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The concept of the available energy of a collisionless plasma is discussed in the
context of magnetic confinement. The available energy quantifies how much of the
plasma energy can be converted into fluctuations (including nonlinear ones) and is
thus a measure of plasma stability, which can be used to derive linear and nonlinear
stability criteria without solving an eigenvalue problem. In a magnetically confined
plasma, the available energy is determined by the density and temperature profiles
as well as the magnetic geometry. It also depends on what constraints limit the
possible forms of plasma motion, such as the conservation of adiabatic invariants
and the requirement that the transport be ambipolar. A general method based on
Lagrange multipliers is devised to incorporate such constraints in the calculation of
the available energy, and several particular cases are discussed for which it can be
calculated explicitly. In particular, it is shown that it is impossible to confine a plasma
in a Maxwellian ground state relative to perturbations with frequencies exceeding the
ion bounce frequency.
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1. Introduction
In a previous publication (Helander 2017), hereafter referred to as I, a quantity

called the ‘available energy’ was proposed as a measure of nonlinear plasma stability.
The available energy is defined as the difference between the total plasma energy and
the lowest value it could possibly attain under the various constraints that limit the
motion of the plasma. It thus measures how much energy can, in principle, be released
from the plasma in the form of linear and nonlinear instabilities. It is analogous to
a quantity called the ‘available potential energy’ in meteorology, which is defined
as the difference between the potential energy of the atmosphere and the minimum
attainable by any adiabatic redistribution of mass (Lorenz 1955). This analogy is made
mathematically explicit in the appendix A.

In the present paper, the concept of available energy is explored further. Its simplest
version was considered many years ago by Gardner (1963), who identified the lowest-
energy state of a Vlasov plasma under the sole constraint that its motion should satisfy
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2 P. Helander

Liouville’s theorem. As pointed out in I, the concept of available energy becomes
much more interesting and relevant if one also accounts for the fact that adiabatic
invariants are usually conserved.

Indeed, most important types of instabilities and turbulence affecting magnetically
confined plasmas are characterised by frequencies below the ion gyrofrequency Ωi,
implying that the magnetic moment,

µa =
mav

2
⊥

2B
, (1.1)

of each particle is conserved. Here ma denotes the mass of the species a in question
and v⊥ the speed perpendicular to the magnetic field B = Bb. If, moreover, the
frequency is below the electron bounce/transit frequency ωbe, the parallel adiabatic
invariant

Ja =

∫
mav‖ dl (1.2)

is conserved for the electrons (a = e), where l denotes the arc length along the
magnetic field and

mav‖ =
√

2ma(Ha −µaB− eaΦ), (1.3)

the parallel momentum. The energy

Ha =
mav

2

2
+ eaΦ, (1.4)

(where Φ denotes the electrostatic potential) and µa are kept constant in the
integration, which is taken between two consecutive bounce points, defined by v‖= 0.

For drift-wave instabilities and turbulence (e.g. ion-temperature-gradient and trapped-
electron modes), the characteristic frequency ω usually satisfies the ordering

ωbi ∼ω�ωbe .Ωi�Ωe, (1.5)

so that µe, µi and Je are conserved, but not Ji. (The subscript i refers to the ions,
which will be assumed to be singly charged.) Different constraints thus pertain to the
electron and ion distribution functions, and their lowest-energy states will therefore be
different. However, the plasma must remain quasineutral, which imposes an additional
constraint on the evolution of the plasma that was not accounted for in I.

The aim of the present paper is to discuss how this and other relevant constraints
affect the available energy of magnetically confined plasmas. The energy available to
fluctuations subject to constraints such as (1.5) is lower than that available to less
constrained fluctuations, and our goal is to develop a general method for incorporating
various types of constraints. We begin in § 2 by briefly recapitulating the basic results
of I, deriving them in a particularly expeditious way. This derivation naturally lends
itself to the inclusion of additional constraints, and in the following several sections
we show how these can be incorporated. In § 3, the available energy of a single plasma
species with conserved µ and J is calculated; in §§ 4 and 5 the constraint of a fixed
density profile is explored; and in § 6 ground states of a plasma satisfying the ordering
(1.5) are investigated, where different constraints apply to the ions and electrons.
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2. Minimum-energy states
As in I, let us first consider the distribution function f (x, t) of a single particle

species governed by the Vlasov equation or any other kinetic equation satisfying the
Liouville theorem,

∂f
∂t
+ ẋk

∂f
∂xk
= 0, (2.1)

∂

∂xk
(ẋk
√

g)= 0, (2.2)

where the phase-space coordinates x are arbitrary except that the Jacobian
√

g is
assumed to be independent of time. Summation over repeated indices is understood.
Liouville’s theorem implies that the flux of particles in phase space is incompressible,
so that, for any positive number φ, the volume of the set of points satisfying
f (x, t) > φ is constant, i.e.

∂

∂t
H[ f (x, t), φ] = 0, (2.3)

where the functional H is defined by

H[ f (x, t), φ] =
∫
Θ[ f (x, t)− φ]

√
g dx (2.4)

and Θ denotes the Heaviside step function.
Now, let ε(x) denote the particle energy as a function of the phase-space coordinates

x. (Typically ε=mv2/2, where v denotes speed.) The total energy associated with the
distribution function f is then

E[ f ] =
∫
εf
√

g dx, (2.5)

and we may ask for the minimum energy that can be attained starting from some
initial state f (x, 0). We denote the energy-minimising distribution function by f0(x)
and note that, because of the constraint (2.3), we require

H[ f0(x), φ] =H[ f (x, 0), φ] ≡H0(φ). (2.6)

We can account for this constraint by introducing a continuous set of Lagrange
multipliers λ(φ) and minimising the functional

W[ f0, λ] = E[ f0] +

∫
∞

0
λ(φ) dφ

[∫
Θ[ f0(x)− φ]

√
g dx−H0(φ)

]
. (2.7)

The minimisation with respect to λ then ensures that the constraint (2.6) is satisfied,
whereas the variation with respect to f0 gives

δW =
∫
δf0
[
ε + λ( f0)

]√
g dx= 0, (2.8)

implying that λ( f0) = −ε(x). Inverting this relation, we come to the conclusion that
the lowest-energy state can only depend on the phase-space coordinates through ε(x),
i.e. it must be possible to write f0 as

f0(x)= F[ε(x)], (2.9)

for some function F.
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4 P. Helander

As originally shown by Gardner (1963), this function should be monotonically
decreasing. Otherwise, the distribution function does not correspond to a minimum-
energy state, because the energy can be lowered by interchanging two neighbouring
phase-space elements of equal volume dτ =

√
g dx but different energies. To see this,

let us denote the distribution function before the interchange by f0 and afterwards
by f1. Then

f1(xb)= f0(xa), (2.10)
f1(xa)= f0(xb), (2.11)

where points in the two respective phase-space elements are denoted by xa,b. As a
result of the interchange, the energy changes by the amount

1E=
∫
ε( f1 − f0)

√
g dx=−[ε(xa)− ε(xb)][ f0(xa)− f0(xb)] dτ , (2.12)

and becomes equal to

1E=−[ε(xa)− ε(xb)]
2F′0(ε) (2.13)

if the distribution function is of the form (2.9). Hence, it is clear that F′(ε) must be
negative (or zero) everywhere in a lowest-energy state, which we called the ground
state in I.

Since F is a monotonically decreasing function we have

Θ [F(ε(x))− φ]=Θ [w− ε(x)] , (2.14)

where F(w)= φ. It follows that this function is determined by the condition

H0[F(w)] =Ω(w), (2.15)

for each w ∈ [0,∞), where

Ω(w)=
∫
Θ [w− ε(x)]

√
g dx, (2.16)

measures the volume of the subset of phase space in which ε(x) <w. Equation (2.15)
states that this volume must equal the volume in which the distribution function
exceeds F(y), as follows from Liouville’s theorem.

Equation (2.15) determines the ground states of a plasma whose evolution is
only constrained by Liouville’s theorem. As demonstrated in I and discussed further
below, it is not difficult to account for more constraints by using additional Lagrange
multipliers.

The available energy is defined as the difference in energy between the initial state
and the ground state,

A=
∫
( f − f0)ε

√
g dx. (2.17)

It evidently constitutes an upper bound on the energy that can be extracted from
the plasma by linear and nonlinear instabilities, but this upper bound is in general
unattainable. For instance, it does not account for the fact that the fluctuations
created by the instability in question must also be contained in f . Moreover, because
coherent waves tend to diffuse particles or because internal wave turbulence interacts
incoherently with particles, particles tend to diffuse in phase space (looking at realistic
granularity) rather than to conserve the phase-space density. Gardner restacking
therefore overestimates the available free energy (Fisch & Rax 1993; Hay, Schiff &
Fisch 2015).
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3. Conservation of µ and J

As already remarked in the Introduction and discussed at length in I, constraints
implied by the adiabatic invariants µ and J can place severe limits on the available
energy. We are particularly interested in the ordering (1.5), according to which
both these invariants are conserved for trapped electrons.1 In the present section,
we calculate the ground state of any such particle species for which µ and J are
conserved.

3.1. The role of omnigeneity
For a plasma with magnetic surfaces, it is useful to write the magnetic field as
B=∇ψ ×∇α, where ψ labels the magnetic surfaces and α∈ [0,2π) the different field
lines thereon. The distribution function is then usefully considered as a function of the
phase-space coordinates (ψ, α, µ, J), and we shall take it to be initially Maxwellian,

f (ψ, α, µ, J)= fM[ε(ψ, α, µ, J), ψ] = n(ψ)
(

m
2πT(ψ)

)3/2

exp (−ε(ψ, α, µ, J)/T(ψ)),

(3.1)
with a density n(ψ) and temperature T(ψ) that are constant on each flux surface
ψ .2 We shall assume that the distribution function evolves on a time scale longer
than the bounce time for trapped particles, so that µ and J remain constant for each
such particle and the distribution function is independent of the position l along B.
Our main task is to find the ground state as described by some distribution function
f0(ψ, α, µ, J) of the trapped particles. As shown in I, ground states can be written
as functions of energy and the conserved quantities alone, i.e. it must be possible to
write f0 as

f0(ψ, α, µ, J)= F[ε(ψ, α, µ, J), µ, J] (3.2)

for some function F.
Before proceeding to find this function, it is useful ask the question as to whether

a Maxwellian flux function (3.1) can represent a ground state. This can evidently only
be the case if (

∂f
∂α

)
ε,µ,J

= 0, (3.3)

but for a Maxwellian the left-hand side is equal to(
∂

∂α
fM(ε, ψ)

)
ε,µ,J

=
∂fM

∂ψ

(
∂ψ

∂α

)
ε,µ,J

=−
∂fM

∂ψ

(
∂J
∂α

)
ε,µ,ψ

/(
∂J
∂ψ

)
ε,µ,α

. (3.4)

We thus conclude that (3.1) can only represent a ground state if either the density and
temperature are constant, so that ∂fM/∂ψ = 0, or the magnetic field is omnigenous,
∂J/∂α = 0. By definition, in an omnigenous field, J can be written as a function of
energy, magnetic moment and the flux-surface label ψ , without any dependence on α,

1Circulating particles play no role in this section. In the ordering (1.5) they will not exchange much
energy with the fluctuations, as discussed further in § 4.

2In the limit of zero gyroradius, it is possible to express the Maxwellian in this way as a function of
motion invariants. However, any such function will in general deviate from the Maxwellian to first order in
gyroradius since particle orbits do not exactly follow field lines. A function depending only on constants of
the motion cannot, in most cases, be exactly Maxwellian, and it is this discrepancy that drives neoclassical
transport. For the present discussion, it is unimportant.
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6 P. Helander

i.e. we can write J = J(ε, µ, ψ). Since trapped-particle orbits precess on surfaces of
constant J, omnigenous fields have the property that collisionless particle trajectories
are radially well confined, making the neoclassical transport small (Hall & McNamara
1975; Cary & Shasharina 1997; Helander 2014b). It is interesting to note that there is
thus a connection between low neoclassical transport – an important goal of stellarator
optimisation – and small available energy, which could be beneficial for turbulence
reduction.

Of course, omnigeneity is merely a necessary, but not sufficient, condition for a
ground state of the form (3.1). The further condition that ∂F/∂ε 6 0 was shown in I
to be equivalent to

ωT
∗

ωα
6 1, (3.5)

where we have written

ω∗ =
T
q

d ln n
dψ

, (3.6)

ωT
∗
=ω∗

[
1+ η

(
ε

T
−

3
2

)]
, (3.7)

and η= (d ln T/dψ)/(d ln n/dψ) as in I but we now denote the charge by q. We have
also introduced the bounce-averaged precession frequency for trapped particles,

ωα =
1
τb

∫ l2

l1

(vd · ∇α)
dl
v‖
=

1
q

(
∂ε

∂ψ

)
µ,J,α

, (3.8)

where vd denotes the drift velocity and

τb =

∫ l2

l1

dl
|v‖|
=

(
∂J
∂ε

)
ψ,α,µ

(3.9)

the bounce time between two consecutive bounce points, which have been denoted by
l1,2. The precession frequency can also be written as

ωα =−
1
q

(
∂J
∂ψ

)
ε,µ,α

/(
∂J
∂ε

)
µ,ψ,α

, (3.10)

and is thus seen to be independent of α in an omnigenous field, where ∂J/∂α = 0.

3.2. Equations for the ground state
We now turn to the calculation of the available energy when the distribution function
(3.1) is not a ground state, i.e. when the condition (3.5) is not satisfied. For simplicity,
we only consider omnigenous magnetic fields, such as that of a tokamak or well-
optimised stellarator.

When certain quantities y such as µ and J are conserved, it is useful to employ
these as (some of the) phase-space coordinates. We thus write the latter as x= (y, z)
and recall from I that the minimum-energy state is given by a simple generalisation
of (2.15),

H[F(w, y), y] =Ω(w, y), (3.11)
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where

H(φ, y)=
∫
Θ[ f (y, z)− φ]

√
g dz, (3.12)

Ω(w, y)=
∫
Θ[w− ε(y, z)]

√
g dz. (3.13)

In the present case, we have two adiabatic invariants for the electrons, y= (µ, J),
and the phase-space volume element is (see I)

dΓ = drdv =
4πdl

m2|v‖|τb
dµ dJ dψ dα. (3.14)

We thus have the relations

H(φ, µ, J)=
4π

m2

∮
dα
∫
Θ ( f − φ) dψ, (3.15)

Ω(w, µ, J)=
4π

m2

∮
dα
∫
Θ [w− ε(ψ, α, µ, J)] dψ, (3.16)

which together with (3.11) determine the ground state. Here and in the following,
integrals over α are to be taken over all field lines on the flux surface, 0 6 α 6 2π,
and we have used the fact that f does not vary much along the field line, i.e. f is
nearly independent of l at fixed (ψ, α, µ, J).

Rather than solving (3.11) directly, we consider its derivative (Dodin & Fisch 2005),(
∂F
∂w

)
µ,J

=
Ω1(w, µ, J)

H1 [F(w, µ, J), µ, J]
, (3.17)

where the subscript 1 denotes a derivative with respect to the first argument of the
function in question. Thus

Ω1(w, µ, J)=
∮

dα
∫
δ [w− ε(ψ, α, µ, J)]

4π

m2
dψ =

4π

m2

∮
dα
|qωα|

, (3.18)

where we have used (3.8) and∫
δ [w− ε(ψ, α, µ, J)] dψ =

1
|∂ε/∂ψ |

. (3.19)

For the denominator of (3.17) we need

H1 (φ, µ, J)=−
∮

dα
∫
δ[ fM(ψ, α, µ, J)− φ]

4π

m2
dψ =−

4π

m2

∮ ∣∣∣∣∣
(
∂fM

∂ψ

)
α,µ,J

∣∣∣∣∣
−1

dα,

(3.20)
which is equal to

H1 (φ, µ, J)=
∮

4πT dα
m2
∣∣q (ωT

∗
−ωα

)∣∣ fM
, (3.21)

where we have used (
∂fM

∂ψ

)
α,µ,J

=
qfM

T
(ωT
∗
−ωα). (3.22)

Our (3.17) for the ground state thus becomes(
∂F
∂w

)
µ,J

=−
fM

T

∣∣∣∣ωT
∗

ωα
− 1
∣∣∣∣ . (3.23)
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8 P. Helander

3.3. Available energy
We can solve this equation in the neighbourhood of a flux surface, ψ0 −1ψ <ψ <
ψ0 +1ψ , by expanding in ψ −ψ0,

ε(µ, J, ψ, α)= ε0(µ, J)+
∂ε

∂ψ
(ψ −ψ0)+ · · · , (3.24)

fM(µ, J, ψ, α)= fM0 +
∂fM

∂ψ
(ψ −ψ0)+ · · · , (3.25)

F(µ, J, ψ, α)= F0 +
∂F
∂ψ

(ψ −ψ0)+ · · · , (3.26)

where all derivatives and all quantities with a subscript 0 are to be evaluated at ψ =
ψ0, and we recall (3.8) and

∂F
∂ψ
=−

qfM0

T

∣∣ωT
∗
−ωα

∣∣ . (3.27)

Because the volume element in phase space is given by (3.14) and the total number
of particles having any given values of µ and J must be the same in the initial state
and the ground state, we have∫ ψ0+1ψ

ψ0−1ψ

( fM − F) dψ =
∫ ψ0+1ψ

ψ0−1ψ

[
fM0 − F0 +

1
2

(
∂2fM

∂ψ2
−
∂2F
∂ψ2

)
(ψ −ψ0)

2

]
dψ = 0.

(3.28)
The available energy can therefore to leading order be calculated from

A=
∫
ε( fM − F) dΓ (3.29)

as follows:

A '
∫
[ε0 + qωα(ψ −ψ0)]

[
fM0 − F0 +

qfM0

T

(
ωT
∗
−ωα +ωα

∣∣∣∣ωT
∗

ωα
− 1
∣∣∣∣) (ψ −ψ0)

+
1
2

(
∂2fM

∂ψ2
−
∂2F
∂ψ2

)
(ψ −ψ0)

2

]
dΓ

=
q2

T

∫
fM0ω

2
α

(
ωT
∗

ωα
− 1+

∣∣∣∣ωT
∗

ωα
− 1
∣∣∣∣) (ψ −ψ0)

2 dΓ , (3.30)

and the result becomes

A=
16πq2(1ψ)3

3m2T

∫
fM0ω

2
αr
(
ωT
∗

ωα
− 1
)

dµ dJ dα, (3.31)

where r(x)= xΘ(x). It can also be written as

A=
4q2(1ψ)3

3T
U′(ψ)

∫
trapped

fM0ω
2
αr
(
ωT
∗

ωα
− 1
)

dv, (3.32)

where U(ψ) denotes the volume enclosed by the flux surface ψ .
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This expression for the maximum energy that can be extracted from electrons by
fluctuations satisfying the ordering (1.5) is one of the principal results of this paper.
In order to explore how it scales with plasma parameters and magnetic-field geometry,
we note that

ωα ∼
T

mΩaR
, (3.33)

ωT
∗
∼

T
eaL⊥B

, (3.34)

where a denotes the minor radius of the flux surface in question, R the radius of
curvature of the magnetic field lines and L⊥ the length scale of the pressure profile,
which is assumed to be shorter than R. The volume enclosed by the flux surface ψ
is

U(ψ)∼
Rψ
B
, (3.35)

and that of the region between ψ −1ψ and ψ +1ψ

V ∼ aR1r, (3.36)

where 1ψ ∼ aB1r. Within factors of order unity, the available energy (3.32) is thus
given by

A
V
∼ ftnT

(1r)2

RL⊥
, (3.37)

where ft denotes the fraction of electrons that are trapped in regions of average
unfavourable curvature.

The result (3.32) for the available energy of electrons conserving µ and J is
always smaller than the corresponding energy without these constraints. The latter
was calculated in I and was found to be equal to

A
V
= nT

〈
1
2

(
δn
n

)2

+
3
4

(
δT
T

)2
〉
∼ nT

(1r)2

L2
⊥

(3.38)

for a Maxwellian plasma with small density and temperature variations, δn� n and
δT� T , respectively.

4. Fixed density profile
In many numerical simulations of plasma instabilities and turbulence, the electrons

are assumed to be ‘adiabatic’, meaning that the electron density fluctuations δne are
proportional to those of the electrostatic potential δΦ according to the linearised
Boltzmann relation

δne

ne
=

eδΦ
Te

, (4.1)

where −e denotes the electron charge and Te the electron temperature. (In configura-
tions with closed magnetic field lines or magnetic flux surfaces, an appropriate average
of δΦ should be subtracted from the right-hand side.) Because the E×B-drift is then
out of phase with the density fluctuations, there is no electron particle flux across the
magnetic field and the density profile must remain constant.
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In a plasma, as opposed to a numerical simulation, the assumption of ‘adiabatic’
(or, better, Boltzmann-distributed) electrons is valid if the ordering (1.5) holds and,
additionally, no (or sufficiently few) electrons are trapped in magnetic wells. In this
ordering, the transit frequency of the circulating electrons substantially exceeds the
fluctuation frequency. These electrons thus travel many times around the torus on the
time scale of one fluctuation, and therefore experience little transport. Mathematically,
this conclusion follows, for instance, from a familiar argument for the confinement of
circulating particles in a stellarator in the face of cross-field drifts (Helander 2014b).
The drift velocity, including the E×B drift, is

vda =
v‖

B
∇×

(
v‖B
Ωa

)
, (4.2)

where the derivative is taken at constant µa and Ha. To first order in the smallness of
the drift, the net displacement across the flux surface is thus

1ψ =

∫
(vda · ∇ψ)

dl
v‖
=

∫
∇ ·

(
v‖B×∇ψ

Ωa

)
dl
B
, (4.3)

where the integral is taken along the field line. If the latter wraps many times
around the torus, the integral becomes proportional to the flux-surface average of
∇ · [(v‖/Ωa)B × ∇ψ], which vanishes since the vector within the divergence is
perpendicular to ∇ψ . An exception occurs close to surfaces on which the rotational
transform (winding number of the magnetic field lines) is a rational number. In such
regions, it takes many turns around the torus before a field line has come close
to most points on the magnetic surface, and the electrons therefore do not respond
‘adiabatically’ despite the ordering (1.5) (Hallatschek & Dorland 2005; Dominski
et al. 2015).

4.1. Ground state
Suppose we ask for the minimum-energy state of the ions in a plasma with fixed
density profile. It will in general not be given by (2.9), because the latter does
not account for the constraint that the density profile cannot change. Equation (2.9)
predicts a state of constant density throughout the plasma, which is not attainable
unless the initial state had constant density. Instead, the ground state must be
determined by minimising the energy subject to both the constraint (2.6) and the
requirement that the density profile is given,∫

f0(r, v) dv = n(r)= fixed. (4.4)

The latter can be accounted for by an additional set of Lagrange multipliers κ(r), so
that instead of (2.7) we seek to minimise

U[ f0, κ, λ] =W[ f0, λ] +

∫
κ(r) dr

[∫
f0(r, v) dv − n(r)

]
. (4.5)

The variation with respect to κ(r) now ensures that the density profile is equal to n(r),
and the variation with respect to f0 now gives

δU =
∫
δf0[ε + λ( f0)+ κ(r)]

√
g dx= 0, (4.6)
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so that λ( f0)=−ε − κ(r). The ground-state distribution function must therefore be a
function of the form

f0(r, v)= F[ε(r, v)+ κ(r)], (4.7)
rather than (2.9), and the density constraint becomes∫

F[ε(r, v)+ κ(r)] dv = n(r). (4.8)

If we take ε =mv2/2, we can conclude that a particular example of a ground state
is an isothermal Maxwellian,

f = n(r)
( m

2πT

)3/2
exp

(
−

mv2

2T

)
, (4.9)

where ∇T = 0. It follows that such a distribution function is linearly and nonlinearly
stable to fluctuations that do not disturb the density profile. This conclusion is not
surprising but has perhaps not been proved before. Moreover, it follows that any
Maxwellian that is not isothermal is not in a ground state, even if it happens to
be linearly stable. For instance, a plasma with 0 < η = |∇ ln T|/|∇ ln n| < 2/3 is
linearly stable to ion-temperature-gradient modes with adiabatic electrons (Hazeltine
& Waelbroeck 1998) but has non-zero available energy and could thus potentially
support subcritical turbulence (Newton, Cowley & Loureiro 2010; Plunk 2013; van
Wyk et al. 2016; McMillan, Pringle & Teaca 2018).

4.2. Available energy
In order to calculate the available energy of such a plasma, we write the initial
distribution function as

f (x, 0)=M(r) exp
(
−

mv2

2T(r)

)
, (4.10)

and explore the consequences of Liouville’s theorem (2.6). Since f (x, 0) > φ if and
only if

v2 <
2T
m

ln
M
φ
, (4.11)

which defines a sphere in velocity space of volume

4π

3

(
2T
m

ln
M
φ

)3/2

, (4.12)

we have

H[ f (x, 0), φ] =
4πV

3

〈(
2T
m

ln
M
φ

)3/2

Θ(M − φ)

〉
(4.13)

and
H[ f0(x), φ] =

∫
Θ [F (ε(v)+ κ(r))− φ] dx. (4.14)

In these equations, x = (r, v), V denotes the plasma volume and angular brackets
a volume average. If we denote the inverse of F by w, so that F[w(φ)] = φ, then
F(ε(v)+ κ(r))= φ when

v =

√
2
m

[w(φ)− κ(r)], (4.15)
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and we conclude that the phase-space volume in which f0(x) exceeds φ is equal to

H[ f0(x), φ] =
4πV

3

〈[
2
m
(w(φ)− κ(r))

]3/2

Θ

〉
, (4.16)

where we have introduced the notation[
y
]3/2

Θ
= y3/2Θ(y). (4.17)

Equation (2.6) thus becomes

〈
[w(φ)− κ(r)]3/2

Θ

〉
=

〈[
T(r) ln

M(r)
φ

]3/2

Θ

〉
, (4.18)

and constitutes an integral equation for the function w(φ) – or, alternatively, for its
inverse F(w). (The corresponding equation (3.14) in I is obtained by setting κ(r)= 0.)
We thus have two nonlinear integral equations, (4.8) and (4.18), for the two unknown
functions κ and F.

We cannot construct the general solution explicitly, but if the density and
temperature of the initial state only vary slightly, it is possible to make progress.
We then write

n(r)= 〈n〉 [1+ ν(r)], (4.19)
T(r)= 〈T〉 [1+ τ(r)], (4.20)

with ν ∼ τ � 1, so that the initial energy density is

EM =
3
2 〈nT〉 = 3

2 〈n〉 〈T〉 〈1+ ντ 〉 , (4.21)

and seek an approximate solution of the form

F(w)= M̄ exp (−w/ 〈T〉 + h(w)), (4.22)

where M̄= 〈n〉 (m/2π 〈T〉)3/2 and h� 1. Before trying to solve (4.18), it is helpful to
consider the density constraint (4.8), which becomes

〈n〉 [1+ ν(r)] = M̄ exp (−κ(r)/ 〈T〉)
∫

exp
[
−
ε(v)

〈T〉
+ h(ε(v)+ κ(r))

]
dv. (4.23)

Anticipating that h will turn out to be of order O(ν2) and κ of order O(ν), we can
approximate the right-hand side by

M̄ exp (−κ(r)/ 〈T〉)
∫

exp
[
−
ε(v)

〈T〉
+ h(ε(v))

]
dv, (4.24)

where only κ(r) depends on r. It follows that

κ

〈T〉
=−ν +

ν2

2
+O(ν3). (4.25)
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The ground-state equation (4.18) now becomes, to the requisite accuracy,〈(
x+ ν −

ν2

2

)3/2
〉
=

〈
(1+ τ)3/2

(
x+ ln

1+ ν
(1+ τ)3/2

− h
)3/2

〉
, (4.26)

where we have written x=w/ 〈T〉. Expanding both sides to second order in ν∼ τ� 1
and solving for h gives, after some algebra,

h(w)=

〈
τ 2
〉

4
x+

3
2

〈
ντ − τ 2

〉
+

3
4x

〈
3τ 2

4
− ντ

〉
, (4.27)

confirming our earlier assumption that h = O(ν2). The ground-state distribution
function is thus given by

F(ε + κ)= M̄ exp (−ε/ 〈T〉) [1+ ν + h(ε)] , (4.28)

and the associated energy per unit volume

E0 =

〈∫
εF(ε + κ) dv

〉
=

3
2
〈n〉 〈T〉

〈
ντ −

τ 2

2

〉
. (4.29)

The available energy is thus

A
V
= EM − E0 = E0

〈
τ 2

2

〉
. (4.30)

In contrast, if the density profile is free to evolve, the available energy becomes

A
V
= E0

〈
ν2

3
+
τ 2

2

〉
, (4.31)

as originally found in I without explicitly calculating the distribution function.
Thus, as one might naively expect, in a plasma with fixed density profile only
the temperature variations contribute to the free energy and their contribution is the
same as if the density profile were free to evolve. Lest this conclusion be thought to
be self-evident, it should be noted that it does not actually hold unless the density
and temperature variations are small. This fact will be illustrated by a simple example
in the next section.

5. Mixing of two different plasmas
We now demonstrate that the amount of available energy from temperature

variations within the plasma in general depends on the density profile even if the
latter is held fixed. To this end, consider a Maxwellian plasma occupying a volume
consisting of two subvolumes, V = V1 + V2, where the density and temperature are
constant in each subvolume, so that n(r) = nj and T(r) = Tj for r ∈ Vj, j = 1, 2.
Moreover, we assume that T2/T1� 1 but n1V1 ∼ n2V2 and anticipate that the ground
state is one where the hot plasma in V1 and the cold plasma in V2 have mixed in
such a way that the total energy is reduced. The initial plasma energy is

E=
3
2
(n1T1V1 + n2T2V2)'

3n1T1V1

2
, (5.1)

and will be compared with the minimum attainable energy assuming either that the
density is free to evolve or that it is fixed in each of the two subvolumes.
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5.1. Unconstrained density profile
If the density profile is free to evolve, the equation (2.15) for the ground state
becomes

ε3/2
=

V1

V

[
T1 ln

M1

F(ε)

]3/2

Θ

+
V2

V

[
T2 ln

M2

F(ε)

]3/2

Θ

, (5.2)

where Mj= nj(m/2πTj)
3/2. This equation follows immediately from (3.14) in I and is

similar to (4.18) with κ = 0 in the present paper. In the limit T2/T1 → 0, the first
term on the right dominates in most of velocity space, where ε ∼ T1� T2, whereas
the second term dominates for energies comparable to T2. The solution is thus

F(ε)=
{

M1 exp (−ε/T̃1), ε ∼ T1,

M2 exp (−ε/T̃2), ε ∼ T2,
(5.3)

where T̃j=Tj(Vj/V)2/3.3 This solution describes a bi-Maxwellian distribution such that
the density of each component is constant throughout the entire plasma volume V . The
energy associated with this distribution function is

E0 = V
∫
εF dv '

3n1T1V
2

(
V1

V

)5/3

, (5.4)

and the available energy thus becomes

A= E− E0 = E

[
1−

(
V1

V

)2/3
]
. (5.5)

This is also the energy that is released if the hot plasma expands adiabatically (with
pressure p∝ V−5/3) from V1 into the greater volume V .

Note that the result (5.5) does not lead to any definite prediction of what will
actually happen to the plasma, only that it is possible that thermal energy can
be converted into kinetic energy. It should come as no surprise that, even in the
collisionless case under consideration, the amount of convertible thermal energy is
bounded by classical thermodynamics.

5.2. Fixed density profile
If the density is constrained to remain equal to its initial value in each of the two
subvolumes, the distribution function of the ground state no longer depends on energy
alone but is a function of the form (4.7), where the function κ(r) enforcing the density
constraint can be anticipated to be constant in each of the two subvolumes, κ(r)= κj
for r ∈ Vj. The ground-state equation (4.18) then becomes

V1 [w− κ1]3/2
Θ + V2 [w− κ2]3/2

Θ = V1

[
T1 ln

M1

φ

]3/2

Θ

+ V2

[
T2 ln

M2

φ

]3/2

Θ

. (5.6)

It does not seem possible to write down an explicit solution to this algebraic equation
for w(φ) except in the special case that the density vanishes in one of the two regions,

3These asymptotic relations determine the solution in most of velocity space and do so sufficiently accurately
for our purposes but fail in the energy range T2� ε� T1, where a smooth transition occurs.
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M2→ 0, say. The second term on the right then vanishes and κ2→∞, so that the
solution becomes

F[ε + κ(r)] =
{

M1 exp (−ε/T1), r ∈ V1
0, r ∈ V2.

(5.7)

As one would expect from the fact that the density cannot change, the particles cannot
move from one subvolume to the other, the distribution function remains equal to the
initial condition, and the available energy thus vanishes, A= 0. We conclude that the
contribution to the available energy from temperature variations within the plasma in
general depends on the density profile and on whether this profile is free to evolve or
is constrained to remain constant.

6. Two species with different constraints
We finally turn to the case discussed in the Introduction of a plasma where the

magnetic moment is conserved for both the ions and the electrons, but the second
adiabatic invariant only for the latter. The central question is whether it is possible
to confine a plasma in a Maxwellian ground state for both species with respect to
perturbations that conserve µi, µe and Je, and, additionally, satisfy the requirement
of quasineutrality. Following the method developed in §§ 2–4, possible ground states
can be found by minimising the energy functional augmented by terms with Lagrange
multipliers ensuring that the appropriate constraints are satisfied.

Some care is required because different constraints pertain to the trapped and
passing electrons. As discussed at the beginning of § 4, the latter experience little
transport when the ordering (1.5) is adopted. Since ψ is thus conserved for each
passing electron, it is advantageous to use the phase-space coordinates (µ, ε, ψ, α, l)
for these particles. Because of rapid streaming along the field lines, the distribution
function fec of circulating electrons is approximately independent of α and l, and the
local density of these particles becomes

nec =
4πB
m2

e

∫
µB<ε

fec(µ, ε, ψ)
dµ dε
|v‖|

, (6.1)

if, for simplicity, the numbers of co- and counter-moving particles are taken to be
equal. A similar expression holds for the ion density if we use analogous phase-space
coordinates for the ions. For trapped electrons, however, it is more appropriate to use
the coordinates (µ, J, ψ, α, l), so that the volume element in phase space is given
by (3.14) and the local density becomes

net(r0)=

∫
fetδ(r− r0) dΓ

=
4π

m2
e

∫
fet(ψ, α, µ, J)

∣∣∣∣∂(ψ, α, l)
∂r

∣∣∣∣ δ(ψ −ψ0)δ(α − α0)δ(l− l0)
dl
τb|v‖|

dµ dJ dψ dα,

(6.2)

where subscripts 0 refer to the point r0 and fet denotes the distribution function of
trapped electrons. Since the Jacobian is∣∣∣∣∂(ψ, α, l)

∂r

∣∣∣∣= B, (6.3)
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the density of trapped electrons becomes

net(r0)=
4πB0

m2
e

∫
fet(ψ0, α0, µ, J)

∣∣v‖τb

∣∣−1

0 dµ dJ. (6.4)

The ambipolarity condition is thus Q[ fi, fec, fet, ψ, α, l] = 0, where

Q[ fi, fec, fet, ψ, α, l] =
4πB
m2

i

∫
T∪C

fi
dµ dε
|v‖|

−
4πB
m2

e

(∫
C

fec
dµ dε
|v‖|

+

∫
T

fet
dµ dJ∣∣v‖τb

∣∣
)
. (6.5)

Here, C refers to the circulating region of velocity space,

0 6µ<
ε

Bmax
, (6.6)

T to the trapped region,
ε

Bmax
6µ6

ε

B
, (6.7)

and Bmax(ψ) denotes the maximum magnetic-field strength on the surface labelled by
ψ . Similarly, the energy functional is

E[ fi, fec, fet] = 4π

∫
dψ dα dl

(∫
T∪C

εfi
dµ dε
m2

i |v‖|

+

∫
C
εfec

dµ dε
m2

e|v‖|
+

∫
T
εfet

dµ dJ
m2

e

∣∣v‖τb

∣∣
)
, (6.8)

and possible ground states can be found be seeking the minimum of the functional

W1[ fe, fi, λe, λi, ν] = E[ fi, fec, fet] +

∫
ν(ψ, α, l)Q[ fi, fec, fet, ψ, α, l] dψ dα dl

+
4π

m2
i

∫
T∪C
λi(φ, µ) dφ dµ

∫
[Θ( fi − φ)−Hi(φ, µ)]

dε
|v‖|

dψ dα dl

+
4π

m2
e

∫
C
λec(φ, µ, ψ) dφ dµ dψ

∫
[Θ( fec − φ)−Hec(φ, µ, ψ)]

dε
|v‖|

dα dl

+
4π

m2
e

∫
T
λet(φ, µ, J) dφ dµ dJ

∫
[Θ( fet − φ)−Het(φ, µ, J)]dψ dα. (6.9)

In this expression, the first term on the right represents the total energy of the ions
and electrons, and the next term, which contains the Lagrange multiplier ν(ψ, α, l),
enforces quasineutrality on each field line (ψ, α). The term containing λi(φ) ensures
the conservation of µ for all ions, that containing λec(φ, µ, ψ) makes sure that µ
and ψ are conserved for circulating electrons and the term with λet(φ, µ, J) enforces
conservation of µ and J for trapped electrons.

The variation with respect to fi gives∫
δfi

[
ε + ν +

∫
λi(φ, µ)δ( fi − φ) dφ

]
dµi dε
|v‖|

dψ dα dl= 0, (6.10)

which implies
ε + ν + λi( fi, µ)= 0. (6.11)
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It must therefore be possible to write fi as a function of the form

fi = Fi[ε + ν(ψ, α), µ], (6.12)

where we have noted that rapid streaming along B implies that the distribution
function must be independent of l, and so must therefore the function ν. Similarly,
the variation of W1 with respect to the electron distribution function shows that the
latter can be written as

fec = Fec[ε − ν(ψ, α), µ, ψ], (6.13)
fet = Fet[ε − ν(ψ, α), µ, J]. (6.14)

6.1. Maxwellian ground states
Any possible ground states in plasmas with conservation properties derived from (1.5)
must be of the form indicated by (6.12)–(6.14), but the most important ones are
of course those where the distribution functions of both species are Maxwellian.
Equation (6.12) implies that this is only possible if the ions are isothermal, so that

fi = n(ψ)
(

mi

2πTi

)3/2

exp (−ε/Ti), (6.15)

where Ti is constant and we have taken ν(ψ, α) = −Ti ln n(ψ). For the electrons,
however, the temperature may vary across magnetic flux surfaces,

fe = n(ψ)
(

me

2πTe(ψ)

)3/2

exp (−ε/Te(ψ)). (6.16)

In order that fe be of the form (6.13) and (6.14), we write κ = ε − ν(ψ) and define

Fec(κ, µ, ψ)=N(ψ)
(

me

2πTe(ψ)

)3/2

exp (−κ/Te(ψ)), (6.17)

Fet(κ, µ, J)=N[ψ(κ, µ, J)]
(

me

2πTe[ψ(κ, µ, J)]

)3/2

exp (−κ/Te[ψ(κ, µ, J)]), (6.18)

where the flux function N(ψ) is related to the density by

n(ψ)=N(ψ) exp (ν(ψ)/Te(ψ)). (6.19)

This prescription suggests that it could be possible to confine a plasma in a
Maxwellian ground state for both species with respect to perturbations that satisfy
the ordering (1.5) if the ions are isothermal. However, we must remember that
(6.12)–(6.14) only provide necessary, and not sufficient, conditions on any ground
states. In the case of a single species without conserved quantities, the corresponding
condition is given by (2.9), but a ground state must also satisfy dF/dε60 everywhere.
To find the corresponding condition for the present two-species case, let us again
consider what happens to the energy of the system when the particles in two
neighbouring and equally large volume elements in phase space are interchanged,
but we now allow such an interchange to occur both in the population of ions and
in that of trapped electrons.
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As in § 2, the energy released is equal to

dEi =−dεi dfi dΓi, (6.20)
dEe =−dεe dfe dΓe, (6.21)

where dΓa denotes the phase-space volume of the elements, dεa their difference
in energy and dfa the difference in the distribution functions. In order that the
interchanges be ambipolar, we must require

dψi dfi dΓi = dψe dfe dΓe, (6.22)

and conclude that the total amount of energy released is

dE= dEi + dEe =−dεedfedΓe

(
1+

dεi dψe

dεe dψi

)
. (6.23)

For the trapped electrons, dψe and dεe are related by (3.8),

dεe =−eωαe dψe, (6.24)

which has to do with the conservation of Je: it is in general impossible to change the
energy of a trapped electron without also moving it radially. We also have

dfe =

(
∂fet

∂ε

)
µ,J

dεe =
fet

Te

(
ωT
∗e

ωαe
− 1
)

dεe, (6.25)

and thus

dE=−
fet

Te

(
ωT
∗e

ωαe
− 1
)
(dεe)

2

(
1−

1
eωα

dεi

dψi

)
. (6.26)

The first term in the last bracket describes the energy change dEe in the electron
channel and second one that in the ions. As found in I, the former is always positive
if the condition (3.5) is satisfied,

ωT
∗e

ωαe
− 1< 0, (6.27)

but the total energy may nevertheless decrease. If more energy is released by the ions
than taken up the electrons, so that dE < 0, the system could not have been in a
ground state before the interchange. This is evidently the case if dεi and dψi are
chosen in such a way that the condition

1
eωαe

dεi

dψi
> 1 (6.28)

is satisfied. Whether this is possible could, in principle, depend on the density gradient
and the magnetic geometry. Since

dfi =

(
∂fi

∂ε

)
ψ

dεi +

(
∂fi

∂ψ

)
ε

dψi =
fi

Ti
(eω∗i dψi − dεi) , (6.29)

the ambipolarity condition (6.22) can be written as

fi

Ti
(eω∗i dψi − dεi) dψi dΓi =

efe

Te

(
ωT
∗e

ωαe
− 1
)

dεe dψe dΓe, (6.30)
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and implies
1

eωαe

dεi

dψi
=
ω∗i

ωαe
+

(
ωT
∗e

ωαe
− 1
)(

dψe

dψi

)2 Ti fe dΓe

Te fi dΓi
. (6.31)

The question is whether this expression can be made to exceed unity by any choice
of the coordinates and volumes of the phase-space volume elements that are to be
interchanged. If so, the plasma is not in a ground state according to (6.28). Since
ωαe is proportional to energy, the two terms on the right that have this quantity in
the denominator can be made arbitrarily large by choosing the energy to be small.4
And since ω∗e and ω∗i have opposite signs, it is clear that (6.31) will always exceed
unity for some choice of parameters. We thus conclude that non-trivial ground states
do not exist in the present situation. In other words, it does not seem possible to
confine a two-component plasma in a Maxwellian minimum-energy state with respect
to fluctuations satisfying (1.5), unless the density and temperature gradients vanish. If
the criterion (3.5) is satisfied for the electrons, their energy cannot be lowered, but it
is apparently always possible to redistribute ions in such a way that the total energy
decreases and quasineutrality is maintained.

Finally, let us put this conclusion in the context of microinstabilities in stellarators
and dipoles. As noted in I, the criterion (3.5) for the ground state of a single species
can be met in two different ways. It holds if either the average magnetic curvature is
favourable for all trapped particles and the temperature gradient is moderate,

ω∗ωα < 0, (6.32)
0<η < 2

3 , (6.33)

or, alternatively, if the curvature is unfavourable and the temperature gradient large
enough, i.e.

ω∗ωα > 0, (6.34)
η > 2

3 . (6.35)

The first one of these cases holds in a maximum-J stellarator and implies that
ordinary density-gradient-driven trapped-electron modes are linearly stable. Proll et al.
(2012) and Helander, Proll & Plunk (2013) concluded that any collisionless instability
must then draw energy from the ions rather than the electrons, and Plunk, Connor
& Helander (2017) showed that there is indeed a remnant ion-driven trapped-electron
mode if ηi > 0. From our considerations of the available energy, this is not surprising,
since it is apparently impossible to achieve a non-trivial ground state for both species
simultaneously in the ordering (1.5). On the other hand, if the electrons are in a
ground state, they act to stabilise any ion-driven instability and one would expect
that the available energy is relatively small. Gyrokinetic simulations of turbulence
in approximately maximum-J stellarator configurations do indeed suggest that the
transport under these conditions is up to an order of magnitude smaller than in a
typical tokamak (Helander et al. 2015).

As discussed in I, the second case (6.34) can apply in the field of a magnetic
dipole, which is then nonlinearly stable with respect to instabilities that conserve µ
and J for all species. This is of particular importance for electron–positron plasmas,
where identical constraints apply to both species (Helander 2014a). In electron–ion

4An exception occurs if the density gradient vanishes, so that ω∗e =ω∗i = 0.
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dipole plasmas, however, no such statement can be made concerning instabilities that
do not conserve Ji, but low-frequency modes can be remarkably stable (Hasegawa,
Chen & Mauel 1990; Kesner & Hastie 2002; Simakov, Hastie & Catto 2002).

7. Conclusions
The available energy of a plasma – the amount of thermal energy that can be

converted into linear and nonlinear fluctuations – depends on what constraints limit the
possible forms of plasma motion. In the present paper, this concept has been explored
in the context of magnetically confined plasmas in local thermodynamic equilibrium.
Specifically, an explicit formula (3.32) has been derived for the energy available from
a species for which the first and second adiabatic invariants, µ and J, are conserved.
This formula shows that the available energy is equal to a weighted average of
ω2
α(ω

T
∗
/ωα − 1) over the subset of phase space where this quantity is positive.

Frequently, different constraints apply to the electrons and the ions, but their
combined motion must be such that quasineutrality is preserved. This condition adds
another constraint and thus lowers the available energy. It also changes the functional
form of the distribution function for the ‘ground state’ of lowest accessible energy.
In a plasma with fixed density profile, this distribution function no longer depends
on energy alone, but on energy plus a function of position ensuring ambipolarity,
see (4.7). Since the density profile cannot relax, there is no available energy associated
with the density gradient, and in a Vlasov plasma with small fluctuations this energy
is given by (4.30) rather than (4.31), which applies in a plasma where the density is
free to evolve. Thus, small density variations do not affect the available energy of
a plasma with fixed density profile. However, if the density variations are not small,
then they can affect the amount of energy that can be extracted from temperature
variations in the plasma, as demonstrated in § 5.

Finally, we have noted that, for some of the most important forms of turbulence
in magnetically confined fusion plasmas, the magnetic moment µ is conserved for
the ions whereas both µ and the parallel invariant J are conserved for trapped
electrons, while µ and ψ are conserved for circulating electrons. This is, for instance,
usually the case for ion-temperature-gradient-driven modes and trapped-electron
modes, which are believed to cause much of the turbulence and transport observed
in fusion experiments. In the collisionless, electrostatic limit, Proll et al. (2012) and
Helander et al. (2013) derived the criterion (3.5) for the stability of trapped-electron
modes taking energy from the electrons in the plasma. This condition came out of
lengthy gyrokinetic calculations but can be simply understood in terms of the available
energy. When this criterion is satisfied, any instability satisfying the orderings must
derive its energy from the ions in the plasma, and Plunk et al. (2017) identified a
particular such instability. The considerations of available energy given in § 6 suggest
that it is indeed always possible to lower the total energy of a Maxwellian plasma
with non-zero density or temperature gradients.

Before closing, we note that all our results are, strictly speaking, only valid in
zero-β, collisionless plasmas. Collisions violate Liouville’s theorem and can enable
the plasma to access lower-energy states than otherwise possible. Similarly, allowing
for magnetic fluctuations can fundamentally change the stability properties of a plasma.
However, experience from gyrokinetic simulations suggests that a small amount of
collisions or plasma pressure does not substantially affect the turbulence. Insofar that
the properties of the latter are correlated with the available energy, one can thus
hope that this remains true beyond the strict realm of applicability of the calculations
presented here.
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Appendix A. Available potential energy of the atmosphere
In this appendix A, we establish the relation between our formalism and the results

of Lorenz (1955). Consider an atmosphere consisting of an ideal gas satisfying the
equations

∂ρ

∂t
+∇ · (ρv)= 0, (A 1)

∂s
∂t
+ v · ∇s= 0, (A 2)

where ρ denotes the density, v the flow velocity and s = p/ργ the specific entropy.
Here, p is the pressure and γ the adiabatic index (ratio of specific heats). The first of
these equations expresses conservation of mass and the second that of entropy. Any
function f (s) of s alone then satisfies the conservation law

d
dt

∫
ρf (s) dV = 0, (A 3)

where the volume integral is taken over the entire atmosphere and the normal
component of ρv is assumed to vanish on the boundary. Specifically, we may choose
f to be a Heaviside function and conclude that the quantity

H(σ )=
∫
ρΘ(s− σ) dV (A 4)

does not change with time for any value of σ ∈ [0,∞).
To find the ground state, we follow the recipe from § 2 and minimise the energy

functional

E=
∫ (

p
γ − 1

+ ρφ

)
dV, (A 5)

where φ = gz denotes the gravitational potential, subject to the constraint that H(σ )
is fixed. We are thus led to consider the functional

W[ρ, s, λ] =
∫
(u+ ρφ) dV +

∫
∞

0
λ(σ ) dσ

(∫
ρΘ(s− σ) dV −H(σ )

)
, (A 6)

where
u(ρ, s)=

sργ

γ − 1
(A 7)

and the Lagrange multipliers λ(σ ) ensure that H(σ ) is indeed conserved for each
σ > 0. The variations of W with respect to ρ and s give

φ +
∂u
∂ρ
+

∫
∞

0
λ(σ )Θ(s− σ) dσ = 0, (A 8)

∂u
∂s
+ λ(s)ρ = 0, (A 9)

respectively. The second of these equations implies

λ(s)=−
ργ−1

γ − 1
, (A 10)
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which, when substituted into the gradient of the first equation,

∇φ +
γ

γ − 1
∇(sργ−1)+ λ(s)∇s= 0, (A 11)

gives
ρ∇φ +∇p= 0. (A 12)

The lowest-energy state is thus one in which the gas is in mechanical equilibrium.
Moreover, according to (A 10), in this equilibrium p is a function of s alone, so that
the pressure varies with height in the same way at every location on Earth. In other
words, as noted by Lorenz, the minimum total energy which can result from adiabatic
rearrangement of air occurs when the pressure is everywhere equal to its horizontal
average.
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