TWO APPLICATIONS OF HOMOLOGY DECOMPOSITIONS

GRAHAM HILTON TOOMER

We show that a map of rational spaces (see Definition 1) induces a map of homology sections at each stage, and that the k'-invariants are mapped naturally. This is used to characterize rational spaces in which all (matric) Massey products vanish as wedges of rational spheres, and yields the precise Eckmann-Hilton dual of a result of M. Dyer [7]. Berstein's result on co-H spaces [3] is also deduced. These results form a part of the author's doctoral dissertation at Cornell University written under Professor I. Berstein, to whom I express my sincere thanks for his patient help and encouragement. Extensions and counterexamples will appear in a future paper.

The proof is dual to Kahn's corresponding result for Postnikov systems. Since fundamental classes are *not* uniquely defined in our case, some care is called for. For these reasons, we only show that the k'-invariants are mapped nicely. Complete details may be found in [17].

In [5], an example of a space X is given such that (a) $H_{*}(X, \mathbb{Z})$ has torsion and (b) X admits two homology decompositions, the sections of which do not have the same homotopy type.

Definition 1. A rational space will denote a pointed, simply connected, connected space having the homotopy type of a CW complex, and such that $H_n(X, \mathbb{Z})$ is a finite dimensional vector space over \mathbb{Q} , the rationals, for each n > 0.

For example the rationalization (in the sense of Sullivan [16]) of a simply connected *CW* complex of finite type is a rational space.

Let G be an abelian group. Recall that a Moore space K'(G, n) denotes a space with abelian fundamental group and with a single non-vanishing homology group viz. G in dimension n. We can take K'(G, n) to be a CW complex, and the homotopy type of K'(G, n) is uniquely determined for $n \ge 2$. Notice that $\Sigma K'(G, n - 1)$ is also a K'(G, n) and thus K'(G, n) is a co-H space for $n \ge 2$.

Definition 2 [8]. Let $n \ge 2$ be an integer. The *n*th homotopy group of any pointed space X with coefficients in G is defined by

 $\pi_n(G, X) = [\Sigma K'(G, n-1), X].$

(Based homotopy classes are understood.) We refer the reader to [8] for the definition of relative homotopy groups $\pi_n(G; X, A)$.

Received September 7, 1973 and in revised form, October 11, 1973. This research was partially supported by NSF Grant GP-39960X.

THEOREM 3 [8]. There is a natural exact sequence

 $0 \to \text{Ext} (G, \pi_{n+1}(X, A) \to \pi_n(G; X, A)) \xrightarrow{\eta} \text{Hom} (G, \pi_n(X, A)) \to 0$ where $\eta([f])$ is the composite

$$H_n(K'(G,n)) \xrightarrow{h^{-1}} \pi_n(K'(G,n)) \xrightarrow{f_{\#}} \pi_n(X),$$

where $f_{\#}$ denotes the map induced by $[f] \in \pi_n(G; X, A)$ and h denotes a Hurewicz homomorphism.

It follows easily from Theorem 3 that a homomorphism $\varphi: G \to G'$ induces a map $\tilde{\varphi}: K'(G, n) \to K'(G', n)$ and thus a "coefficient homomorphism" $\tilde{\varphi}^c: \pi_n(G', X) \to \pi_n(G, X)$ for any space X. Further if G is a vector space over \mathbf{Q} , then η induces an isomorphism

$$\pi_n(G; X, A) \xrightarrow{\cong} \operatorname{Hom} (G, \pi_n(X, A)).$$

We recall from [8] that a simply connected CW complex admits a homology decomposition. In the next result, we do not need the fact that $H_n(X, \mathbb{Z})$ is finite dimensional for each n.

THEOREM 4. Let $f: X \to Y$ be a (based) map of rational spaces and let homology decompositions $\{X^r, k_r'(X)\}, \{Y^r, k_r'(Y)\}$ be given. Then there are diagrams:

such that each rectangle is strictly commutative, and each outer triangle is homotopy commutative;

which is homotopy commutative, written $f^{r-1}_{*}k_{\tau}'(X) = \tilde{f}_{*}ck_{\tau}'(Y)$.

324

Proof. We content ourselves with proving (b). Since X/X^p is *p*-connected, it has a fundamental class $j(X) \in \pi_{p+1}(H_{p+1}(X), X/X^p)$. Choose $\xi(X)$ so that $\epsilon_1\xi(X) = j(X)$ and let $k_p'(X) = \partial\xi(X)$ as in the following diagram:

$$j(X) \in \pi_{p+1}(H_{p+1}(X), X/X^{p}) \xleftarrow{\epsilon_{1}} \pi_{p+1}(H_{p+1}(X); X, X^{p}) \xrightarrow{\partial} \pi_{p}(H_{p+1}(X), X^{p})$$

$$\downarrow (f/f^{p})_{\#} \qquad \qquad \downarrow (f, f_{p})_{\#} \qquad \qquad \downarrow f^{p}_{\#}$$

$$\pi_{p+1}(H_{p+1}(X), Y/Y^{p}) \xleftarrow{\epsilon_{1}} \pi_{p+1}(H_{p+1}(X); Y, Y^{p}) \xrightarrow{\overline{\partial}} \pi_{p}(H_{p+1}(X), Y^{p})$$

$$\uparrow f^{*}_{*} \qquad \qquad \uparrow f^{*}_{*} \qquad \qquad \uparrow f^{*}_{*}$$

 $j(Y) \in \pi_{p+1}(H_{p+1}(Y), Y/Y^p) \xleftarrow{\epsilon_1} \pi_{p+1}(H_{p+1}(Y); Y, Y^p) \xrightarrow{\partial} \pi_p(H_{p+1}(Y), Y^p).$

The diagram commutes by naturality and ϵ_1 is onto (see [8, Chapter 7]). We claim ϵ_1 is an isomorphism: since Ext $(H_{p+1}(X), G) = 0$ for any group G, we get a commutative diagram (in which the upper vertical homomorphisms are isomorphisms by Theorem 3)

Hom $(H_{p+1}(X), H_{p+1}(Y, Y^p)) \xrightarrow{\cong} \text{Hom } (H_{p+1}(X), H_{p+1}(Y/Y^p))$

and since $H_r(Y, Y^p) = 0$ if $r \leq p$, and Y and Y^p are simply connected, h_1 is an isomorphism. Also $H_r(Y/Y^p) = 0$ for $r \leq p$ and $Y/Y^p \simeq Y \cup CY^p/CY^p \simeq$ $Y \cup CY^p$ since Y^p is a subcomplex of Y and CY^p is contractible. Now $\pi_1(Y \cup CY^p) = 0$ since $\pi_1(Y) = 0 = \pi_1(CY^p) = \pi_1(Y \cap CY^p) = \pi_1(Y^p)$ and so by van Kampen's theorem, Y/Y^p is simply connected and so h_2 is an isomorphism. By naturality, so is ϵ_1 .

Assume for the moment that $f_*^c j(Y) = (f/f^p)_{\#} j(X)$. Then

$$\bar{\epsilon}_1(f, f^p)_{\#}\xi(X) = (f/f^p)_{\#}j(X) = f_*c_j(Y) = f_*c_1\xi(Y) = \bar{\epsilon}_1f_*c_\xi(Y)$$

and so $(f, f^p)_{\#}\xi(X) = f_*^c\xi(Y)$. Therefore,

$$f^{p}_{\#}k'(X) = f^{p}_{\#}\partial\xi(X) = \partial(f, f^{p})_{\#}\xi(X) = \partial f_{*}^{c}\xi(Y) = f_{*}^{c}\partial\xi(X) = f_{*}^{c}k'(Y)$$

as required.

Finally, $f_*^c j(Y)$ and $(f/f^p)_{\#} j(X)$ are represented by

$$\begin{split} &K'(H_{p+1}(X/X^p), p+1) \to X/X^p \to Y/Y^p \quad \text{and} \\ &K'(H_{p+1}(X), p+1) \to K'(H_{p+1}(Y), p+1) \to Y/Y^p \end{split}$$

respectively, inducing $(f/f^p)_*$ and f_* in homology. Since

commutes, applying [15, 3.1], we get the desired equality.

It follows from Theorem 4 that *the* homology decomposition of a rational space is well-defined (up to homotopy type).

We proceed to show that if X is a rational space, then $\Sigma \Omega X$ is (up to homotopy) a wedge of rational spheres.

PROPOSITION 5. If X is a rational space, so is $\Sigma\Omega X$.

Proof. Since X has the homotopy of a CW complex, so does $\Omega X[12]$, and hence $\Sigma\Omega X$ has the homotopy of a CW complex; further, ΩX is connected and hence by [14, 8.5.3], $\Sigma\Omega X$ is simply connected. It follows from [1] that ΩX has finite type if X has finite type and so we need only see that $H_n(\Sigma\Omega X, \mathbb{Z})$ is a vector space over \mathbb{Q} . Now, we have the usual fibration $\Omega X \hookrightarrow PX \to X$ and X is simply connected. Hence by [16, 1.8], ΩX has rational homology and we are done using the suspension homomorphism.

LEMMA 6. Let X be a rational space. There is a simply connected CW complex Y with integral homology of finite type, and a map $f: Y \to X$ inducing an isomorphism or rational homology.

Proof. The proof is suggested by the construction in Theorem 2.2 of [16]. We may assume that X is a CW complex. If dim X = 2,

$$X \simeq \bigvee_{\alpha} S_0^2 \quad \text{(where } S_0^n \text{ denotes } K'(\mathbf{Q}, n)\text{)}$$

and we may take $Y = \bigvee_{\alpha} S^2$ and $f: Y \to X$ to be the "localization" map (induced by the inclusion $\mathbb{Z} \to \mathbb{Q}$) on each summand.

Suppose now that the statement is true for rational spaces of dimension $\leq n$ and dim X = n + 1. Then X is the cofibre of $\bigvee_{\beta} S_0^n \to X^n$ and by the inductive construction we have a cellular map

$$Y^n \xrightarrow{f'} X^n$$

We seek to fill in the diagram

$$\bigvee_{\beta} S^{n} \xrightarrow{j} Y^{n}$$

$$\downarrow f'' \qquad \downarrow f'$$

$$\bigvee_{\beta} S_{0}^{n} \xrightarrow{i} X^{n}$$

326

where f'' is the obvious map. Now by the inductive hypothesis and [16, Theorem 2.1], we have isomorphisms

$$\pi_n(Y^n) \otimes \mathbf{Q} \xrightarrow{\cong} \pi_n(Y_0^n) \xrightarrow{(f_0')_{\#}} \pi_n(X^n)$$

where f_0' denotes the localization of f'—see [15]), and so if i_β denotes the restriction of i to a rational sphere $[i_\beta] = (f_0')_{\sharp}([j_\beta] \otimes 1)$ for some $j_\beta:S^n \to Y^n$. It follows that if $j: \bigvee S^n \to Y^n$ is the obvious map, then $f'j \simeq if''$ and hence if $Y = Y^n \bigcup_j C(\bigvee_\beta S^n)$, that we can extend f'' to a map $f: Y \to X$. It is clear that Y has finite type, and the fact that f induces isomorphisms of rational homology is proved in [16]. If X is infinite, take $Y = \bigcup_{n=2}^{\infty} Y^n$ where Y^n is constructed for X^n and $X = \bigcup_{n=2}^{\infty} X^n$.

THEOREM 7. If X is a rational space, $\Sigma \Omega X$ has the homotopy type of a wedge of rational spheres.

Proof. We induct on the length of a homology decomposition of $\Sigma \Omega X$, which is well-defined by Theorem 4 and Proposition 5. Since the first stage is a wedge of 2-spheres, we may assume that the result is true for the *r*th stage Z^r , where $r \ge 3$. Applying Lemma 6 and [6, Proposition 2.5] to Z^{r+1} , we conclude that next k' invariant is zero. Thus all k' invariants of $\Sigma \Omega X$ are zero and this yields the result.

COROLLARY 8. If the cohomology suspension $\sigma^*: H^*(X) \to H^*(\Omega X)$ is injective and X is rational, then X has the homotopy type of a wedge of rational spheres.

Proof. Let $p_1: \Sigma \Omega X \to X$ be the evaluation map. Then p_1^* coincides with σ^* up to a sign, and p_1 induces maps $p_1^n (n \ge 2)$ of the homology sections by Proposition 5 and Theorem 3, and

 $(p_1^{n})_{\#}k_{n+1}'(\Sigma\Omega X) = (\tilde{p}_1)_{*}^{c}k_{n+1}'(X).$

Since p_1^* is injective, so is $(\tilde{p}_1)_*^c$ and hence by Theorem 7

 $(\tilde{p}_1)_{*}^{c}k_{n+1}'(X) = (p_1^{n})_{\#}(0) = 0$, implying $k_{n+1}'(X) = 0$.

May [11] has shown that ker σ^* consists of all matric Massey products, and Berstein (unpublished) was able to show that

THEOREM 9. If X is a rational space, $\sigma^*: H(X, \mathbb{Z}) \to H^*(\Omega X, \mathbb{Z})$ is injective if and only if all Massey products in $H^*(X, \mathbb{Z})$ vanish.

Thus Corollary 8 characterizes rational spaces in which all Massey products vanish as wedges of rational spheres. In particular, we have the dual of [7, 4.4]:

COROLLARY 10. If X is an (n-1)-connected rational space and dim $X \leq 3n-2$, X has the homotopy of a wedge of rational spheres if all cup products vanish.

Proof. The hypotheses imply that ker σ^* is injective.

GRAHAM HILTON TOOMER

Example 11. Suppose $n \ge 2$ and let $\iota_1, \iota_2: S^n \hookrightarrow S^n \lor S^n$ denote the obvious maps. Let $[\alpha] \in \pi_{3n-2}(S^n \lor S^n)$ denote the basic Whitehead product $[\iota_1, [\iota_1, \iota_2]]$. It is shown in [4] that α has infinite order and hence the localization (see [16])

 $\alpha_{(0)}: S^{3n-2}{}_{(0)} \to (S^n \vee S^n){}_{(0)}$

of α is non-trivial. Now $(S^n \vee S^n)_{(0)}$ is just $S^n_{(0)} \vee S^n_{(0)}$. Let C_1 denote the rational space $(S^n_{(0)} \vee S^n_{(0)}) \cup_{\alpha(0)} CS^{3n-2}_{(0)}$. Then C_1 is (n-1)-connected by the Hurewicz Theorem, dim $C_1 = 3n - 1$ and all cup products vanish in $\tilde{H}^*(C_1, \mathbb{Z})$. But C_1 is not a wedge of rational spheres, and thus Corollary 10 is a "best possible" result. Notice also that C_1 has a non-zero Massey product [10], and so the cohomology suspension map is not injective.

In a later paper we will prove Corollary 10 by entirely different methods, and generalize this corollary as follows:

THEOREM 12. If X is an (n-1)-connected rational space and dim $X \leq (k+2)n - 2$, cat $X \leq k$ if all cup products of length k + 1 vanish.

We will also give further examples to show that this result cannot be improved unless the dimensionality condition is weakened.

COROLLARY 13 (Berstein [3]). Let X be a simply connected CW complex of finite type. Then if $\operatorname{cat} X \leq 1$, X has the homotopy type of a wedge of rational spheres modulo the class of finite groups.

Proof. If cat $X \leq 1$, p_1 has a section by [8, p. 209] and hence p_1^* is injective. The result follows immediately.

Remarks. 1. Corollary 8 arose from an equivalent conjecture and was in fact first proved by Berstein as follows: If p_1^* is injective, p_{1*} is surjective and so

 $H_*(\Sigma\Omega X) \cong H_*(X) \oplus A$

for some summand A. Write $H_*(X) = H_*(Z)$, Z a wedge of spheres. Since $\Sigma\Omega X$ is a wedge of spheres by Proposition 5 and Lemma 6, we can realize the map $H_*(Z) \hookrightarrow H_*(\Sigma\Omega X)$ as a map $r:Z \to \Sigma\Omega X$. Then $p_1r: Z \to X$ induces the identity map in homology, and since X is simply connected, r is a homotopy equivalence.

2. Notice that the proof of Corollary 8 above combined with May's result on the kernel of the cohomology suspension map yields a quick proof of the well-known (but tedious to prove) fact that: All (matric) Massey products vanish in a space of category one—see, e.g., [13].

3. The author has recently proved the dual of Theorem 9: Let X be a rational space and let $\Sigma_n: \pi_n(X) \to \pi_{n+1}(\Sigma X)$ be the Freudenthal suspension homomorphism. Then

 $\Sigma_n \otimes 1_{\mathbf{Q}}: \pi_n(X) \otimes \mathbf{Q} \to \pi_{n+1}(\Sigma X) \otimes \mathbf{Q}$

is injective if and only if all (rational) higher Whitehead products in $\pi_n(X)$

328

(in the sense of [2]) vanish. It follows that a rational space is a product of $K(\mathbf{Q}, n)$'s if and only if all rational higher Whitehead products vanish, giving a quick proof of [7, 4.4]. (See [18] for details.)

4. Berstein's original proof of Corollary 13 used the Hilton-Milnor Theorem.

Added in proof. In Remark 3 above we also need $\pi_i(X) \otimes \mathbf{Q} = 0$ unless $n \leq i \leq 4n - 3, n \geq 2$.

References

- 1. J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330.
- C. Allday, Rational Whitehead products and a spectral sequence of Quillen, Pacific J. Math. 46 (1973), 313-323.
- 3. I. Berstein, Homotopy mod C of spaces of category 2, Comment. Math. Helv. 35 (1961), 9-14.
- 4. I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960), 437-451.
- E. H. Brown and A. H. Copeland, An homology analogue of Postnikov systems, Michigan Math. J. 6 (1959), 313-330.
- 6. C. R. Curjel, A note on spaces of category ≤ 2, Math. Z. 80 (1963), 293-299.
- 7. M. Dyer, Rational homotopy and Whitehead products, Pacific J. Math. 40 (1972), 59-71.
- 8. P. J. Hilton, Homotopy theory and duality (Gordon and Breach, New York, 1965).
- 9. D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.
- W. Massey and H. Uehara, *The Jacobi identity for Whitehead products*, Algebraic Geometry and Topology Symposium in Honour of S. Lefshetz (Princeton U. Press, Princeton, 1957).
- 11. J. P. May and V. K. Guggenheim, On the theory and applications of differential torsion products (to appear).
- J. Milnor, On spaces having the homotopy type of a CW complex, Trans. Amer. Math. Soc. 90 (1959), 272-280.
- 13. G. J. Porter, Higher products, Trans. Amer. Math. Soc. 148 (1970), 315-345.
- 14. E. H. Spanier, Algebraic topology (McGraw Hill, New York, 1966).
- M. Sternstein, Necessary and sufficient conditions for homotopy classifications by cohomology and homotopy homomorphisms, Proc. Amer. Math. Soc. 34 (1972), 250-256.
- 16. D. Sullivan, Geometric topology, M.I.T. mimeographed notes, June, 1970.
- 17. G. H. Toomer, On Liusternik-Schnirelmann category and the Moore spectral sequence, Ph.D. thesis, Cornell University, 1971.
- On the kernel of the rationalized Freudenthal suspension homomorphism (to appear in J. Pure Appl. Algebra).

Cornell University, Ithaca, New York; Ohio State University, Columbus, Ohio