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SUMMARY
We have proposed a new repetition framework for vision-
based behavior imitation by a sequence of multiple humanoid
robots, introducing an on-line method for delimiting a
time-varying context. This novel approach investigates the
ability of a robot “student” to observe and imitate a
behavior from a “teacher” robot; the student later changes
roles to become the “teacher” for a naı̈ve robot. For the
many robots that already use video acquisition systems
for their real-world tasks, this method eliminates the need
for additional communication capabilities and complicated
interfaces. This can reduce human intervention requirements
and thus enhance the robots’ practical usefulness outside
the laboratory. Articulated motions are modeled in a three-
layer method and registered as learned behaviors using
color-based landmarks. Behaviors were identified on-line
after each iteration by inducing a decision tree from
the visually acquired data. Error accumulated over time,
creating a context drift for behavior identification. In
addition, identification and transmission of behaviors can
occur between robots with differing, dynamically changing
configurations. ITI, an on-line decision tree inducer in the
C4.5 family, performed well for data that were similar in time
and configuration to the training data but the greedily chosen
attributes were not optimized for resistance to accumulating
error or configuration changes. Our novel algorithm, OLDEX
identified context changes on-line, as well as the amount
of drift that could be tolerated before compensation was
required. OLDEX can thus identify time and configuration
contexts for the behavior data. This improved on previous
methods, which either separated contexts off-line, or could
not separate the slowly time-varying context into distinct
regions at all. The results demonstrated the feasibility,
usefulness, and potential of our unique idea for behavioral
repetition and a propagating learning scheme.

KEYWORDS: Humanoid robots; Multirobot systems;
Robot dynamics; Robotic self-replication; On-line pattern
recognition.

* Corresponding author. E-mail: ymotai@vcu.edu
Abbreviation: ITI, incremental tree inducer; OLDEX, on-line
DElimiter for conteXt

1. Introduction
This is an exciting time for task-oriented humanoid robotics.
Science fiction has long provided a vision for applications
of humanoid robots, ranging from personal cleaning and
service assistants (such as Rosie from the television cartoon
The Jetsons), to robots who are functionally and visually
indistinguishable from humans (the Cylons in the most recent
television rendition of Battlestar Galactica). Increasingly,
complex technology is making it possible for the science
fiction vision of robots to be realized.1 However, the
increasing complexity of these robots’ tasks also requires
increasingly complex training procedures. For example, the
dancing humanoid robots at the University of Technology
Sydney required approximately 2 h of programming effort for
each 5 s of dance, even after developing a platform-specific
programming language for the task.47 Another difficulty is
damage or changes to the robot that occur after it has been
programmed. Robots are often deployed to locations that are
difficult or dangerous for humans to access, such as Mars or
underwater. Communication between the robot and humans
may be delayed or absent. How does the robot know whether
has been damaged? Can it determine this without human
input?

The subject of this paper is autonomous identification
of time periods where changes occur in the behavior of
a robot after the initial training has commenced. A novel
robot–robot imitation scenario is employed. Without on-
line learning, parameter changes over time could lead to
misclassification, unless the context is taken into account.
We may not be able to observe changes in the environment
surrounding the robot, or prepare for every possible scenario
that could affect the robot. We are concerned with two
types of changes: (1) changes that occur suddenly (such
as loss of a limb), and (2) changes that occur slowly
over time (e.g., a failing motor). Our method approaches
behavior generation from the perspective of “primitives”—
small building blocks of motions that can be combined in
various ways to produce more complex behaviors. These
building blocks also may serve as a convenient, shared
common language between robots. However, if a robot’s
configuration changes or it becomes damaged, its ability
to perform one or more primitives may be compromised.
The “shared common knowledge” of the primitive cannot
be counted on. Our method makes it possible to update
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the definition of a primitive on-line, autonomously. The
definition of the primitive can be updated for the robot(s)
involved.

To examine these types of changes, we use both a novel
imitation scenario between dual humanoid robots, and a
new hierarchical decision tree classifier for incremental,
autonomous segmentation of time periods between changes.
We refer to time periods of consistent behaviors as “contexts.”
We approach the problem from an observational standpoint—
the robot does not need to be aware of its own configuration.
It simply observes the behavior of a teacher. When an
observable change occurs in functionality, a “context change”
has occurred. Using this mutual-imitation scenario, we are
able to demonstrate the ability of our algorithm to identify
the onset of both sudden and slow changes to the way a
robot performs a behavior. Sudden configuration changes are
simple to model by removing a limb. Our mutual imitation
scenario allows modeling of slow changes by allowing
behavior “drift” to occur, unchecked accumulation of error
that can eventually disrupt the observed behavior of the robot.

To our knowledge, a physical framework for imitation
between humanoid robots has not been previously attempted.
Visual learning has been extensively studied in the robot–
human imitation domain),13,19,49,70 but robot–robot imitation
has been limited to simulated robots,17 or nonhumanoid
and mobile-type robots.6,59,61 Also, our approach requires
a novel classifier because it incorporates both context
identification and on-line learning. Knowledge of context
adds a rich dimension to imitation learning—the same
measurements observed in one context may have a different
meaning in a different context. Our method, OLDEX,
can identify when unpredictable, dynamic changes in
robot configurations occur, and develops a model that can
accommodate the observed changes. It does not need to
know what generated the changes (environmental factors,
mechanical malfunctions, etc.); the system simply and
autonomously observes that changes have occurred and
adjusts the classification model accordingly. This makes
our method flexible and generalizable across behaviors and
environments. None of the above-mentioned studies can
incorporate training data from robots whose configurations
could change unpredictably during the training period. Also,
this research differs from social and multiagent learning
because the robots are not technically cooperating with each
other on a task (as in Yanco 1994). This system simply creates
a model that reflects changes in configurations.

This research is timely because there are several
scenarios where external observation of robot behaviors
provides benefits that cannot be gained from simple
parameter transmission. Programming robots to operate
in an open-ended environment is very challenging, and
visual observation of performance by robot coworkers could
reduce human training loads. This project has recently been
undertaken under the EU-funded AMARSi project (Wired,
see,15). Mutual imitation can also be used to extend current
research on robots that are not aware of their current physical
configurations due to sparse programming, or robots with a
need to continue on-line learning despite random changes
to their configuration due to damage.8,9 Another benefit is
that we can learn a great deal about potential malfunction

sources using this scheme. A single, small performance
error might be almost undetectable, but repeated mutual
imitation efforts compound this error to an easily perceptible
level. This can accelerate functionality testing by showing
which components are sensitive to breakdown. Observation
of other robots can also be used as an input by evolutionary
games, possibly to study emergence of new behaviors. Also,
robot–robot imitation can be extended from the identical
robot case to allow imitation between nonidentical agents.
Many robots already incorporate visual acquisition systems
for their real-world tasks, and few are programmed to
communicate directly with robots from other manufacturers.
A visual imitation scheme can allow transfer of behaviors by
utilizing the robot’s built-in visual-to-kinematic conversion
abilities.

We developed an on-line machine learning algorithm,
OLDEX that can autonomously separate the training period
into “contexts”—time periods where the teacher and/or
student configurations are consistent. Although there are
many definitions of the term “context,” it is generally
agreed that time variation is an important factor.16 When the
classification of two data instances with similar or identical
input parameters depends greatly on the time of acquisition,
the system may be described as context-dependent. OLDEX
initializes a new context model when it detects a change,
which allows the classifier to incorporate the new data into
the correct context model. OLDEX can be programmed to
draw upon data from other contexts if the teacher has less
functionality than the student, yet the new data can still
be incorporated to update the model. Thus, with OLDEX
and imitation, we gain the ability to autonomously develop
models for behaviors despite different and/or changing robot
configurations. By selecting the correct model, we may also
gain information that the robot can use to evaluate its own
physical configuration. To increase OLDEX’s accessibility
and usefulness to researchers, our implementation is based
on the Matlab platform, and the code is available at
http://www.gadgetcat.com/.

This paper is organized as follows: section 2 describes
some prior work in context research and robot imitation.
Section 3 introduces the proposed system architecture, which
consists of the humanoid robot, camera, and processor,
including the software used. Section 4 will describe the
classification of context-dependent behavior, including our
proposed method for delimiting contexts on-line. Section
5 provides the experimental setting and results. Section 6
concludes the paper.

2. Related Studies
Since little research has been done regarding context-
sensitive robot–robot imitation, this section is divided into
four parts: context-sensitive learning, on-line classification,
robotic imitation, and interaction between multiple robots.

2.1. Context-sensitive learning
The outcomes of context-sensitive systems depend on
factors that change over time. Schlimmer and Granger56

describe one of the earliest works relating to context-
dependent learning in their 1986 paper. Their STAGGER
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system draws from classical conditioning in psychology,
particularly Rescorla’s53 work on contingency to compute
two probabilities for each data instance: (1) the likelihood of
a feature being associated with a positive outcome, and (2)
the likelihood of a feature being associated with a negative
outcome (binary classification). Bayesian formulae are used
to compute the probabilities. The system output is a set
of Boolean functions and weights. Functional relationships
and weights are updated as data are incrementally added.
STAGGER and ID351 are compared—they are similar in
that they construct initially simple, then more complicated
representations, and use statistical independence as an
evaluation. However, at the time, the STAGGER system was
developed, no on-line versions of ID3 had been developed.
An incremental extension, ID5R, was introduced in 1989,63

and the updated method ITI in 1996.64 The authors also
pointed out that on-line incremental capabilities did not
necessarily ensure compensation for concept drift. We
demonstrate in this paper that ITI’s ability to incrementally
build the same tree regardless of the input order of the
instances makes it capable of accommodating concept drift,
but the attributes chosen are not optimized to minimize the
impact of data drift. Trees built using the entire dataset are
not optimized for entropy reduction of local data regions. Our
approach, OLDEX, can be used to explicitly define regions
in time (contexts) where the drift in the data is small enough
to be optimal for entropy reduction, or regions where a major
change has occurred that may require a separate data model.

Widmer and Kubat67 describe context as the scenario
where the generating rules of a dataset are not visible to the
system. Their FLORA system can identify similar, recurring
contexts, as well as context drift. Window size of a context
could be dynamically adjusted, concept definitions stored,
and noise robustness was implemented. It forms “description
sets” to represent hypotheses for context-dependent concepts
and can dynamically focus on new instances data by
“forgetting” old data. The method described in this paper
improves on FLORA because the on-line induction does not
require examination of a window of data, and the importance
of old data is automatically decreased simply by adding new
data.

Harries et al.23 describe the SLICE system for extracting
hidden context in a system. The SLICE system divides a
domain into time-delimited concept regions. These regions
could be determined in a batch, one-step manner (SLICE-
1) by inducing a decision tree classifier (using C4.5) and
setting splits on the attribute “time” as locations for context
changes. Improved context regions were found by refining
the endpoints of the regions using voting methods (SLICE-
2). SLICE induces a decision tree classifier by using “time”
as an input attribute to the tree. Although this method is
effective and produced improved results over STAGGER, it
cannot be applied to an incoming data stream in an on-line
manner. C4.5 is essentially used as a preinduction method.
This is different from how we are applying the decision tree
inducer. We wish to induce a decision tree for our actual
data, but rather than inject “time” as a variable, we examine
the changes in the induced tree over time. Thus, we can
find splits in an on-line manner and simultaneously have an
updated tree. Also, they found that directly using time as

an attribute for the decision tree did not produce an optimal
context delimiter. We discuss in Section 4.2 how this may be
related to issues of joint probability with C4.5, and how our
method OLDEX overcomes this difficulty.

Changes in a classifier over time can be used to indicate
context shifts, such as hardware failure or errors. Christensen
et al. (2008) utilize a neural-network-type framework to
identify faults as they occur in a system. OLDEX examines
changes in the induced decision tree to identify contexts.
Examining on-line changes differentiates our work from
the decision tree application of Kim and Lee,29 who are
primarily applying C4.5 as a postprocessing method for error
correction, rather than examining the tree to determine what
the error means.

Hulten et al.24 present an on-line decision tree classifier
(CVFDT) for time-varying contexts. To save computation
time, they apply a method of estimating the current error
of the inducted decision tree (or subtree) using Hoeffding
bounds. When the old tree exceeds the inaccuracy limit, a new
tree is induced. Testing the error of the tree is unnecessary
in OLDEX because we are constantly inducing new trees in
an on-line manner, to monitor changes in the nodes. Once
we have the new tree we can use it immediately, and each
context has the most accurate tree computed at any time.

2.2. On-line classification
Quinlan52 states that the idea for decision tree induction from
training data began in the 1950s25 and that Friedman’s20 work
presents the algorithmic basis for both ID350,51 and CART.11

Two major differences between ID3 and CART are (1) the
criterion for choosing decision points, and (2) the method
for choosing a tree. ID3 is based on information gain, or
entropy, and builds trees in a top-down manner. CART uses
the Gini index, which is more commonly seen in financial
analysis studies, and chooses from a selection of potential
decision trees. ID3 was limited to data instances with
nominal-valued attributes (i.e., red, green, blue) and could
not separate continuous data (for example, the sequence
(2.5, 4.3)). This limitation was addressed in the revision
C4.5,52 which is an extension of ID3 and can process
data instances with continuous numerical attributes. ID5R63

extends these methods to allow on-line incremental induction
of trees identical to ID3, for the same data. ITI64 performs
efficient, on-line tree induction for discrete or continuous
data attributes and is available on the internet62. More detail
on the operation of ITI, and how we apply it to our work on
context learning, is in Section 4.

Learning techniques can be either directed or
supervised7,36,39,42,57,66 or unsupervised/self-organized.6,61

The use of a supervised method for this paper proved to be
most effective during examination of the effects of error drift
and major configuration changes. The approach here was
based on the ID3 and C4.5 variety of decision trees, which
involve minimizing entropy in order to select tree branches.
On-line data incorporation was needed due to the constant
influx of data, hence the use of ITI.64 ITI produces the same
tree on-line as off-line. OLDEX maintains this feature, the
same models are produced regardless of whether data are
incorporated incrementally or all at once.
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2.3. Robotic imitation
Among intelligent agent communities, there is very little
research that deals with visual-based behavior learning and
repetition from humanoid robot to humanoid robot. However,
mutual imitation is an early learning stage between parents
and infants. Imitation is a preliminary stage in the process
of learning to associate behaviors with outcomes; first, a
small repertoire of motions is imitated, and then, through
repetition and reinforcement, more complex behaviors are
formed. Piaget48 describes typical “baby talk” in the first
stage of imitation, where an infant makes a sound, the parent
repeats the sound, and then, the child repeats the parent.
This is an example of imitation where the role of teacher and
student is continuously interchanged. A similar phenomenon
is seen for visual tracking, where the parent turns their head
and the child repeats the movement. The infant can learn at
a very early stage to both imitate and differentiate various
motions. Humanoid robots, like infants, are highly adaptable
and capable of imitation, and so mutual imitation can be a
useful avenue for exploration in robot learning. Amit and
Matarić1 stated that imitation is an area of great importance
because of its ability to simplify a robot’s ability to learn new
tasks without complex trials.

An important distinction between learning and imitation
is that for learning, some judgment must be made regarding
whether a behavior is relevant or irrelevant. There must be
a specific, known, desired outcome. This research is about
the work that comes before that—knowing “something” has
changed. We don’t know exactly what has changed, because
we don’t really know the configuration. We don’t know
whether it affects our goals, because we don’t have goals.
It really is like imitation in infants—they have no goals, they
simply imitate because it is their nature. First, they learn
how to imitate, and then, they learn to recognize changes.
That is the goal of this paper—to autonomously recognize
changes, without requiring judgment or understanding of the
particular task involved. Using the newly acquired imitative
and change-recognizing skills to accomplish specific goals
is the topic of future work.

Humanoid robots are highly configurable automated
devices used in a variety of applications, including
entertainment and companionship19,21,33 and use as
interactive media agents. Much research expounds the
usefulness of human–robot interaction, from aiding in
physical therapy26 to companionship and games.35 Tani
et al. (2008) demonstrated a cooperative learning framework
between a humanoid robot and a human who provides
feedback. They trained a hierarchical neural network model
as the human interacted with a robot for error correction. This
showed that such observation and interaction could be useful
for improving robot learning and that context-dependent
behaviors could be described in a hierarchically organized
network. This indicates that our approach for classification
of behavior using a hierarchical model is appropriate for
robot work. Decision trees are well suited for hierarchical
descriptions in comparison to neural networks because they
are already hierarchically organized, and neural networks can
sometimes be structurally indecipherable.

Previous work has been done to mimic body structure
motion or human motion for controlling robots ( Klingspor

1997).1,26,49,70 Ijspeert et al.26 demonstrated imitation via
control policies for a virtual and a physical humanoid robot,
but used sensor data to learn the policies, rather than vision-
acquired data. Pollard et al.49 developed a procedure for
adapting human motion for the control of a humanoid robot.
They studied the capture of upper torso human movement and
methods for applying the results to humanoid robot motion.
The paper also discussed the limitations of currently available
humanoid robot motion. Their main focus was to replicate
human motion with the greatest accuracy possible within the
limitations of the robots’ range of motion. Good imitation of
some types of movement was produced; however, any motion
involving limb overlap or shoulder movement was not well
reflected in the humanoid robot’s motion.

Training articulated behavior using a video camera has
been well studied in an off-line manner. The use of vision-
based motion analysis is not new; it is rather standard in
computational noncontact-type measurement systems. For
example, some existing 3D motion analysis systems have
been already developed in various industrial applications by
Vicon,65 A.P.A.S.,43 Motion Analysis, Inc.,41 and various
academic implementations.22,58,68 In this paper, we address
that autonomous behavior acquisition can be achieved via
retargeting basic behaviors. This research also validates that
such visual behavior acquisition and classification can be
extended from an off-line scheme to an on-line scheme.

2.4. Interaction between multiple robots
Interaction requires awareness of other robots18,37,59 and
implementation of a learning strategy. Past work has been
done regarding groups of robots that can work together
without a centralized control device.27,32,36,44 Learning
strategies must be implemented to implement behavior
transference. This paper approaches the topic from the use
of primitives1,4,5,38 to develop a structure for analyzing data
from the teacher robot. This data can then be entered into a
simulator, i.e., as in ref. [14]. Matarić38 as well as Bentivegna
et al.4 describe systems in which the concept of primitives
is used in robot learning from observation. Primitives are
small parts of any humanoid motion task broken down from
a large set of data. In their experiment, primitives are used to
break down simple parts of the motions required to play
a game of air hockey. An added benefit of primitives is
that they can be continuously refined to generate a better
result.

Typically, studies on multiple or group robots use mobile-
type robots, not humanoid-type robots.61 The literature
contains a few examples of robot–robot learning,6,59

but for nonhumanoid (LEGO) robots. Billard’s DRAMA
architecture (1998) allows a robot student to learn, from
a robot teacher, a vocabulary of motions in an arena. But
the roles of teacher and student are fixed, whereas in our
work the teacher/student roles can be exchanged indefinitely,
as in Piaget’s baby talk observations. Steels and Vogt59

implemented an interactive game between LEGO robots in
which one robot chose a target object and the second robot
attempted to identify it. Although the robots successfully
developed schemes to identify objects, recognition was slow
and required many repetitions.
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It is hard to debate the argument that interaction with robots
would be greatly eased if they were able to understand natural
human interaction methods.46 Some believe that an effective
means for teaching robots is to follow a learning process
similar to the learning of small children2 or interaction
with caregivers.33 Natural interaction between humans and
robots has been attempted,19,49,70 but requires processing
capability on the robot’s part (Klingspor et al. 1997).3,54

When one type of robot has been trained to perform a
task, redundant effort on the human’s part would likely be
required to train a differently configured robot to perform the
same tasks. Interaction and training require learning that is
individualized to the particular make and model of the robot.
Thus, direct transfer of code from one type of robot to another
may not be possible due to incompatibility of software or
differences in the hardware makeup of the robots.18 Also,
if a robot’s configuration changes after training, it would
have to be retrained. However, for types of robots that can
be independently programmed by human “teachers,” it may
save a great deal of effort to replace the human teacher with
a robot teacher. Theoretically, a single human–robot training
session could then be applied toward training an entire fleet of
flexibly configured robots whose only compatible interface is
a vision-based acquisition system. The work presented in this
paper demonstrates preliminary steps toward this possibility.

3. Proposed System Architecture
The system architecture integrates the processor, camera,
and a humanoid robot. User interface software was written
in C++ and provides a simple interface to control robot
movement and motion capture. An overview of the system is
provided in Section 3.1. Details of the system operation are
organized into modules. The first module, Motion Capture, is
described in Section 3.2, and the second module, Redirection,
is described in Section 3.3.

3.1. System overview
The experiment in this paper, as mentioned, was a novel
paradigm that involved humanoid robot–robot imitation.
An elementary machine vision method is used to compute
the limb positions of a humanoid “teacher” robot from a
video. Then, a second “student” robot imitates the first by
implementing the calculated limb positions. This constitutes
a single “repetition.” The student then becomes the “teacher”
for a new robot, and the second repetition begins. This
process can be repeated indefinitely, between a series of
robots, between only two robots, as shown in Fig. 1, or even
with a single robot using a remotely placed video camera.
Each repetition may be subject to a small degree of error
(which without correction could accumulate indefinitely),
or a sudden configuration change could occur (loss of a
limb). The experiment in this paper used a single camera and
robot; the robot is essentially imitating itself. This removed
the influence of physical differences between teacher and
student, and limited the source of error to image acquisition,
position calculation, and servo motor error.

To test the classifier induced from the observation data,
a set of “behaviors” was predefined. Each behavior consists
of distinct, ordered combinations of arm and leg positions.

Fig. 1. (Colour online) Diagram showing a continuous sequence of
robot imitation from robot to robot (left) or between only two robots
(right), much like a robotic game of “Telephone.” Error accumulates
every time a robot is imitated.

A robot performs a single behavior and the limb and joint
positions are recorded, along with the class of the behavior.
These data and class are used to induce the classifier. For
example, a “Waving” behavior consists of raising the robot
arms and moving the hands, while “Cheering” involves
moving the entire arm up and down.

To simulate the effects of on-line context changes, a robot’s
physical configuration was changed by “removing” a part of
the body. The hand was removed virtually by deleting the
subsequent data for the hand, and continuing the experiment
without that part. In this way, the effects of physical context
changes could be observed.

The ability to imitate movement is based on the
decomposition of each behavior into a set of primitives.
This paper suggests the use of a three-level hierarchy
of information. In the bottom level, base primitives are
defined that that control simple, low-level movements. We
defined six simple primitives based on arm positions. In
the middle level, we use kinematic equations to solve for
joint angles to execute the primitives. In the highest level
of the hierarchy, behaviors are defined using time-ordered
sequences of primitives.

Due to various on-line system changes (such as error
accumulation or limb loss/malfunction), the limiting values
for each primitive may evolve over time. We showed
that when the classifier is induced from data in only
one context, the model may generalize poorly for other
contexts. The off-line classification methods used for ref.
[17], or Calinon and Billard (2005) produced static models,
which required the entire dataset for retraining. This could
cause difficulties for sparse but increasing training data
or dynamically changing configurations. The probabilistic
classification method used in this paper (ITI incremental
decision tree) could incorporate new data on-line, and so
compensate for physical configuration changes if and when
they occurred. Our novel OLDEX algorithm was able to
identify the time point for these context changes. A sudden,
isolated context change could be cause by malfunction of
a part. A consistent frequency of context changes might
indicate a need for detrending. Thus, the context changes
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Fig. 2. (Colour online) Flow chart for mid-level motion.

can be used to perform autonomous system self-monitoring
without external reinforcement.

3.2. Motion capture
The motion capture process described here is divided into
three parts: a low-level process, mid-level process, and a
high-level process. This mirrors, in a broad way, Piaget’s48

progression of imitation, starting with simple tasks, and
proceeding to more complex combinations. The steps used
in this paper operate as follows.

3.2.1. Low-level motion detection. To detect low-level
motion, landmarks are assigned a priori using different
colored dots placed in several locations on the teaching
robot. Twelve stickers mark the limbs and joints, but only
six unique colors were needed—six for the top half of the
screen (“arm” stickers) and six for the lower half (“leg”
stickers). To detect each landmark’s center point, we first
run a color filter over the original picture to isolate a specific
sticker color. After masking the isolated color, we calculate
the mean x- and y-coordinates from the pixel locations in the
mask.

To reduce the effect of outliers, the x- and y- positions are
then recalculated by averaging only the masked pixels within
+/− 20 pixels of the calculated mean.

The movement distance between frames is calculated using
the center points, and both the movement and center points
are stored in a time-stamped file. To save time and memory,
recording is skipped when images are unreadable or motion
between captures is insignificant.

3.2.2. Mid-level motion detection. In mid-level motion, an
operational space approach is applied.28 The center locations
found in low-level motion are used to solve for the arm
lengths and joint angles. The flowchart for computing the
lengths and angle changes is shown in Fig. 2. First, the A2

and A3 arm segment lengths (see Fig. 3) are determined
from the shoulder, elbow, and hand sticker midpoints. The
camera and robot distance remains fixed in the z-axis. Using
these positions, the joint angles θ2 and θ3 are calculated. To

Fig. 3. (Colour online) Robot arm segment lengths A2, A3 and
joint angles θ2, θ3. The lengths and angles are used for high-level
behavior classification.

simplify computation, “bad captures” or missing data are
ignored. This time-stamped angle data will be used to create
a general angular motion plan for the robot. The planning
of the trajectory for moving the right or left arm will be
computed using the inverse kinematics solution. The general
3D form of the joint matrices is shown in Eq. (5)⎡
⎢⎢⎢⎢⎣

Cθn+1 −Sθn+1Cαn+1 Sθn+1Sαn+1 an+1Cθn+1

Sθn+1 Cθn+1Cαn+1 −Cθn+1Sαn+1 an+1Sθn+1

0 Sαn+1 Cαn+1 dn+1

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (1)

where C and S represent Sin and Cos, θ is the angle
with respect to the XY-plane, and α is the angle with
respect to the Z-plane. The n + 1 subscripts indicate that
the angles corresponding to the new positions. This will give
us individual matrices for each joint, which will allow us to
solve for the entire set of angles for a give position. Once
all the joint matrices are calculated, they are substituted
into A−1

1 ∗R TH = A2A3. This involves taking the inverse
matrix of A1 multiplied by a homogeneous matrix that has
two sections: a rotation portion and a position portion (see
Eq. (6)) ⎡

⎢⎢⎢⎢⎣
nx ox ax Px

ny oy ay Py

nz oz az Pz

0 0 0 1

⎤
⎥⎥⎥⎥⎦ = RTH . (2)

The Px , Py , and Pz terms are the position terms and will
be used to solve for the unknown angles (see Eqs. (7)–12))

Cx = Cos[θx], Sx = Sin[θx], θ1 = ArcTan

[
Py

Px

]
,

θ1 = θ1 + 180◦, (3)

S2 = (S3a3 + a2)(Pz) − S3a3(PxC1 + PyS1)

(C3a3 + a2)2 + S2
3a

2
3)

, (4)

https://doi.org/10.1017/S0263574711000580 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000580


Self-reproduction for articulated behaviors with dual humanoid robots using on-line decision tree classification 321

C2 = (C3a3 + a2)(PxC1 + PyS1) + S3a3Pz

(C3a3 + a2)2 + S3a
2
3)

, (5)

θ2 = tan−1 (C3a3 + a2)(Pz) + S3a3(PzC1 + PyS1)

(C3a3 + a2)(PxC1 + PyS1) + S3a3Pz)
, (6)

C3 = (PxC1 + PyS1)2 + P 2
z − a2

2 − a2
3

2a2a3
, (7)

θ3 = tan−1 S3

C3
. (8)

3.2.3. High-level motion detection. For high-level motion,
motion segments are defined as specific combinations of
robot limb positions. The specific motion segments are
defined as left arm up/down, right arm up/down. They
are determined by calculating the corresponding midpoints
with respect to each frame of the time period. Ordered
combinations of these motion segments constitute behaviors.

3.3. Redirection of identified behavior
Once a motion has been captured and identified, the software
will need to translate the identified motion into a series of
servo controls, which will be passed to the robot. These
servo controls will be matched in time to the movement of
the original robot (the “Teacher”) by a series of angular servo
rotations delayed, as necessary, to create the proper speed of
motion. The software will use basic serial communications
to the second attached robot (the “Student”). This serial
communication will make use of basic templates for serial
communication structures. Two methods of redirection are
described. The first is a Robot-to-Simulation method, where
the “Teacher” robot is a Kondo Humanoid robot, and the
“Student” is a virtual robot existing in the Virtual KHR1
simulator. The second is a Dual Robot method, where both
the Teacher and Student are physical robots.

3.3.1. Robot-to-simulation execution. The first step of the
experiment is to detect motion from the first robot and redirect
this motion to the Virtual KHR1 simulator. This is done by
first running the software that we wrote to detect motion from
the robot. The robot must then be controlled by the Heart to
Heart software31 to replay a previously programmed action.

Immediately before the robot initiates a motion, the visual
recognition software is started. When the motion is complete,
the software will process the recognized motion and will
create a macro control file. This file will be loaded into the
simulator and played.

The step of processing the data to create a macro control
file must be performed as a separate step from actual image
detection because the speed of processing the data would
limit the capture rate to an amount below the minimum
required to correctly capture the robot’s motions. This
limitation can be minimized somewhat by limiting the robot’s
motion speeds, but realistic motion must be maintained.
Figure 4 demonstrates an example of real robot images

Algorithm 1. Robot-to-Simulator Procedure

1) Acquire video of robot performing specific movement
a) Divide video sequence into series of frames

2) Calculate the sticker center position from the video frames
a) Use the mean calculation of sticker center pixels and

eliminate outliers
3) Calculate angles based on sticker position

a) Feed sticker position back into movement equation for
robot

b) Record angles
4) Feed angles back into simulator to check movement

a) Movement should mimic the robot’s original
movement

Fig. 4. (Colour online) Real robot image captures vs. simulator
screen captures—both using the same real video stream data.

captured versus simulator screen captures. The steps from
robot to simulator are described in Algorithm 1.

3.3.2. Multiple robot execution. Multiple robot execution
requires additional Kondo Humanoid Robot(s) to be
connected to the system. However, for the experiments
implemented in this paper, only a single physical robot was
used. To simulate an experiment with multiple robots, the
acquisition steps of Section 3.1 were first performed for
the “Teacher” robot. The camera/computer system acquired
and processed the data for the Teacher, using the Heart
to Heart software and interface. Then, the same robot
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switched to the role of “Student.” The computed motions
were passed to the robot from the camera/computer system.
This limited the source of error to position calculation and
implementation, rather than interrobot differences in joints
and sticker placement. It also made it possible to emulate the
results of a procession of robots imitating each other, without
requiring multiple robots.

3.3.3. On-line recognition and compensation for context
changes. The simplest scenario for robot–robot imitation
involves two identical robots. However, this could be
considered a trivial scenario since one might simply
transmit the machine control code from one to the
other. A nontrivial scenario, however, is robot–robot
imitation between nonidentical robots, particularly if the
configurations change after the training process has begun.
We describe here an on-line strategy for behavior imitation
that compensates for physical changes that may occur to one
or more robot structures after the start of the exercise.

If a teacher robot loses part of a limb after the beginning
of an imitation session, it is considered a context change.
We must address how this context change affects the
imitation process. How does a robot imitate a high-level
behavior produced by a nonidentical robot? We use an on-
line learning method (OLDEX) that identifies when context
changes occur (such as limb loss or malfunction). Once a
context change occurs, and the robots are no longer identical,
how do we objectively define a behavior? Two approaches
are (1) perform an approximation of the current motion,
within the constraints of the anatomical differences, and
(2) use a machine learning method to identify the most
important aspects of the behavior, and implement those
in the nonidentical robot. The difference between these
approaches is that (1) simply replicates previous motion,
saving computational effort at the potential expense of
accuracy, and (2) performs a more intelligent analysis of
what makes that motion “important.” By understanding what
makes the motion important, we have a better idea of what
needs to be replicated. Our strategy involves both methods,
by (1) first processing the image, then (2) inducing a decision
tree from the analyzed image.

Initially, a model for the most important features of the
behavior is induced using a machine learning method (here,
ITI). When a context change is identified, the previous model
is saved and associated with the robot configuration that last
contributed to the model.

If the number of parts has changed, first we check to see
if this configuration has previously been observed. If it has,
then a model will exist in storage. We incrementally update
the appropriate model using the new data. If the configuration
has not been seen before, a new model is created. The
most recently used model is chosen as an initial model, and
modified with respect to the new number of attributes. We
are using a tree-structured model—each part corresponds to
a training attribute. The new model is created using either (a)
or (b):

(a) If a part has been removed, the corresponding attribute is
deleted and tree nodes based on that attribute are deleted.

(b) If a part has been added, the number of attributes in the
training model is augmented on-line.

The new data is then incrementally incorporated into the
new model.

This method of creating/updating different models for
different configurations has several benefits. Classification
is more accurate when a configuration-specific model is used
(see Table II in the results section). There is also benefit from
basing the new model on the previous model. Since the new
configuration developed from the previous configuration,
there will be at least some similarity between the two (even if
multiple or cascading part failures occur). By basing the new
model on the previous model, but updating it separately, the
algorithm can selectively modify only the aspects that have
changed.

4. Context-Dependent Behavior Classification
This section discusses the classification method for robot
behaviors, performed by an independent observer. Because
of the compounding effects of error, the classification
parameters are affected by time, and thus, the system
becomes a model for a time-varying context. We will
arbitrarily describe two time contexts, “early” observations
and “late” observations. Section 4.1 discusses identification
and classification of behaviors, and Section 4.2 describes
our contribution of on-line decision-tree-based context
separation.

4.1. Behavior classification
Behaviors are defined here as a 15-frame sequence of high-
level motions. Groups of 15 frames were sent as a unit
to the classifier. If the user requires longer sequences for
behaviors, or sequences of unequal length, the length of the
sequences can be set to the longest length and extra frame
data simply set to “missing.” This sequence length ensured
that the combination and ordering of the primitives for high-
level motions would be unique for each behavior. The start
and stop times of the sequences were provided externally.
Basic behaviors are defined by combining together high-level
motion segments to create a set of predefined movements
(i.e., move right arm up, then move right arm down). These
high-level motions can then be replayed as preprogrammed
movements. Examples of basic behaviors in this paper are
following:

(a) Waving: move arm up and then move hand left and right.
(b) Hail a cab: move hand all the way up and stop.
(c) Cheer: move hand upward.
(d) Exercise: move arm all the way up and down, repeat.
(e) Flapping: move arm up and down in limited range.
(f) Weights: move arm in short range.
(g) Curl, early, mid, and late: Same as Weights, but for one

frame (early, mid, or late in sequence) the hand is bent
inward at a tighter angle.

The Curl behaviors are used to demonstrate system
performance between very similar sequences. They are
nearly identical, with only one differing frame. This makes
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Algorithm 2. ID3-type Decision Tree Inducer

1) Create a single node representing the training samples
2) If the samples are all of the same class, then the node

becomes a leaf and is labeled with that class.
3) If attribute list is empty then set the node as a leaf node

and labeled with the most common class.
4) Otherwise, select test attribute A, and label the node with

attribute A
5) For each value of ai ∈ A

a) Grow a branch with the test attribute = ai

b) Set Si the sample set whose test attribute = ai

c) If Si is empty, then attach a leaf node with the most
common class

d) Otherwise, attach the node with a subtree, whose
sample set is Si, and attribute list is the original attribute
list minus test attribute.

it a more “difficult” behavior to distinguish in the presence
of drift and error.

In order for robots to learn basic behaviors using video
analysis of middle-level and high-level motions, ITI64 was
used. ITI produces the same decision trees regardless of
whether the dataset is incorporated incrementally or in batch
mode (all data at once). It evolved from the ID351 and
ID5R63 decision tree inducers and can handle both nominal
and discrete data. ID3 is described in Algorithm 2, and
Algorithm 3 shows how ITI extends the method for
incremental use.

The selection of the test attribute is very important when
building the decision tree, and so we will delve into a
derivation of information gain, which is used by ID3-based
classifiers to measure the goodness of the selected attribute.52

The attribute with the highest information gain is chosen
as the test attribute for the current node. This approach
minimizes the expected number of tests needed to classify
an object and guarantees that a simple tree is established.
Schlimmer and Fischer55 suggested use of the K–S distance
measure as an incremental equivalent to information gain.
It has been shown to produce equivalent results to entropy-
based tests.64

Suppose our dataset is S, which has a quantity s of
sample data. These data belong to n different classes Ci(i =
1, . . . , n). The dataset of each class is Si(Si ⊂ S). Each datum
has m distinct attributes. The expected information required
to classify the dataset is

I (S1, S2, . . . , Sn) = −
n∑

i=1

pi log2 pi, (9)

where pi is the probability that an arbitrary sample belongs
to class Ci and is calculated by si/s. Let attribute A have
q different values (a1, a2, . . . , aq); therefore, we will have
q branches (b1, b2, . . . , bq) if attribute A is used to partition
the dataset. For each branch bj , (j = 1, 2, . . . , q), there are
sij data belonging to class Ci . The entropy, or expected
information based on the partitioning of the data into subsets

Algorithm 3. ITI Incremental Decision Tree

1) Get new training example
2) Pass training example down branches of existing tree

a) Update test information at each node
b) Mark updated node as “stale”

3) When leaf is reached, create a new node if necessary
a) Implement ID3-type Decision Tree Inducer
b) Revisit stale nodes recursively and ensure that desired

tests are installed

by A, is given by

E(A) =
q∑

j=1

sj
1

+ sj
2

+ · · · + sj
n

s
I
(
Sj

1
, Sj

2
, . . . , Sj

n

)
, (10)

where

I
(
Sj

1
, Sj

2
, . . . , Sj

n

) = −
n∑
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p
j

i log2 p
j

i (11)

and

p
j

i = s
j

i

s
j

1 + s
j

2 + · · · + s
j
n

. (12)

A smaller entropy value indicates greater purity in the
subset partitions. The expected reduction in entropy caused
by attribute A is defined as

Gain(A) = I (S1, S2, · · · Sn) − E(A). (13)

After computing the information gain of each attribute, the
attribute with the highest information gain is chosen as the
test attribute. The node is then labeled with the test attribute,
and the samples are partitioned accordingly.

It is important to note that for an attribute with
continuous numerical values, the number of potential
branches is limitless. Hence, ID3 only deals with discrete-
valued attributes. C4.552 approaches this issue through the
observation that the number of actual values in a training
set for attribute A are finite, thus (a1, a2, . . . , aq) are limited
to values seen in the test set. A binary search is executed to
find a suitable cutpoint for performing a threshold test. This
simple approach makes it possible to apply the ID3 algorithm
to continuous-valued attributes.

4.2. OLDEX: On-line DElimiter for conteXt
In order to identify times for context breaks in an on-line
manner, we examine the decision trees as they are updated
with new iterations of data. Our hypothesis is that identifying
a new context at a time where the attribute choice changes
for a decision node will improve classifier accuracy in
the presence of context drift. This provides an automatic
method for partitioning a data stream. Harries et al.’s23

SLICE method approached off-line context division in a
similar manner, by building a decision tree using the time
of a data instance as an attribute. Points in time that were
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chosen as test attributes have maximum gain (Eq. 17), and
so partitioning the set at those points should improve test set
accuracy. However, the points found did not always produce
the most optimal locations for context breaks. They were able
to improve the method by creating a search window around
those times. This likely occurs because the summation of
probabilities computed in the entropy calculation assumes
that the distributions are independent. Because we are dealing
with context (time) dependent data, we know for a fact that
independence does not exist (Eq. 18)

(pj

i |time = t) �= (pj

i |time = t + 1), (14)

assuming that the total number n of classes i remains constant
over time. Therefore, testing with respect to the attribute time
will produce a biased result.

Our method for determining the location for a context split
involves finding a time where the attribute choice changes for
the tree. The information at time = t is

I
(
Sj

1
, Sj

2
, . . . , Sj

n

) = −
n∑

i=1

(
p

j

i |time = t
)

log2
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and
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× log2
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Rather than testing only the influence of the attribute time,
by looking for an on-line change in the attribute selected by
the decision tree, we are examining the cumulative effects
of time across all of the attributes. The following derivation
shows the change in entropy �E(A) between time t and time
t + 1:

�E(A) =
n∑

i=1

q∑
j=1
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Algorithm 4. OLDEX: On-Line DElimiter for conteXt

1) Get training examples for current iteration
2) Implement ITI
3) Check for changes in ITI tree

a) If data is missing from an attribute (after attempted
compensation), mark a context delimiter.

b) Compare current node tests to those from “old tree”
i) If “old tree” doesn’t exist, save current tree as “old

tree”
ii) Otherwise, if tests use different attributes, mark a

context delimiter and create a new model
4) Delimit Context?

a) If no context delimiter,
i) Save “current tree” as “old tree”

b) Otherwise, if context is delimited here,
i) Search sets of previous models
ii) If no match among previous models, create a new

model. Otherwise, set current model to matching
model.

iii) Implement ITI for current training examples
iv) Save “old tree” as final tree for previous context

Save tree from current iteration data as “old tree”

=
n∑

i=1

q∑
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⎞
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Therefore, the change in entropy between time t and time
t + 1 is proportional to the log of the probability ratios, and
the conditional probabilities are taken into account.

The tree produced by the decision tree inducer shows the
direct result of the entropy calculation for each iteration. By
examining the tree nodes for changes over time, we have
a relatively simple means of identifying large changes in
�E(A) with respect to time. This can be used as a breakpoint
in time for context changes. We call this method OLDEX; the
algorithm is shown in Algorithm 4. We show in Section 5 that
this strategy is more effective for finding the delimiting times
in this slowly varying context than using time (off-line) as an
attribute in the decision tree inducer and gives similar results
as when a window in time is examined, with the ability to
identify the delimiting time on-line.

Algorithm 4 describes the process for delimiting the
context on-line. After data from the current iteration is
acquired, the tree is updated and called the “current tree.”
Two conditions can lead to a context change flag. The first
(simpler) condition is the sudden absence of data for an
attribute. If data cannot be acquired for a specific attribute
for a certain amount of time, the system defines a “context
change” (missing attribute) and defines a new model. The
other condition for a context change is defined as follows.
The attribute choices for the “current tree” are compared
to those for a tree induced from the previous iteration data

https://doi.org/10.1017/S0263574711000580 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000580


Self-reproduction for articulated behaviors with dual humanoid robots using on-line decision tree classification 325

(if this is not the first run). If the choice of attributes has
changed between the current tree and the last induced tree,
the change in entropy with respect to time has been high
enough to affect the information calculations, and we mark
the current iteration as a context delimiting point. The tree
from the previous context is saved, and data from the current
iteration are used to train a new “current tree” for the new
context. After the context tests have been performed, the
current tree is saved as the “old tree” for purposes of the next
comparison.

5. Experimental Results
Here, we describe the experimental process of implementing
and testing the robotic imitation, and present the context
identification results. Section 5.1 specifies the experimental
setting, including hardware parameters. Section 5.2 discusses
the contributing factors for the accumulating error scenario.
In Section 5.3, the accumulating error is analyzed. Section 5.4
shows the behavior classification results in the context of the
accumulating error. Section 5.5 demonstrates the positive
contribution of our OLDEX toward improving behavior
classification accuracy and shows that it has superior results
in comparison to a previously published method, SLICE.23

5.1. Experimental setting
The experiments were conducted using a set of
interconnected equipment. The main processor of the system
was an IBM ThinkPad Model T42 with an Intel Pentium M
processor running at 1.5 MHz. The humanoid robot used in
the experiment is a Kondo KHR-1 Humanoid Robot, which
was interfaced to the main processor via an RS-232 serial
port connection. The camera used to detect motion was a
Point Grey Firefly camera, connected via a Firewire cable.

The software portion of the experiment was divided among
several parts. The image capture portion was code written in
C++ using Point Grey API libraries, developed on Microsoft
Visual C++.

The Kondo Humanoid Robot was controlled with Heart to
Heart robot control software, which allows manual robot
control or automated control via saved macro files. The
software emulator used to test motion and simulate a second
robot for a portion of the experiment was Virtual KHR1.

The experiment was performed in a medium light
environment with a limited amount of background color
or pattern. Although the algorithms could be adjusted to
accommodate more background image noise that would be
the focus of a different experiment; thus, most background
noise was kept to a minimum.

On the upper body, tracking stickers were placed at both
fingertips, and at the joint between the torso and the arm. The
joint between the torso and the arm will be considered the
(Px0, Py0) position for all calculations. The fingertip was
considered the (Px, Py) position. Similarly, on the lower
body, tracking stickers were placed at the tip of the foot
and the joint between the torso and the leg.

During the original experiment, if there are any time slices
in which a location was indeterminable, or dramatically
different than the positions in the time slice immediately
before or after it, that data point was marked as incorrect

Fig. 5. Actual vs. calculated values for θ2.

and a more appropriate value was interpolated using the
neighboring data. This was done because the speed of
the robot was known to not physically exceed a certain
amount. Therefore, data that suggests a motion exceeding
physical limits must be erroneous and cannot be used. For
the later configuration change experiments, measurements
were simulated using these same data, but simply deleting
values for “missing” limbs.

5.2. Accuracy of motion capture
There are many factors that affect the accuracy of the motion
capture process. We define accuracy in this paper as the
difference between the teaching robot’s known servo angles
and the calculated observed (Mid-Level) motion. This will
inherently be affected by the low-level landmark detection
as well since it is an integral part of calculating the observed
angles. Measurement error must also be calculated in order to
estimate error propagations across the behavioral repetitions
or iterations.

Table I describes the data captured for various sampled
steps of a sample of robot motion. The table shows a set of
programmed angles (θ2 and θ3) for a teacher robot, and the
observed angles, as calculated by the system. The angular
differences in these results are quantified under �. Figures 5
and 6 show a plot of actual versus calculated values for
θ2 and θ3 in the recorded images. As can be seen in
both sets of data, the differences seen in the first iteration
averaged around 3◦. This amount of error does not present
a problem for classification in early repetitions. However,
the error accumulates as the number of repetitions increases,
which, if uncorrected, will eventually affect classification.
The result of the experiment will be measured by the quality
of repetition by reading out the final positions of the robot’s
servo motors and comparing them with the initial, controlled
servo angles. This allows the calculation of a percentage of
error in the imitated motion versus the teaching motion.

5.3. Analysis of error accumulation between repetitions
In this section, we examine the accumulation of error that
occurs over a period of iterative teaching and imitation
sessions. In this experimental setup, the iterations were
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Table I. Selected image calculation errors. Actual indicates the angle programmed for the
robot’s execution, in degrees. The calc’d angle was computed using the video and the difference

between the two is shown under �. The # indicates the iteration of the angle measured.

Actual Calc’d Error Actual Calc’d Error
Angle # θ2(◦) θ2(◦) �(◦) θ3(◦) θ3(◦) �(◦)

1 0 1.25 1.25 90 87.36 2.64
2 130 135.91 5.91 90 86.7 3.3
3 130 135 5 160 159.57 0.43
4 90 88.67 1.33 90 89.78 0.22
5 130 136.74 6.74 140 136.28 3.72
6 40 37.65 2.35 90 87.57 2.43

Fig. 6. Actual vs. calculated values for θ3..

Fig. 7. (Colour online) Degree error per iteration for θ2 and θ2
across a subset of sample images.

repeated five times to attempt to capture the true effect
of degrative quality loss. It can be seen in Fig. 7 that the
error for the detection calculation results is nearly linear.
This can be explained by understanding the cause of the
visual detection error and simple error propagation. Figure 8
shows an example of iterative error accumulation results for
six of the captured data points, including simulated results,
for 20 iterations. Clearly, over time even a small amount
of error can accumulate to large levels. It is known that
the calculation error in any given iteration is caused by
a combination of imperfect landmark detection as well as
calculation resolution loss. Over the course of iterations, the
chance for landmark detection error remains the same, as it

Fig. 8. (Colour online) Projected angle error for up to 20 repetitions.

is not generally affected by location or time. Taking all this
into account, it is safe to assume that the linear pattern of data
error over many repeated repetitions will continue as long as
the landmark detection step does not considerably change.

5.4. Classification of basic behaviors
In order to classify behavior sequences, a set of “behaviors”
was defined by simulating specific combinations of robot arm
angle data. Nine behaviors were examined: Waving, Hailing
a cab (hail cab), Cheering, Exercise, Flapping, Weights, and
three versions of Curl.

Although the data quality loss is only linear, it still
compounds to a large enough effect to cause serious angle
identification problems after only a handful of repetitions.
In our testing, once the level of error approached 20◦, the
high-level motion detection system began to falsely identify
motions. Because the original experiment was limited to one
example plus five repetitions (for convenience), we later
simulated additional repetitions by appending new “data”
using the same linear error rate as seen in the previously
measured iterations. These one-sided error rates are listed in
Table I. Values for angle measurements for repetitions past
the sixth were simulated by adding the average change in
error to the previous value for the repetition, up to a total of
20 simulated repetitions of the initial values.

For simplicity, limitations on joint rotations were ignored.
Variance was computed for separate instances of each
repetition by adding a random error of +/− 0% to 100%
of the average error (delta as in Table I). A demonstration of
the overall trend in angle measurements is shown in Fig. 8
(which was created by extending Fig. 7 by simulating double-
sided error for 20 repetitions at the measured error rates
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Fig. 9. Classification results for 20 repetitions of three behaviors.
Theta2 and Theta3 represent the angles of the upper arm joints, and
the xx suffix indicates the frame number of the 15-frame behavior
sequence.

for one to six repetitions). It is clear that even with only
a linearly increasing error rate, some error values begin to
drift toward very high levels. Despite the influence of error
on the high-level motion analysis, the system is still able to
classify basic behaviors due to the fact that each behavior
sequence is comprised of multiple image capture frames.
Utgoff’s ITI decision tree inducer64 was used to classify
the observed angle sequences into specific behaviors. The
resulting decision tree is shown in Fig. 9. The attributes
shown in the tree are the angles of �2 (theta2) and �3

(theta3). The second number is the frame number in the
behavior sequence (which can be used because the behavior
sequences are set to known lengths). For example, in the
“Waving” behavior sequence, in frame 1, the ideal value for
�2 is 0◦. This would correspond in the tree to theta2 01 = 0.

When data from all of the behavior repetitions are used to
train the tree, the decision tree method was able to classify
test set data from every iteration with 100% accuracy. This is
excellent considering the high level of error in later behavior
repetitions and shows that, when provided data from all
contexts, the ITI can identify and use attributes that are
resistant to context drift. However, ITI’s priority is to choose
attributes that result in good performance now, rather than
attributes that are resistant to drift. Trees induced using only
early data do not classify late data well, and vice versa.
Section 5.5 shows that our method, OLDEX, can be applied
in order to define context regions where ITI performs well
despite drift.

5.5. OLDEX: On-line DElimiter for conteXt
This section describes the results for two types of context
changes: (1) Context changes due to concept drift, and (2)
Context changes due to on-line configuration changes.

5.5.1. Context changes due to concept drift. This section
demonstrates a potential use of the system to identify critical
points where concept drift becomes a problem. For the sake
of clarity, plots are limited to a subset of three behaviors—
Waving, Hail cab, and Cheer.

Why should we be concerned about a slowly drifting
context change when Fig. 9 show that a very accurate tree can
be induced using the entire set of data? Figure 10 shows that
there is a dramatic increase in out-of-context classification
accuracy after a certain percentage of training iterations. This
suggests that in the presence of accumulating error, there

Fig. 10. Classification accuracy for out-of-context test data. The
y-axis shows test set accuracy for out-of-context data. The x-axis
shows how many (sequential) iterations were used to train the tree,
as a percentage of the 20 iterations performed. The dotted line
corresponds to the tree trained with “early” (context) iterations, the
dashed line was trained with “late” (context) iterations, and tested
on “early” iterations.

Fig. 11. Decision tree trained using repetitions 0–12 (with 0 being
the original input angles).

may be a natural delineation in the training data between
“early” and “late” observations. The accuracy improvement
occurs after about 66% of the training context is applied
for training the classification tree, regardless of whether the
“early” context or the “late” context is used for training.

The improvement occurs because the widening error
between subsequent iterations eventually forces the inducer
to choose error-resistant attributes. This also indicates that the
error-resistant attributes are not (initially) the best ones for
entropy reduction. By separating the data into context regions
where the drift is sufficiently small, we can build trees that
perform well in terms of entropy reduction. Misclassification
of later data is avoided by using the tree from the current
context. To find attributes that both minimize entropy and
are resistant to error, we can define contexts where the drift
is small enough that the entropy-based inducer works well.

We examined the data assuming a two-context condition,
an “early” context and a “late” context, in a subset of the
robotic behavior dataset (Waving, Hail cab, and Cheer). The
output decision tree from ITI showed a change in attribute
choice between iterations 12 and 13; thus, OLDEX places
a context break here. Figures 11 and 12 show the different
trees produced when the context is split between iterations 12
and 13. Both have 100% same-context test set accuracy. This
location is confirmed by examining Fig. 10, which shows
an accuracy improvement after the 12th iteration. OLDEX
was able to identify the location of a time-based context
shift, without needing to see the entire dataset or isolate a
window of data for examination. Thus, it has potential for
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Table II. Accuracy for test data from an “original,” undamaged robot.

Test on “original,” undamaged robot Test on damaged robot

Model 1 train Model 2 train Model 1 train Model 2 train
Training context on original robot on damaged robot on original robot on damaged robot

No robots break down 99.98% +/− 6.67% n/a n/a 18.22% +/− 2.18%
One robot breaks down 99.98% +/− 6.67% 67.21% +/− 4.76% 18.22% +/− 2.18% 67.21% +/− 4.76%
Both robots break down 66.77% +/− 3.24% 63.43% +/− 6.69% 63.13% +/− 7.79% 63.43% +/− 6.69%

Fig. 12. Decision tree trained using only repetitions 13–20. Note
the changes in the branch nodes.

quantitatively identifying a context delimiter in an on-line
manner.

To compare our method with SLICE, we included the
iteration number as a timestamp and tested the entire dataset
off-line in one batch using ITI. The output decision tree
did not choose the iteration (time) attribute in any decision
nodes. Therefore, SLICE would fail to find a context division
for this data, despite the large amount of drift that occurs.
However, we argue that a context shift does occur, which is
demonstrated by the poor classification accuracy of “late”
context data by trees from “early” iterations. The windowed
versions of SLICE might be able to define a context shift at
the location seen in Fig. 10 (between iterations 12 and 13).
OLDEX found this location of interest on-line, immediately
after seeing iteration 13. This demonstrates the usefulness
of OLDEX for delimiting slowly time-varying contexts for
C4.5-type classifiers.

5.5.2. Context changes due to changes in physical
configurations. This section demonstrates how OLDEX can
be used to create multiple models for context changes due to
changing configurations. We simulate a change in physical
configuration by “removing” part of a robot after the training
has begun. The data for that part is simply deleted. We wish
to know whether behavior can be transmitted between two
robots, despite dissimilar configurations, by identifying and
storing unique configuration models as they arise. All nine
behavior sequences were used in this section.

The behavior sequences are defined by a sequentially
ordered set of movements. Each behavior depends on (1)
the position of a robot part, and (2) the frame number in the
sequence corresponding to that position. When we remove
a robot part, the definition of the behavior sequence must
change. Therefore, we create a model corresponding to the
new configuration. Although this model necessarily differs
from the original definition of the behavior, it is a close

approximation and represents the motions that can actually
be performed by the modified robot.

Each instance of a “behavior” consists of a 15-image
“video”. During the video, the robot moves its arm up and
down. The sequence of up and down motions during the
15 images defines the behavior, i.e., during the “waving”
behavior, the arm moves completely up and down twice
during the sequence. The motion is quantified by extracting
the joint angles (as described in the earlier sections). To
distinguish the behaviors, we create a model by inducing
a decision tree using joint angle data from nine different
behavior sequences. To test the model, previously unseen
test data are classified using the decision tree. The goodness
of the model is quantified by whether the model can correctly
identify the behavior from the unseen test data.

To investigate the effects of context changes, we introduced
two types of contexts:

(1) Accumulating, unidirectional error in the joint angle.
The joint overshoots the angle a little during each
repetition. Over time, the accumulated error becomes
large enough to affect the induced model.

(1) Physical configuration change.
The loss of an arm segment is simulated by deleting data
for the elbow angle (Theta3). The loss occurs midway
through the experiment.

The accumulating error context (1) was previously applied
for all conditions. Its direct effects are shown in Fig. 10.
Now, we show the effects of adding a second error—(2)
Physical configuration change. An arm segment was removed
virtually from one, or from both robots. Missing limbs were
simulated by setting the data to “missing” at the appropriate
point in the sequence. When a student robot has more joints
than the teacher robot, it uses the angle setting from the last
observation of that joint (plus the accumulating error). If the
student has fewer joints, it simply ignores the extra data. 10-
fold cross-validation was performed. We assume there are
only two robots in this training scenario.

For this experiment, 20 repetitions of the original data
angles were performed by repetitions between “two” robots
(five measured repetitions, 15 simulated). Initially, data from
both robots were used to train a single model. Then, a
configuration change was simulated by deleting the elbow
angle data (Theta3) from one or both robots midway through
the training sequence. At this point, a second model was
created, trained exclusively using angle data and output
classes from the “damaged” robot.

Table II shows the test set accuracy for each configuration-
based model. The nine behavior sequences were used to
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simulate an on-line configuration change. Model 1 was
trained using the original robot configuration. Model 2
was trained using damaged robots. The test set accuracy is
shown +/− 1 standard deviation. Table II shows the test set
accuracies when the test set comes from an “original” robot,
and compares them to accuracy results from a “damaged”
robot.

Table II shows that using the correct model (“original” or
“damaged”) for the data results in the best accuracy. First, the
test data are generated by an “original” configuration robot,
and the original robot model gives better accuracy whether
or not a robot breaks down mid-sequence. Then, the test set
containing data from a “damaged” robot is classified more
accurately using a “damaged robot” model. These results
demonstrate the usefulness of a multiple model approach
for classification in scenarios where context changes
occur.

6. Conclusion
The purpose of this research was to create a system in which
behavior imitation between multiple humanoid robots could
be implemented and identified despite changing physical
configurations and uncorrected accumulating error. This
paper has three important contributions. (1) We propose
a new repetition framework for vision-based behavior
imitation by a sequence of multiple humanoid robots, (2) we
introduce a new on-line decision tree inducer (OLDEX) that
can identify context changes and autonomously compensate
by creating new, separate context models, and (3) we
demonstrate mutual visual-based imitation by humanoid
robots, which to our knowledge has never been attempted.
In our framework, the robot and camera acted as parts of
two unique systems that iteratively captured and determined
the motion from a previous robot’s motion plan execution.
Error accumulation over time was proposed as a model of
time-varying context drift. The occurrence of configuration
changes was also defined as a context change. The final goal
was the transfer and implementation of “high-level motions”
or basic behaviors between multiple humanoid robots using
visual motion capture.

Although ITI can induce an accurate tree for a drifting
context, it does not initially choose attributes that are
resistant to drift and error, even when the context varies
slowly and linearly. Refining the processing techniques, i.e.,
using a more powerful low-level landmark detection method,
might improve the results for early iterations. However,
this would only lengthen the time before classification
failure occurred. Our method (OLDEX) demonstrated a
simple on-line strategy for quantitatively identifying context
regions that were suitable for an entropy-based decision
tree inducer. This method can be used to discover on-line
changes to the system, even while normal classification
procedures are operating. It could also function as an
autonomous flag indicating a need for system maintenance or
attention.

The ability to autonomously identify context changes
within a behavior over time could be an important step
toward segmenting unstructured video. By applying a similar
process (of observing decision tree changes) to a sequence of

behaviors, it may be possible to identify behavior “regions”
within a video. This may require a more nonparametric
definition of behavior, i.e., defining a behavior as a set of
changes to joint angles, rather than specific joint angles at
specific times. However, we believe that observing changes
in the classifier opens the door to autonomous identification
of segmentation points for video sequences.

An important future step of this work would be
feedback/reinforcement of behaviors. The system does
not have the feedback/reinforcement mechanisms that
would assess fitness of a particular configuration for
a primitive. That would require some mechanism for
making judgments on functionality of behaviors. Although
feedback/reinforcement is outside of the scope of this
paper, it would certainly increase the usefulness of this
research. Once reinforcement can be returned to the system
regarding suitability, self-modification of behavior could be
implemented. This would likely eliminate drift of primitive
definitions and could be used to optimize primitives based
on their suitability. With incorporation of reinforcement or
feedback, the robots’ ability to observe others would give
heterogeneous sources for performance solutions, which
could lead to emergence of previously unseen, improved
solutions.

A few interesting approaches for reinforcement would
be examination of the object-state-space of Kruger et al.34

which could handle multiple approaches for achieving a goal
behavior, or feedback along the lines of Peters and Schaal’s45

reinforcement learning of operational space parameters. One
simple way to incorporate feedback would be to require a
robot limb to reach a specific position in order for the data to
be incremented into the model. For example, a “press button”
behavior could be defined where the robot has to place its
hand on a button. Reaching the button would be considered
a “success,” and the sequence would be incorporated into the
model. Sequences that did not produce “success” would be
ignored. This would still provide a variety of data for training
the model, since there may be different combinations of joint
angles, which effectively place the hand on the button.

Other possible future studies may include organizing a flow
of repetition, such as interchanges between the humanoid
robots, and replaying back previously learned behaviors.
Another application would be an efficient environment where
more than two robots repeated the action of a single robot.
One could imagine a group of “cheerleader” robots emulating
the behavior of a “coach” in sequence, or robots produced
by different companies being able to “learn” emerging
behaviors without requiring software or cross-platform
compatibility.

The applications of humanoid robot–robot imitation may
not be self-evident. However, we believe the value of this
research is in its contribution to laying groundwork for visual
imitation between dissimilar structures, and structures that
change unpredictably over time. This contribution extends
beyond the limitations of humanoid anatomy structures and
extends work for dynamic structures. Learning by imitation
has been extensively studied in the robot–human imitation
domain, so it may seem simplistic and unnecessary for a robot
to imitate another robot. After all, an effective performer of
the behavior exists (the human), and so the robot naturally

https://doi.org/10.1017/S0263574711000580 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000580


330 Self-reproduction for articulated behaviors with dual humanoid robots using on-line decision tree classification

should imitate the best model. However, this limits robot
imitation to behaviors that can be modeled by humans.
Human actions are limited by a standard, common anatomy.
Robots are not subject to this limitation. They can be given
any physically feasible anatomical configuration, and their
configurations can be changed over time (intentionally or
unintentionally).

Autonomous control of unpredictably changing structures
is a nascent and important field. The motion acquisition
methods applied are primitive, but acquisition is beyond
the scope of this paper. Other practitioners can, and should,
apply their own more advanced techniques. Once the data
are acquired, then it can be fed into the algorithm presented
here.

The paper focuses extensively on the on-line classification
method because it is the pivotal part of this learning by
imitation procedure. We apply a machine learning method
for classification in order to create a learning framework that
is independent of the type of system. Thus, our decision tree
method can be applied not only to robots, but to any sort of
system that changes unpredictably over time.

In conclusion, these studies help to demonstrate the
usefulness of an evolutionary learning scheme in time-
varying contexts, as well as helping to emphasize points
that should be taken into account in order to apply them
effectively.

Acknowledgments
The authors would like to thank Dan Couture and Xianhua
Jiang for the initial contributions to this study, Josh Bongard
for helpful discussions on robot imitation, and the anonymous
reviewers for their detailed comments, which improved the
paper. This study is partly supported by MED Associates. The
second author (Y. Motai) acknowledges the support of NSF
Division of Electrical, Communications and Cyber Systems,
CAREER Award # 1054333.

References
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