
14

The electromagnetic and weak interactions of quarks

In the Standard Model it is the quarks’ colour that is the source of their strong
interaction. In this chapter we shall consider only the electromagnetic and weak
interactions of quarks, and colour will not enter. The theory will be constructed in
close analogy with the electroweak theory for leptons set out in Chapter 12. The
theory for quarks is not as well founded in experiment as the theory for leptons.
This is because quarks cannot be isolated from hadrons. Experiments can only
be performed on composite quark systems, and the basic Lagrangian density is
obscured at low energies by the strong interactions. At higher energies, and espe-
cially through the hadronic decays of the Z bosons, the electroweak physics of the
isolated quarks can to some extent be discerned. In Chapter 15 some of the relevant
experimental data on these decays will be described.

14.1 Construction of the Lagrangian density

At low energies, the model has to describe decays like

n → p + e− + ν̄e

or, at quark level,

d → u + e− + ν̄e.

This decay is mediated by the W boson. Comparing it with muon decay,

μ− → νμ + e− + ν̄e,

which is also mediated by the W boson, suggests that the left-handed components
uL and dL of the quark fields should be put together in an SU(2) doublet,

L =
(

uL

dL

)
, (14.1)
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138 Electromagnetic and weak interactions of quarks

while uR and dR are, like νR and eR, unchanged by SU(2) transformations. We shall
see that this simple assignment would be correct if Nature had provided us with
only one type of up quark, and only one type of down quark.

With such an assignment there is no freedom in the construction of the weak inter-
action. There is only one way to make the dynamical part of the quark Lagrangian
density gauge invariant. The coupling to the field Wμ is uniquely determined by
SU(2) symmetry and the coupling to the field Bμ is fixed by the quark electric
charges: 2e/3 on the u quark, −e/3 on the d quark. Hence

Ldyn = L†σ̃ μi[∂μ + (ig2/2)Wμ + (ig1/6)Bμ]L

+ μ
†
Rσμi[dμ + (2ig1/3)Bμ]uR

+ d†
Rσμi[∂μ − (ig1/3)Bμ]dR, (14.2)

where g2 sin θw = g1 cos θw = e.
To conform with the transformation laws (11.4b) and (11.6) on the gauge fields,

the U(1) × SU(2) transformation of the quark fields must be

L → L′ = e−iθ (x)/3UL,

uR → uR
′ = e−4iθ(x)/3uR,

dR → dR
′ = e2iθ(x)/3dR. (14.3)

Using (11.17) and (11.29), Ldyn can be written in terms of the fields W ±
μ , Zμ and

Aμ and becomes

Ldyn = L†σ̃ μi

⎛
⎜⎜⎝

∂μ + 2ie

3
Aμ + ie

3 sin 2θw
(1 + 2 cos 2θw) Zμ,

ie√
2 sin θw

W +
μ

ie√
2 sin θw

W −
μ , ∂μ − ie

3
Aμ − ie

3 sin 2θw
(2 + cos 2θw) Zμ

⎞
⎟⎟⎠L

+ u†
Rσμi

[
∂μ + 2ie

3
Aμ − 2ie

3
tan θw Zμ

]
uR (14.4)

+ d†
Rσμi

[
∂μ − ie

3
Aμ + ie

3
tan θw Zμ

]
dR.

However, the Standard Model postulates three families, or generations, of quarks.
We therefore introduce three left-handed SU(2) doublets:(

uL1

dL1

)
,

(
uL2

dL2

)
,

(
uL3

dL3

)
,

and six right-handed singlets: uR1, dR1; uR2, dR2; uR3, dR3. For a more compact nota-
tion we shall denote these by

Lk =
(

uLk

dLk

)
, uRk, dRk with k = 1, 2, 3.
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14.2 Quark masses: Kobayashi–Maskawa mixing matrix 139

As in the lepton case, we take the dynamical part of the total quark Lagrangian as
a sum:

L dyn(quark) =
3∑

k=1

L dyn (uk, dk). (14.5)

14.2 Quark masses and the Kobayashi–Maskawa mixing matrix

To retain renormalisability we must retain gauge symmetry, and give mass to the
quarks by coupling to the Higgs field as in Chapter 12 where we gave mass to the
leptons. For the dk quarks this is straightforward. The most general form we might
consider that preserves the gauge symmetries is

LHiggs(d) = −
∑ [

Gd
i j

(
L†

i Φ
)
dR j + Gd∗

i j d†
R j (Φ

†Li )
]
, (14.6)

as we discussed in the lepton case in Section 12.6. After the symmetry breaking of
the Higgs field �, this gives the mass term for the d-type quarks:

Lmass(d) = − φ0

∑ [
Gd

i j d
†
Li dR j + Gd∗

i j d†
R j dLi

]
. (14.7)

A priori, Gd
i j is an arbitrary 3 × 3 complex matrix. As we remarked in Section

12.6, such a matrix can always be put into real diagonal form with the help of two
unitary matrices, so that we can write

φ0Gd = D†
LmdDR,

where md is a real diagonal matrix, and DL, DR are unitary matrices. If the diagonal
elements are distinct, as appears experimentally to be the case, DL, DR are unique,
except that both may be multiplied on the left by the same phase-factor matrix

⎛
⎝ eiα1 0 0

0 eiα2 0
0 0 eiα3

⎞
⎠ . (14.8)

In the Standard Model as set out in Chapter 12, the neutrinos were taken to have
zero mass. However, for the u-type quarks, which are here making up a left-handed
doublet, we need a mass term. For this purpose we introduce the 2 × 2 matrix in
SU(2) space

ε =
(

εAA εAB

εB A εB B

)
=

(
0 1

−1 0

)
.

A suitable SU(2) invariant expression which we can construct from the doublets Φ
and Li is

(
ΦT ε Li

)
, where ΦT = (ΦA,ΦB) is the transpose of Φ (Problem 14.3).

https://doi.org/10.1017/9781009401685.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.016


140 Electromagnetic and weak interactions of quarks

We then take

LHiggs(u) = −
∑

i j

[
Gu

i j

(
L†

i ε Φ∗)uR j − Gu∗
i j u†

R j (Φ
T ε Li )

]
(14.9)

where Gu
i j is another complex 3×3 matrix. On symmetry breaking, this gives the

u-quarks mass term

Lmass (u) = −φ0

∑ [
Gu

i j u
†
Li uR j + Gu∗

i j u†
R j uLi

]
, (14.10)

which is, as we might expect, similar to (14.7), and likewise preserves the gauge
symmetries. It can be brought into real diagonal form in a similar way:

φ0Gu = UL
†muUR,

where UL and UR are unitary matrices, and mu is diagonal.
UL and UR may be both multiplied on the left by a phase factor matrix, say⎛

⎝ eiβ1 0 0
0 eiβ2 0
0 0 eiβ3

⎞
⎠ .

The theory is most directly described in terms of the ‘true’ quark fields, for which
the mass matrices are diagonal, so that we define the six quark fields:

d ′
Li = DLi j dL j , d ′

Ri = DRi j dR j ,

u′
Li = ULi j uL j , u′

Ri = URi j uR j .
(14.11)

The quark mass contribution to L becomes:

Lmass(quarks) = −
3∑

i=1

[
md

i

(
d ′†

Li d
′
Ri + d ′†

Ri d
′
Li

) + mu
i

(
u′†

Li u
′
Ri + u′†

Ri u
′
Li

)]
.

(14.12a)
We identify the Dirac spinors(

u′
L1

u′
R1

)
,

(
u′

L2

u′
R2

)
,

(
u′

L3

u′
R3

)

with the u, c and t quarks, respectively, and the Dirac spinors(
d ′

L1

d ′
R1

)
,

(
d ′

L2

d ′
R2

)
,

(
d ′

L3

d ′
R3

)

with the d, s and b quarks, so that we might rewrite (14.12a) as

Lmass(quarks) = − [
md

(
d†

LdR + d†
RdL

) + mu
(
u†

LuR + u†
RuL

)]
− [

ms
(
s†LsR + s†RsL

) + mc
(
c†LcR + c†RcL

)]
− [

mb
(
b†

LbR + b†
RbL

) + mt
(
t†LtR + t†RtL

)]
. (14.12b)

The terms in (14.12b) correspond to six Dirac fermions.
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14.2 Quark masses: Kobayashi–Maskawa mixing matrix 141

We have dropped the primes, and for the remainder of the book uk and dk , for
k = 1, 2, 3, will denote true quark fields.

In the Ldyn given by (14.2) and (14.5), the ‘diagonal’ terms do not mix u-type and
d-type quarks and are invariant under the unitary transformations (14.11). However,
the terms that arise from the off-diagonal elements of the matrix Wμ, mix u and d
quarks through their coupling to the W± boson fields, and these terms are profoundly
changed.

The diagonal terms give LqDirac and Lqz that parallel the expressions (12.12) and
(12.23) of the lepton theory of Chapter 12. The complete electroweak Lagrangian
density for the quarks is

Lq = LqDirac + Lqz + Lqw + LqH

where

LqDirac =
∑

i

[
u†

Li σ̃
μi {∂μ + i(2e/3)Aμ}uLi + u†

Riσ
μi {∂μ + i(2e/3)Aμ}uRi

]

+ [
d†

Li σ̃
μi {∂μ − i(e/3)Aμ}dLi + d†

Riσ
μi {∂μ − i(e/3)Aμ}dRi

] + Lqmass

(14.13)

Lqz =
∑

i

[
−u†

Li σ̃
μuLi

(
e

sin (2θw)

)
Zμ(1 − (4/3) sin2 θw)

+ u†
Riσ

μuRi

(
e

sin (2θw)

)
Zμ

4

3
sin2 θw

+ d†
Li σ̃

μdLi

(
e

sin (2θw)

)
Zμ(1 − (2/3) sin2 θw)

− d†
Riσ

μdRi

(
e

sin (2θw)

)
Zμ

2

3
sin2 θw

]
. (14.14)

In the Lqw, part of the Lagrangian density, the terms

− e√
2 sin θw

∑
i

[
u†

Li σ̃
μdLi W

+
μ + d†

Li σ̃
μuLi W

−
μ

]
,

when written in terms of the ‘true’ quark fields given by (14.11), become

Lqw = − e√
2 sin θw

(
u†

L, c†L, t†L

) ⎛
⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠

⎛
⎝ σ̃ μdL

σ̃ μsL

σ̃ μbL

⎞
⎠ W +

μ

+ Hermitian conjugate,

(14.15)

where V = ULD†
L.

Since the product of two unitary matrices is unitary, V is a 3 × 3 unitary
matrix. The elements of V are not determined within the theory. It is in this
matrix that another four of the parameters of the Standard Model reside. An

https://doi.org/10.1017/9781009401685.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.016


142 Electromagnetic and weak interactions of quarks

n × n unitary matrix is specified by n2 parameters (Appendix A), so we appar-
ently have nine parameters to be measured experimentally. However, five of these
can be absorbed into the non-physical phases of the quark fields, through the phase-
factor matrices associated with DL (see (14.8)) and UL. (There are five, rather than
six, non-physical phases since only phase differences appear in V. For example
Vud = exp [i (βu − αd)] V 0

ud.)
When the quark phase factors have been extracted, the resulting matrix V0 is

dependent on four physical parameters. It is called the Kobayashi–Maskawa (KM)
matrix (Kobayashi and Maskawa, 1973).

14.3 The parameterisation of the KM matrix

A 3 × 3 rotation matrix is also a unitary matrix. A more general unitary matrix
can be constructed as a product of rotation matrices and unitary matrices made up
of phase factors. There is no unique parameterisation of the KM matrix by this
method. That advocated by the Particle Data Group is

V =
⎛
⎝1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠

⎛
⎝ e−iδ/2 0 0

0 1 0
0 0 eiδ/2

⎞
⎠

⎛
⎝ c13 0 s13

0 1 0
−s13 0 c13

⎞
⎠

×
⎛
⎝ eiδ/2 0 0

0 1 0
0 0 e−iδ/2

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠

=
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠

(14.16)

where ci j = cos θi j , si j = sin θi j . The four parameters are the three rotation angles
θ12, θ23, θ13, and the phase δ.

Evidently, if s13 = 0 or sin δ = 0 then V is real. Less evidently, if s12 = 0 then
V is made real by redefining the quark fields

eiδu1 → u1, eiδd1 → d1,

and if s23 = 0 then V is made real by redefining

e−iδu3 → u3, e−iδd3 → d3,

as the reader may verify.
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14.4 CP symmetry and the KM matrix 143

A general redefinition of the quark phases,

di → eiαi di , ui → eiβi ui ,

will change the matrix elements of V by

Vi j → ei(αi −β j )Vi j . (14.17)

Using this freedom, the three rotation angles can be chosen all to lie in the first
quadrant.

Jarlskog (1985) gives an important necessary and sufficient condition for deter-
mining whether, given a unitary matrix V, it is possible to make it real by such
changes. She considers the imaginary part of any one of the nine products,
Vi j Vkl V ∗

kl V
∗

il with i �= k and j �= l, for example

Im
(
V11V22V ∗

21V ∗
12

) = J say. (14.18)

J is invariant under a general phase change (14.17), so that if J is not zero then it
cannot be made so, and hence V cannot be made real. All nine quantities are equal
to ± J. In the parameterisation of equation (14.16),

J = c12c2
13c23s12s13s23 sin δ. (14.19)

(The conditions already obtained for the reality of the KM matrix are contained in
the condition J = 0.)

Having fixed the KM matrix there remains only one global U(1) symmetry which
leaves it unchanged. All six quark fields, left and right, can be multiplied by the
same phase factor. As a consequence, only the total quark number current and hence
the total quark number is conserved. At the macroscopic level this is observed as
baryon number conservation.

14.4 CP symmetry and the KM matrix

We shall now show that, if the KM matrix cannot be made real by a redefinition
of the quark phases, the Standard Model does not have CP (change conjugation,
parity) symmetry.

We saw in Section 12.5 that the Weinberg–Salam electroweak theory is invariant
under the CP operation. Similarly, CP is a symmetry of every term in the Standard
Model of the weak and electromagnetic interactions of quarks, except for those
terms that give the interaction between the quarks and the W bosons. These are the
terms that involve the KM matrix.

The CP transforms of the W fields are defined in equation (12.32):

W +C P
0 = −W −

0 , W +C P
i = W −

i ,
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144 Electromagnetic and weak interactions of quarks

and the quark fields transform like all fermion fields:

qC P
L = −iσ 2q∗

L, qC P
R = iσ 2q∗

R.

To show how CP symmetry is violated, we consider the terms (14.15), which we
write as

(−e/
√

2 sin θw)
∑
i, j

[
u†

Li σ̃
μVi j dL j W

+
μ + d†

L j σ̃
μV ∗

i j uLi W
−
μ

]
(i = u, c, t; j = d, s, b)

Replacing the fields by their CP transforms gives

(−e/
√

2 sin θw)
∑

i j

[−uT
Li (σ̃

μ)TVi j d
∗
L j

W −
μ − dT

L j (σ̃
μ)TV ∗

i j u
∗
Li W

+
μ

]

where, as in Section 12.5, we have used the results

(σ 2)2 = 1, σ 2σ iσ 2 = −(σ i )T.

On transposing this expression with respect to the spinor indices we introduce a
minus sign from the anticommuting fermion fields, and obtain the CP transformed
expression

(−e/
√

2 sin θw)
∑
i, j

[
d†

L j σ̃
μVi j uLi W

−
μ + d†

Li σ̃
μV ∗

i j dL j W
+
μ

]
.

This is the same as the original term if and only if Vi j is real for all i, j .
Experimental evidence for the breakdown of CP symmetry first became apparent

in 1964, in the decay of the K0 (ds̄) meson. We shall discuss this decay and its
implications in Chapter 18, where we consider what is known experimentally about
the parameters of the KM matrix. It is an interesting fact that CP-violating effects
in the Standard Model are proportional to J.

14.5 The weak interaction in the low energy limit

Combining the results of Chapter 12 (equation (12.18)) with those of the present
chapter (equation (14.15)), we have the complete interaction of the W bosons with
all the fermions, both leptons and quarks, of the Standard Model:

LWint = (−e/
√

2 sin θw)
[

jμ†W +
μ + jμW −

μ

]
where

jμ = ∑
leptons

e†Ll σ̃
μνLl + ∑

i j
d†

L j σ̃
μuLi V ∗

i j (i = u, c, t; j = d, s, b). (14.20)
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14.5 The weak interaction in the low energy limit 145

Note that we have suppressed colour indices in this chapter. The labels i,j on the
quark spinors in (14.15) carry with them implied colour indices which are also
summed over.

By eliminating the W field as in Section 12.2, we obtain the low energy effective
interaction

LWeff = −2
√

2G F j †μ jμ. (14.21)

For example, the part of this effective interaction which is basically responsible for
all nuclear β decays involves the electron field and the u and d quarks (i = j = 1):

Leff = −2
√

2GF

[
gμνv

†
eLσ̃ μeLd†

Lσ̃ vuLV ∗
ud

]
+ Hermitian conjugate (14.22)

That part of the effective interaction responsible for the decay K0 →
π+π− (

s̄ → u + ū + d̄
)

is

Leff = −2
√

2GF
[
gμνs†Lσ̃ μuLu†

Lσ̃ vdL V ∗
usVud

]
. (14.23)

We have also the complete interaction of the Z boson with all the fermions.
Combining (12.23) with (14.14) gives

LZint = −e

sin (2θw)
( jneutral)μ Zμ (14.24)

where

( jneutral)
μ =

∑
leptons

[
ν
†
Ll σ̃

μνLl − cos(2θw)e†Ll σ̃
μeLl

+ 2 sin2 θwe†RσμeR
]

+
∑

i

[
u†

Li σ̃
μuLi

(
1 − 4

3
sin2 θw

)
− u†

Riσ
μuRi

(
4

3
sin2 θw

)

− d†
Li σ̃

μdLi

(
1 − 2

3
sin2 θw

)
+ d†

Riσ
μdRi

(
2

3
sin2 θw

)]
.

By eliminating the Z field, we obtain the low energy effective interaction

LZeff = −
(

GF/
√

2
)

( jneutral)μ( jneutral)
μ. (14.25)
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Problems

14.1 Verify that the transformations (14.3) along with (11.4b) and (11.6) leave Ldyn

invariant.

14.2 Obtain LqZ, (equation (14.14)) from (14.4).

14.3 Show that (Φ ε L) is an SU(2) invariant. (Show that U T ε U = ε det(U ))

14.4 Write down the interaction Lagrangian density between the quark fields and the
Higgs field, which appears in (14.6) and (14.9).

Estimate the coupling constant ct between the Higgs field and the top quark.

14.5 Which terms in (14.20) and (14.21) are responsible for the meson decays

K+ (us̄) → μ+ + νμ,

D+ (
cd̄

) → K0
(
d̄s

) + e+ + νe,

B+ (
ub̄

) → D0 (c̄u) + π+ (
ud̄

)
?

Sketch appropriate quark diagrams.

14.6 There are no ‘flavour changing neutral currents’, i.e. there are no terms in the neutral
current of (14.24) that involve a change of quark flavour. Draw Feynman diagrams
from higher orders of perturbation theory that simulate the flavour changing neutral
current decays

b → s + γ, b → s + e+ + e−.
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