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Abstract. The existence of Bernstein–Greene–Kruskal (BGK)-like trapped ion
modes in dusty plasmas is investigated by means of the pseudo-potential method
applied to the Vlasov–Poisson system. The nonlinear dispersion relation, determ-
ining the phase velocity, and the pseudo-potential, representing the wave form and
hence its spectral decomposition, are derived and analysed with respect to the
effect of dust. Dust is found to diminish the region in ω, k-space, where periodic
wave solutions of fast and slow mode character exist. Localized wave solutions in
the form of solitary ion holes, owing their existence to the presence of dust, coexist
as well, but turn into slow ion acoustic double layers in the limit of vanishing dust.

1. Introduction
One of the main challenges in plasma theory is the failure of linear transport
models (or nonlinearly extended models relying in lowest order on linear wave
theory such as weak or strong turbulence models) to describe wave-driven plasma
dynamics and anomalous transport [1–5]. A striking example is the quasilinear
theory for the bump-on-tail instability, which has been shown to be incomplete due
to the neglect of mode coupling and trapping nonlinearity [6–8] and which hence
misses an important ingredient in plasma dynamics, the formation of coherent
kinetic structures. Another example is the destabilization of linearly stable, current-
carrying plasmas through the spontaneous generation and growth of negative
energy phase space holes, which cannot be explained by contemporary plasma wave
theory due to the neglect of nonlinearity to lowest order (see [9–12] and references
therein). This annoying fact, which is more problematic the lower the collisionality
is [13], therefore calls for models in which no reference to linearized wave theory is
made. This implies that for plasmas in the collisionless limit, nonlinearity has to be
fully taken into account in the kinetic description and that plasmas of simplified
composition, such as pair plasmas, are most suitable for making further progress
in the understanding of plasmas. Some steps in this direction have already been
made in [14–16]. In the first two papers, ultra-low-frequency electrostatic modes
within the Vlasov–Poisson description have been found and analysed, which owe
their existence to the trapping particles in the potential trough of the wave, namely
the trapping of charged dust particles in the so-called trapped dust acoustic wave
(TDAW) for ordinary plasmas in [14] and of ions in trapped ion waves (periodic
phase space holes and double layers, the latter under symmetric ion conditions) for
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pair plasmas in [15]. In [16] the search for trapped ion modes in pair plasmas has
been generalized by allowing different trapped ion conditions and the extension to
finite amplitudes proving the existence of solitary phase space holes in pair plasmas.
Comprehensive reviews of phase space holes and related structures, pointing out
their proper analytic description, their observation under different plasma envir-
onments (such as extraterrestrial plasmas and particle accelerators), their general-
ization to magnetized, quantized and relativistic plasmas, their mutual interaction
and impact on plasma (and fluid) dynamics, etc., can be found in [5,17,18].
In the present paper we enrich the model in [15] by including a dust component

and analyse its effect on its particular trapped ion modes.

2. Densities
We look for equilibria of the Vlasov–Poisson system composed of the three plasma
species: positive ions, negative ions and negatively charged dust particles and adopt
the distribution ansatz of [19], based on Maxwellians in the unperturbed region. By
a velocity integration we then obtain the density expression for each species, which
in the limit of equal temperature and trapping conditions of the two ion species in
the small amplitude limit 0 � Φ � Ψ�1 becomes

n+(Φ) = ν+(1 + K+)n0(v0 , β,Ψ − Φ),

n−(Φ) = ν−(1 + K−)n0(v0 , β,Φ),

nd(Φ) = νd(1 + Kd)n0(v0
√

θdmd/m, βd, ZdθdΦ)

(1)

where ν and K represent normalization constants, Zd represents the charge of a
dust grain, βd is the trapping parameter for dust particles, θd = T/Td, T being the
temperature of both ions, and for normalization we use the positive ion quantities
at Φ = Ψ, that is, where the trapping of positive ions is absent. Later, dust trapping
will be neglected by assuming phase velocities v0 in the ion thermal range. In the
above expressions the common function n0(v0 , β,Φ) is defined by

n0(v0 , β,Φ) = 1 + aΦ − 4
3 b(β, v0)Φ

3
2 + · · · , (2)

with

a = −1
2
Z ′
r

(
v0√
2

)
, (3a)

b(β, v0) =
1√
π

(
1 − β − v2

0
)
exp

(
−v2

0

2

)
, (3b)

where Zr is the real part of the plasma dispersion function. Note that in view of
v0 � O(1) and of the large dust mass m�md, the term − 1

2 Z ′
r(v0

√
θdmd/

√
2m) is

negligible in the third equation of (1), in addition to the dust trapping term, such
that the dust particles can be treated as immobile further on.

3. Normalization
Charge neutrality in the completely unperturbed plasma, Ψ ≡ 0, noting that the
K are of the order of O(Ψ), requires

ν− + Zdνd = ν+ = 1. (4a)

https://doi.org/10.1017/S0022377808007472 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377808007472


Ion holes in dusty pair plasmas 727

If we assume that K+ = 0 describes a spatially localized state with asymptotic
charge neutrality, that is, with Φ = Ψ at infinity, then the normalization condition
of O(Ψ) becomes

ν−K− + (1 − ν−)Kd = ν−(B − a)Ψ (4b)

where we have defined

B = 4
3 b(β, v0)

√
Ψ. (5)

Spatially periodic waves are admitted by letting K+ = (k2
0/2)Ψ, where k0 is

related with the actual wavenumber k (see [15]). For the densities we therefore
obtain

n+(Φ) = 1 +
k2

0

2
Ψ + a(Ψ − Φ) − B√

Ψ
(Ψ − Φ)

3
2 + · · · , (6a)

n−(Φ) = ν−

[
1 + K− + aΦ − B√

Ψ
Φ

3
2 + · · ·

]
. (6b)

The dust density is then given by the constant value nd = (1 − ν−)(1 + Kd)/Zd
where K− and Kd are related through (4b).

4. Nonlinear dispersion relation
From Poisson’s equation, written as Φ′′(x) = n− + Zdnd − n+ =: −V ′(Φ), by an
integration we find the ‘classical’ or pseudo-potential V (Φ), assuming V (0) = 0,

−V (Φ) = −k2
0

2
ΨΦ + (1 + ν−)a(Φ2/2 − ΨΦ)

+
B√
Ψ

{
ν−

(
ΦΨ

3
2 − 2

5
Φ

5
2

)
+

2
5

[
Ψ

5
2 − (Ψ − Φ)

5
2

]}
. (7)

Bounded, and hence physically meaningful solutions, are obtained by the condi-
tion V (Ψ) = 0, which, in view of the pseudo-energy relation Φ′(x)2/2 + V (Φ) = 0,
implies zero electric field at the potential maximum. It becomes

k2
0

2
− (1 + ν−)

2
1
2
Z ′
r

(
v0√
2

)
=

(2 + 3ν−)
5

B. (8)

This is the celebrated nonlinear dispersion relation as it determines the up to
now unknown phase speed v0 in terms of the other (free) parameters. Replacing a,
given by (3a), in (7) by (8) and performing a renormalization, φ = Φ/Ψ andV(φ) =
V (Φ)/Ψ2 , we obtain

−V(φ) =
k2

0

2
φ(1 − φ) +

B

5
{2[1 − ν−φ

5
2 − (1 − φ)

5
2 ] − φ[(4 + ν−) − (2 + 3ν−)φ]}. (9)

This expression together with the ‘classical’ energy law φ′2(x)/2 + V(φ) = 0
determines by a quadrature the electrostatic potential φ(x) and, hence, its spatial
wave form (or spectral decomposition). Equations (8) and (9) are our main results
from which the effect of dust on the wave characteristics can be evaluated.
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Figure 1. ω as function of k for harmonic waves: B = 0.

5. Effect of dust on wave propagation
First, in the dust-free limit ν− → 1, we recognize the corresponding equations,
(7) and (9), respectively, of [15] and the results as exhibited in Figs 2–4 of that
paper. For a given wavenumber k (respectively, quasi-wavenumber k0 ; the difference
between them is explained in [15]) a fast and a slow wave solution ωf and ωs,
respectively, are found. In the harmonic limit, B → 0; when, as seen from [15, (9)],
a single sinusoidal wave exists, the fast wave is an ordinary ion plasma wave in the
long wave limit. The slow mode, on the other hand, being of acoustic type, ω ∼ k,
has nothing to do with an ordinary ion acoustic wave, as is often believed in the
literature (the latter being strongly Landau damped in a pair plasma and cannot,
therefore, exist), but is the so-called slow ion acoustic mode, a nonlinear mode, which
owes its existence to the trapping of ions [20]. For B �= 0, as seen from [15, Fig. 3],
we find characteristic deformations of the nonlinear dispersion relation ω0(k0 , B).
Most significant in the case of B > 0 is a cut-off in the quasi-wavenumber k0(B)
below which no solution exists, whereas for B < 0 the fast mode becomes acoustic-
like in the long wavelength limit. Whereas k0 �= 0 represents a periodic ‘cnoidal’
wave solution, a name that is reminiscent of Jacobian elliptic functions, such as
the cn-function, and is composed of an infinite wave spectrum [4], the solution for
k0 = 0 represents a localized double layer propagating on the slow branch only and
is hence referred to the ‘slow ion acoustic double layer’ (SIADL) [21].
The effect of dust is now seen as follows. Fig. 1 shows the solution of the nonlinear

dispersion relation (8) for three values of ν− in the harmonic case B = 0, ν− =
1 representing no dust and ν− = 0 representing the absence of a negative ion
component. An increase in dust density leads to a reduction in ω–k space in which
the solution lies. The frequency of the ion plasma wave in the long wavelength
becomes

√
1 + ν− and, hence, diminishes with decreasing negative ions. For ν− =

0, it is given by unity, which physically means that only the single positive ion
component takes part in the oscillations necessary for wave propagation resulting
in the usual plasma frequency.
The influence of dust in the case of a cnoidal wave is seen in Fig. 2 for the special

value of B = 0.01 and three values of ν−. Again, the region of possible solutions
of (8) shrinks when the fraction of dust in the negatively charge background
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Figure 2. ω0 as a function of k0 for periodic cnoidal waves for three values of ν− and
B = 0.01.

increases. Also a shift of the cut-off quasi-wavenumber in dependence of ν− is seen,
which is given by

k0(B, ν−) =

√
2(2 + 3ν−)B

5
.

The turning point, where fast and slow solutions coincide, is given by

k0 =

√
(1 + ν−)0.285 +

2(2 + 3ν−)B
5

.

For larger k0 no solution exists. Of special interest are spatially localized solutions,
which are obtained in the limit k0 → 0. From (9) it immediately follows that

V(0) = V(1) = 0 V′(0) = −B(1 − ν−)/5 V′(1) = 0

V′′(0) = (7 − 12ν−)B/10 V′′(1) = −(8 − 3ν−)B/10.

For a solution to exist V < 0 must hold in 0 < φ < 1 and, hence, B > 0. This gives
rise to a solitary ion hole solution for ν− < 1, which turns into a double layer solution
in the dust-free limit. Through ν−, the symmetry inV(φ) with respect to φ → 1−φ
is broken. The solution to the corresponding nonlinear dispersion relation (8) shows
that only the slow branch can admit solitary ion holes. Since the quantity a =
− 1

2 Z ′
r(v0/

√
2) has a maximum value of one for v0 = 0, an upper bound for B exists,

B < 5(1 + ν−)/2(2 + 3ν−), beyond which no solitary wave propagation is possible.
The values B > 0 and 0 < v0 < 1.307, furthermore, imply through (3b) and (5) that
the trapping parameter β is strictly negative. The members of this three-parametric
(k0 , B, ν−) class of solutions are, therefore, phase space holes (solitary or a train of
periodic holes) with a deficit of particles in the trapped (‘resonant’) particle region
in velocity space.
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6. Conclusions
An important issue in plasma physics is the experimental accessibility and obser-
vation of trapped ion modes especially in view of the fact that the charging of
dust particles requires free electrons [22], which have been neglected in the present
model. One way to address this is given by the experimental setup of [23–25].
In their device, the pair-plasma constituents are produced through the process of
electron-impact ionization and electron attachment in the hollow electron-beam
region in the outer region of the cylindrical vessel, which then penetrate by ambi-
polar diffusion across the magnetic field into the central part of the vessel in which
electrons are absent due to the magnetic filtering. If, therefore, dust can be added
in the outer region, it will be charged negatively by the free electrons existing
there, participate in the diffusion process and establish a quasi-neutral dusty pair
plasma in the central target chamber where collective processes are excited by
biasing cylindrical and grid electrodes. Indeed, the first experiments performed
with this device without dust [24, 25] yield electrostatic waves, which show all
the signatures of trapped ion modes in the harmonic (B = 0) and non-harmonic
(B < 0) wave limit, respectively. One can distinguish between the slow ion acoustic
wave branch (note that the ordinary ion acoustic wave branch cannot be made
responsible for this branch because of its non-existence in an electron-free pair
plasma), the so-called ‘intermediate frequency wave’ branch and the ion plasma
wave branch. Theoretically these modes are discriminated between by different
values of k0 (hence, v0 and β) with B = 0 and (B < 0), respectively, with ν− = 1
(see [15, Fig. 2]). Later, through a change of the excitation method [26], modes
could be detected [26, Figs 6 and 11] that stretch over into the frequency domain
in a narrow band of k values very similar to the non-harmonic branches B > 0
of [15, Fig. 3], a property that is clearly not covered by an ordinary ion plasma
mode. Therefore, if dust is added, one could detect not only the dust induced shift
of the plasma frequency (and, hence, the portion of dust in the negative charge
carriers) in the harmonic wave limit (Fig. 1), but also the dust-dependent shift of
the cut-off wavenumber (Fig. 2) in the case of cnoidal waves, B > 0. In both cases,
information about the trapping states could be extracted via (3b) and (5).
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