 

Proof, tyi is an ideal in 5 because et is maximal with respect to the partial 
order C in 5, denned by a Ç J <^ a ë (b), and $* is maximal in Vs(S) indeed. 
Its complement S\$i is the idempotent ei} a one element multiplicatively 
closed subset of S. This implies that tyi is prime, because of (a) • (b) = (ab) 
in S. If the ideal A in 5 is different from every $* and A contains a join-
component ooa(ehek) with h 9^ k and a ^ 1, then the square of ofL~lehek is con
tained in A without (x>a~leneic being so. But, if a — 0 in every join-component 
with h 7e k, then there exist h, k G I with h ^ k and ehek in A but neither 
eh nor ek. So A is not prime. 

Definition 2. An 5-order of M is a subsemigroup of M, different from M 
and containing 5. 

Remark. Every 5-order £) is an 5-ideal in M, but the converse is not true. 

The context between the prime ideals in 5 and certain maximal 5-orders is 
given by the following theorem. 
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THEOREM 7. The sets 

(25) 8* = {x € M;e*s G S} 

and 

(26) 3?* = {x Ç M;se* £ 5} 

ar# maximal S-orders in M. The ideals in the semigroups 2k and $tk are the powers 
of w8* = W2jc and of co9?fc = Wdik respectively. 

Proof. If x, y G 2k then 

s* • xy = ^ • e*x • y Ç ^5y ^ (eky) ^ 5, 

because of (F2). The multiplicatively closed set 8& contains 5 because ek £ S. 
The equalities 

ekx = e^dej = a ^ + ^ + ^ - ^ é ^ -
imply that 

(27) 8, = { « ^ ; £ ^ (fej) - (fei) - (*/)}. 

Analogously 

(28) % = {co^- ; { â (**) - 0'*) ~ (#)} 

is valid. This proves that %k ?* M and dlk 9e M. Assume that the 5-order £) 
contains 8& and an element œ7eres $ 8*. Then 

7 < (ks) — (fer) — (rs) 
and 

C0S = C O ^ ^ W ^ ^ - ^ ^ - C ^ ^ r G £), 
where 

Ô < (fes) - (fer) - (rs) + (rs) + (sr) + (fer) - (ks) - (sr) = 0. 

This proves that co-1^ 6 D and therefore œ~NeTes £ £> for every iV G N, in 
contradiction to O ^ ¥ . Analogously, (28) implies that dik is maximal. An 
ideal A of the semigroup 8* satisfies SA <J A and ^45 <J -4. Therefore 4 is an 
5-ideal in M also. The o-product of 

(29) <pA = (of*" + «/)) and A = ( w ^ - ^ ) 

has the number mmr{air + (ir) + (kj) — (fer)} as the exponent of its 
(i,j)-entry. This implies that A2k <C A is equivalent to 

«ù- + (v) — (kj) = min r{a i r + (ir) - (fer)}. 

In other words: the expression atj + (ij) — (fej) is independent of j . Analo
gously, 2kA ^ A implies atj + (ij) + (fei) is independent of i. Then the 
equalities 

«a + (ij) + (ki) = «u + (lj) + (kl) = [«„ + (lj) - (kj)] + (kj) + (kl) 

= a u + (11) - (*1) + (kj) + (kl) = an + (kj) 
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and therefore the equality 

<*ij + (ij) = an + (kj) - (ki) 

prove, by comparison with (29), that 

A = «"ug*. 

Similarly, the coa9^, 0 g a Ç Z, form the monoid V(dtk) of the ideals in the 
maximal 5-order 9?&. 

The following theorem shows that 5 is both the meet of the maximal 
5-orders 2k, and also of the maximal orders dîkl k G / , and it explains how the 
meet-irreducible 5-ideals T{a)

 ti in M are linked to the orders 2t and dlj, and 
it gives rise to a localization theory of Vs(M), considering (19) in Theorem 4. 

THEOREM 8. 

(30) S = H 8* = H SR*; 

(31) Tia\k = a>a2h$lk = W%Kk1 

where W = co5. 

Proof. The first equation (30) follows from (27), applied to all k £ I , i.e., 
from 

(32) £ = maxfcj (fej) - (H) - (#)} = 0, 

because (ki) + (ij) à (&j). By (27) and (28) the exponent of the (i, j)-entry 
in [ç>8J o [<p9?&] is equal to 

minr{(ftr) - (hi) + (rk) - (jk)} = -(hi) - (jk) + minr{(hr) + (rk)} 
= (hk) - (hi) - (jk)} 

and therefore, by (18), it is equal to the (i, j)-entry in <pThk. 

The maximal 5-orders 9?̂  and Sfc are linked to the join-irreducible ideals 
also. 

THEOREM 9. 

(33) SRAS* = „(**)+"»«((*')+('*) ) ( ^ 4 ) . 

Proof. The proof is similar to the proof of the last theorem. 

The calculation of the o-product [<pSr] o [<p2s] o [<p2t] proves Theorem 10. 

THEOREM 10. The maximal ideals W2h = w2h for h Ç I in the S-orders 2h 

generate a semigroup without zero, which is dual to the quasi-uniserial semigroup S 
above in the following sense: by the formula 

(34) 2r2s2t = w-< ">-<">+< <r>8r8* 
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it consists of the integral elements of the partially ordered semigroup 
M(3; If I\ P*)t which is associated with the exponential sandwichmatrix 

(35) n* = - IT: (i,j) -> - (ji) for (i,j) G I XI 

and with the dual ordering wx ^ wy <^> x ^ y of the structure group £. 
The same is true for the orders dtk, k Ç I, if the 2k are replaced by the 9?& in (34). 

REFERENCES 

1. E. A. Behrens, Partially ordered completely simple semigroups, to appear in J. Algebra. 
Preprint: Math. Report McMaster University No. 22, vol. 2 (1970). 

2. E. A. Behrens, D^-arithmetic prime rings, Math. Report McMaster University No. 24, vol. 2 
(1970). 

3. E. A. Behrens, The quasi-uniserial semigroups without zero, their arithmetics and their 
<$>*-algebras, Semigroup Forum, to appear. 

4. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups (Vol. 1, Mathematical 
Surveys, No. 7, American-Mathematical Society, Providence, 1961). 

5. D. Rees, On semigroups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400. 

McMaster University, 
Hamilton, Ontario 

https://doi.org/10.4153/CJM-1971-054-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-054-6

