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Abstract. A proper submodule N of an R-module M is called a weakly prime
submodule, if for each submodule K of M and elements a, b of R, abK ⊆ N, implies
that aK ⊆ N or bK ⊆ N. In this paper we will study weakly prime submodules and we
shall compare weakly prime submodules with prime submodules.
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1. Introduction. Throughout this paper all rings are commutative with identity
and all modules are unitary. Also we consider R to be a ring and M a unitary R-module.

Let N be a proper submodule of M. It is said that N is a prime submodule of M,

if the condition ra ∈ N, r ∈ R and a ∈ M implies that a ∈ N or rM ⊆ N. In this case,
if P = (N : M) = {t ∈ R| tM ⊆ N}, we say that N is a P-prime submodule of M, and
it is easy to see that P is a prime ideal of R. Prime submodules have been studied in
several papers such as [1–4], [6–8], [10].

A proper submodule N of M is called a weakly prime submodule, if for each
submodule K of M and elements a, b of R, abK ⊆ N, implies that aK ⊆ N, or bK ⊆ N.

Weakly prime submodules have been introduced and studied in [5]. If we consider
R as an R-module, then prime submodules and weakly prime submodules are exactly
prime ideals of R. More generally for every multiplication module any submodule is a
prime submodule if and only if it is a weakly prime submodule. For every R-module, it
is easy to see that any prime submodule is a weakly prime submodule, but the converse
is not always correct. For example let R be a ring with dim R �= 0, and P ⊂ Q a chain
of prime ideals of R. Then it is easy to see that for the free R-module R ⊕ R, the
submodule P ⊕ Q is a weakly prime submodule which is not a prime submodule.

Recall that a proper submodule N of a module M is said to be a primary submodule
if the condition ra ∈ N, r ∈ R and a ∈ M, implies that a ∈ N or rnM ⊆ N, for some
positive number n.

In this note, we will find some relations between prime submodules and weakly
prime submodules. It is proved that any weakly prime submodule is a prime submodule
if and only it is a primary submodule. Also any irreducible and weakly prime submodule
is a prime submodule.

It is proved that:
(1) If F is a flat R-module and N a weakly prime submodule of M such that

F ⊗ N �= F ⊗ M, then F ⊗ N is a weakly prime submodule of F ⊗ M.

(2) If F is a faithfully flat R-module and N a submodule of M, then N is a weakly
prime submodule of M, if and only if F ⊗ N is a weakly prime submodule of F ⊗ M.
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2. Some comparisons. In the following, we compare some properties of weakly
prime submodules with properties of prime submodules.

LEMMA 2.1. Let M be an R-module and N a proper submodule of M.

(i) N is a weakly prime submodule if and only if for every submodule K of M not
contained in N, (N : K) is a prime ideal of R. In particular (N : M) is a prime ideal of R.

(ii) Let N be a weakly prime submodule of M. Then for all submodules K and L of
M not contained in N, (N : K) ⊆ (N : L) or (N : L) ⊆ (N : K).

Proof. The proof is obvious. �
COROLLARY 2.2. Let M be an R-module and N a proper submodule of M. Then N

is a prime submodule if and only if N is primary and weakly prime.

Proof. Let N be primary and weakly prime, and rx ∈ N, where x �∈ N. Then there
exists a positive number n such that for each y ∈ M \ N, rny ∈ N, i.e., rn ∈ (N : y). By
Lemma 2.1, (i), (N : y) is a prime ideal, then r ∈ (N : y). Hence for each y ∈ M, we
have, ry ∈ N, that is, rM ⊆ N. The converse is clear. �

THEOREM 2.3. Let M be an R-module and N a proper submodule of M. The following
are equivalent.

(i) N is a weakly prime submodule.
(ii) For any x, y ∈ M, if (N : x) �= (N : y), then N = (N + Rx) ∩ (N + Ry).

Proof. (i) =⇒ (ii) Let r ∈ (N : x) \ (N : y), where r ∈ R, i.e., rx ∈ N and ry �∈ N.

Since by Lemma 2.1, (i), (N : y) is a prime ideal, it is easy to see that (N : y) = (N :
ry). If t ∈ (N + Rx) ∩ (N + Ry), then t = n1 + r1x = n2 + r2y, where n1, n2 ∈ N and
r1, r2 ∈ R. Note that rt = rn1 + r1rx = rn2 + r2ry and r1rx, rn1, rn2 ∈ N, so r2ry ∈ N,

that is r2 ∈ (N : ry) = (N : y). Since r2y ∈ N, we have t = n2 + r2y ∈ N.

(ii) ⇐= (i) It is enough to show that if r1r2a ∈ N, where r1, r2 ∈ R, a ∈ M and
r1a �∈ N, then r2a ∈ N. We have, r1 ∈ (N : r2a) \ (N : a), so (N : r2a) �= (N : a). Put x =
r2a, y = a, then by our assumption we have, N = (N + Rr2a) ∩ (N + Ra). Evidently,
r2a ∈ (N + Ra) ∩ (N + Rr2a) = N. �

From the definition of prime submodule, it is easy to see that if N is a prime
submodule of an R-module M and x, y ∈ M such that rx ∈ N, where r ∈ R, then
N = N + Rx, or N = N + Rry. Compare this note with the following corollary,
part (i).

COROLLARY 2.4. Let M be an R-module, N a weakly prime submodule of M and
x, y ∈ M.

(i) If rx ∈ N where r ∈ R, then N = (N + Rx) ∩ (N + Rry).
(ii) If N is an irreducible submodule, then N is a prime submodule.

Proof. (i) If ry ∈ N, then obviously, N = (N + Rx) ∩ (N + Rry). Now let ry �∈ N.

So (N : x) �= (N : y), and by Theorem 2.3, we have N ⊆ (N + Rx) ∩ (N + Rry) ⊆ (N +
Rx) ∩ (N + Ry) = N.

(ii) Let rx ∈ N where r ∈ R. By part (i), for each y ∈ M, we have, N = (N + Rx) ∩
(N + Rry), and since N is irreducible, x ∈ N or ry ∈ N. �

PROPOSITION 2.5. Let Ai, 1 ≤ i ≤ n be a finite collection of ideals of a ring R and
let M be the free R-module ⊕n

i=1R. Then ⊕n
i=1Ai is a weakly prime submodule of M if

and only if {Ai| Ai �= R} is a non-empty chain of prime ideals of R.
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Proof. The proof is straightforward. �

3. Weakly prime submodules and flat modules. Let M be an R-module and N a
submodule of M. In this section for every a ∈ R, we consider (N : a) to be:

(N : a) = {m ∈ M| am ∈ N}.
It is easy to see that (N : a) is a submodule of M containing N. The following lemma
will give us a characterization of weakly prime submodules.

LEMMA 3.1. Let M be an R-module and N a proper submodule of M. Then N is
a weakly prime submodule of M if and only if for every a, b ∈ R, (N : ab) = (N : a) or
(N : ab) = (N : b).

Proof. Let N be a weakly prime submodule of M. It is easy to see that (N : ab) =
(N : a) ∪ (N : b). Now since (N : a) ∪ (N : b) = (N : ab) is a submodule of M, we have
(N : a) ⊆ (N : b) or (N : b) ⊆ (N : a). Hence (N : ab) = (N : a), or (N : ab) = (N : b).

For the converse let abm ∈ N, where a, b ∈ R and m ∈ M. By our assumption we
may suppose that (N : ab) = (N : a). Thus m ∈ (N : ab) = (N : a), that is, am ∈ N. So
N is a weakly prime submodule of M. �

LEMMA 3.2. Let M be an R-module, N a submodule of M and a ∈ R. Then for every
flat R-module F, we have F ⊗ (N : a) = (F ⊗ N : a).

Proof. Clearly F ⊗ (N : a) ⊆ (F ⊗ N : a). Consider the exact sequence 0 −→ (N :
a)

⊆−→M
ga−→M

N , where ga(m) = am + N, ∀m ∈ M. Since F is a flat module and θ :
F ⊗ M

N −→ F⊗M
F⊗N induced by θ (f ⊗ (m + N)) = (f ⊗ m) + F ⊗ N, ∀m ∈ M, ∀f ∈ F is

an isomorphism, we have the following exact sequence

0 −→ F ⊗ (N : a)
⊆−→F ⊗ M

1⊗g′
a−→F ⊗ M

F ⊗ N
,

where (1 ⊗ g′
a)(f ⊗ m) = a(f ⊗ m) + F ⊗ N, ∀m ∈ M,∀f ∈ F. Consequently F ⊗ (N :

a) = Ker(1 ⊗ g′
a) = (F ⊗ N : a). �

THEOREM 3.3. Let M be an R-module.
(i) If F is a flat R-module and N a weakly prime submodule of M such that

F ⊗ N �= F ⊗ M, then F ⊗ N is a weakly prime submodule of F ⊗ M.

(ii) Let F be a faithfully flat R-module. Then N is a weakly prime submodule of M
if and only if F ⊗ N is a weakly prime submodule of F ⊗ M.

Proof. (i) Let a, b ∈ R. By Lemma 3.1, we may suppose that (N : ab) = (N : a).
Now, by Lemma 3.2, we have (F ⊗ N : ab) = F ⊗ (N : ab) = F ⊗ (N : a) = (F ⊗ N :
a), that is, (F ⊗ N : ab) = (F ⊗ N : a). Hence by Lemma 3.1, F ⊗ N is a weakly prime
submodule of F ⊗ M.

(ii) Let N be a weakly prime submodule of M and F ⊗ N = F ⊗ M. Therefore,
0 −→ F ⊗ N

⊆−→F ⊗ M −→ 0 is an exact sequence, and since F is a faithfully flat
module, then 0 −→ N

⊆−→M −→ 0 is an exact sequence. Hence N = M, which is
a contradiction. So F ⊗ N �= F ⊗ M. Now by part i), F ⊗ N is a weakly prime
submodule of F ⊗ M.

Conversely suppose that F ⊗ N is a weakly prime submodule of F ⊗ M. We have,
F ⊗ N �= F ⊗ M and obviously N �= M. Let a, b ∈ R. We may assume that (F ⊗ N :
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ab) = (F ⊗ N : a), by Lemma 3.1. Then by Lemma 3.2, we have F ⊗ (N : a) = (F ⊗ N :
a) = (F ⊗ N : ab) = F ⊗ (N : ab). So 0 −→ F ⊗ (N : a)

⊆−→F ⊗ (N : ab) −→ 0 is an
exact sequence, and since F is faithfully flat, 0 −→ (N : a)

⊆−→(N : ab) −→ 0 is an
exact sequence, which implies that (N : a) = (N : ab). Hence by Lemma 3.1, N is a
weakly prime submodule of M. �

A theorem similar to Theorem 3.3 for prime submodules has been proved in [2].
It is easy to see that a proper submodule N of an R-module M is a prime submodule if
and only if for every a ∈ R, (N : a) = N or (N : a) = M. Now by a proof similar to that
of Theorem 3.3, we can show this theorem for prime submodules, which is different
from the mentioned proof in [2].
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