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Abstract

We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic
convergence results. As an application, we show that every dense subgroup of SL2(K), where K is a
p-adic field, contains two elements that generate a dense subgroup of SL2(K), which is a special case of
a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, J. Algebra 261(2) (2003),
448–467]. We also list several other related results, which are well known to experts, but not easy to locate
in the literature; for example, we show that a nonelementary subgroup of SL2(K) over a nonarchimedean
local field K is discrete if and only if each of its two-generator subgroups is discrete.
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1. Introduction

In [13], Jørgensen developed a fundamental inequality that is a necessary condition for
a nonelementary two-generator subgroup of SL2(C) to be discrete (that is, a Kleinian
group) and used it to study the algebraic convergence of Kleinian groups. Subgroups
of SL2(C) act by orientation-preserving isometries on hyperbolic 3-space [2], and this
famous inequality has motivated many further studies of discrete groups that act on
hyperbolic structures; see for instance [9, 11, 21]. Here we develop analogous results
for subgroups of SL2 over nonarchimedean local fields that act by isometries and
without inversion on a Bruhat–Tits tree [26, Ch. II, Section 1].

Let K be a nonarchimedean local field, that is, either a p-adic field (in other words, a
finite extension of the p-adic numbers Qp) or the field of formal Laurent series Fq((t)).
We use TK to denote the corresponding Bruhat–Tits tree, and we equip SL2(K) with
the subspace topology inherited from K4.
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2 M. J. Conder, H. Leung and J. Schillewaert [2]

Our first result is a nonarchimedean analogue of Jørgensen’s inequality [13,
Lemma 1]. This generalises [1, Theorem 4.2] and [23, Theorem 1.5] to discrete
two-generator subgroups of SL2(K) that do not have a fixed end.

THEOREM A. Let K be a nonarchimedean local field with discrete valuation v. There
exists a nonnegative constant MK such that, if G = 〈A, B〉 is a discrete subgroup of
SL2(K) that does not fix an end of TK, then

min{v(tr2(A) − 4), v(tr([A, B]) − 2)} ≤ MK . (1-1)

By a nonelementary subgroup of SL2(K), we mean a subgroup that does not
stabilise a vertex, an end or a pair of ends of TK . In particular, Theorem A holds when
G is nonelementary.

Using results from [9], we also obtain a more specialised version of Theorem A
for discrete and nonelementary two-generator subgroups of SL2(K). As is done in [15]
for the original statement of Jørgensen’s inequality, we additionally determine when
equality occurs in this setting.

THEOREM B. Let K be a nonarchimedean local field with discrete valuation v. Let
G = 〈A, B〉 be a discrete and nonelementary subgroup of SL2(K). If K = Qp, or G
contains no elements of order p (where p is the characteristic of the residue field of K),
then

min{v(tr2(A) − 4), v(tr([A, B]) − 2)} ≤ 0. (1-2)

Moreover, equality occurs if and only if A is elliptic of finite order, B is hyperbolic and
the fixed point set of A intersects the translation axis of B in a finite path of length
equal to the translation length of B.

REMARK 1.1. By [9, Theorems A and B], there are seven possible isomorphism
classes for such a group G that achieves equality in (1-2). These isomorphism classes
are identified in cases (f) and (g) of [9, Theorem A]. Furthermore, cases (b)–(d) of
[9, Theorem A] describe the isomorphism classes for which the inequality (1-2) is
strict.

We use Theorem A to obtain a nonarchimedean analogue of [2, Theorem 5.4.2].
Note that the assumption that the subgroup is nonelementary is necessary; see
Example 6.1.

PROPOSITION 1.2. A nonelementary subgroup of SL2(K) is discrete if and only if each
of its two-generator subgroups is discrete.

In many cases, we obtain the following stronger result, which is also well known to
experts.

PROPOSITION 1.3. Let G be a subgroup of SL2(K), where K is a nonarchimedean
local field. If either char(K) = 0, or char(K) = p > 0 and G contains no elements of
order p, then G is discrete if and only if each of its cyclic subgroups are discrete.
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[3] Basic nonarchimedean Jørgensen theory 3

Let Γ and H be groups, and let {φn : Γ→ Gn} be a sequence of homomorphisms
onto subgroups Gn of H. If limn→∞ φn(γ) exists as an element of H for each γ ∈ Γ, then
we define the group G = {g ∈ H : g = limn→∞ φn(γ), γ ∈ Γ} and say that the sequence
of groups {Gn = φn(Γ)} converges algebraically to G. We also say that a sequence {an}
is eventually X if there exists an N such that the element an is X for all n ≥ N.

We use Theorem A to deduce the following algebraic convergence results for
subgroups of SL2(K). The first is a nonarchimedean analogue of [13, Theorem 1].

THEOREM C. Let Γ ≤ SL2(K) be discrete and nonelementary, and let {φn : Γ→
Gn} be a sequence of isomorphisms between Γ and subgroups Gn of SL2(K) that
are eventually discrete. If {Gn} converges algebraically to G, then G is discrete
and nonelementary, and the map φ : Γ→ G defined by φ(γ) = limn→∞ φn(γ) is an
isomorphism.

REMARK 1.4. Theorem C does not require Γ to be finitely generated.

We also give a nonarchimedean analogue of the main theorem of [16]. To remain
consistent with the terminology described above, when we say that a sequence {Gn} of
subgroups of SL2(K) converges algebraically to G, we implicitly assume that there is
an underlying group Γ and surjective homomorphisms φn : Γ→ Gn. For each element
g ∈ G (where g = limn→∞ φn(γ) ∈ G for some γ ∈ Γ), we then use gn to denote the
corresponding element φn(γ) of Gn, so that g = limn→∞ gn for each g ∈ G. In particular,
by choosing Γ to be the free group of rank r, this allows us to apply the notion of
algebraic convergence to r-generator subgroups of SL2(K).

THEOREM D. Let {Gn = 〈g1n , . . . , grn〉} be a sequence of discrete nonelementary
r-generator subgroups of SL2(K), where r is a positive integer. If {Gn} converges alge-
braically to the group G = 〈g1, . . . , gr〉 ≤ SL2(K), then G is discrete and nonelemen-
tary, and the maps ψn : gi 
→ gin extend to surjective homomorphisms ψn : G→ Gn for
sufficiently large n.

In Example 6.2, we show that Theorem D cannot be generalised to sequences of
finitely generated subgroups of SL2(K) that are not discrete, or that are discrete but
elementary.

Theorem D implies the following nonarchimedean analogue of the main proposition
in [14]. Since the Lie group SL2(K) (where K is a p-adic field) is perfect and its Lie
algebra is generated by two elements [19, Theorem 6], this is a very special case of a
result by Breuillard and Gelander [4, Corollary 2.5].

PROPOSITION 1.5. Let K be a p-adic field. Every dense subgroup of SL2(K) contains
two elements that generate a dense subgroup of SL2(K).

REMARK 1.6. Throughout the paper, we often identify a subgroup G of SL2(K) with
its image G in PSL2(K), equipped with the quotient topology. By [18, Proposition 2.4],
the topology on G is equivalent to the topology of pointwise convergence induced from
the isometry group Isom(TK). The latter is equivalent to the compact-open topology;

https://doi.org/10.1017/S1446788724000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000028


4 M. J. Conder, H. Leung and J. Schillewaert [4]

see Section 2.4, Theorem 1 and Section 3.4, Definition 1 in [3, Ch. X]. Note that
G is discrete (respectively nonelementary) if and only if G is discrete (respectively
nonelementary).

2. Proofs of Theorems A and B

We first establish the following criterion for discreteness (and its proof), which is a
generalisation of [17, Lemma 4.4.1].

LEMMA 2.1. Let G be a topological group that acts by isometries on a locally finite
simplicial complex X. Suppose that G is equipped with the topology of pointwise
convergence.

(1) If G is discrete, then StabG(y) is finite for every vertex y ∈ X.
(2) If StabG(y) is finite for some vertex y ∈ X, then G is discrete.

PROOF. To prove the contrapositive of item (1), suppose that H = StabG(y) is infinite
for some vertex y of X. Let Bn be the ball of radius n ∈ N about y. Since X is locally
finite, the following inductive argument shows that there are infinitely many distinct
elements of H that fix each Bn pointwise.

By the inductive hypothesis, we may assume that H has infinitely many elements
that fix Bn. Infinitely many of these elements, say {gi : i ∈ I}, induce the same
permutation on the finitely many vertices in Bn+1 \ Bn. The set {gig−1

j : i, j ∈ I} then
contains infinitely many distinct elements of H, each of which fixes Bn+1 pointwise.
Hence, we may choose a sequence {gn} of distinct nontrivial elements of H such that
gn fixes Bn pointwise. Thus, {gn} converges to 1, so G is not discrete.

To prove item (2), suppose that StabG(y) is finite for some vertex y and suppose that
{gi} is a sequence of elements of G converging to the identity. The sequence of vertices
{gi · y} converges to y, so there exists an N such that gi ∈ StabG(y) for each i ≥ N. It
follows that the sequence {gi} is eventually 1, and hence G is discrete. �

We now prove a nonarchimedean version of [2, Theorem 4.3.5(i)].

LEMMA 2.2. Let A, B ∈ SL2(K) be such that A � ±1. If A fixes at least one end of TK,
then tr([A, B]) = 2 if and only if A and B fix a common end of TK.

PROOF. We first note that there is an SL2(K)-equivariant isomorphism between the
boundary ∂TK and the projective line P1(K) [26]. Hence, after conjugation if necessary,
we may assume that A fixes the end of TK corresponding to the eigenvector (1, 0) or,
equivalently, A is upper triangular. A standard trace computation (similar to the proof
of [2, Theorem 4.3.5(i)]) then shows that tr([A, B]) = 2 if and only if either B is also
upper triangular or A is diagonal and B is lower triangular. In either case, A and B fix
a common end of TK . �

REMARK 2.3. If A, B ∈ SL2(K) are such that tr([A, B]) = 2, then it is not necessarily
the case that A and B must fix a common end of TK . Also, in contrast with the
archimedean case [2, Theorem 4.3.5(i)], the fact that A, B ∈ SL2(K) fix a common
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[5] Basic nonarchimedean Jørgensen theory 5

vertex of TK does not necessarily imply that tr([A, B]) = 2. See Example 6.3 for further
details.

We also note the following results.

PROPOSITION 2.4 [22, Proposition II.3.15]. The translation length of X ∈ SL2(K) on
TK is

l(X) = −2 min{0, v(tr(X))}.

In particular, X is hyperbolic if and only if v(tr(X)) < 0.

LEMMA 2.5. There are finitely many possible orders of finite order elements in
SL2(K).

PROOF. Let q = pr be the size of the residue field of K. If X ∈ SL2(K) has finite
order n coprime to p, then [9, Proposition 3.3] shows that n | q ± 1. If X has order
pk, then X is unipotent and hence k = 1 when char(K) > 0 by [20, page 964], and
(p − 1)pk−1 ≤ 2[K : Qp] when char(K) = 0 by [25, Proposition 17, page 78] since
either K or a quadratic extension of K must contain a pk th root of unity. Otherwise,
if X has order pkn where p � n, then Xpk

and Xn have orders n and pk, respectively, so
the result follows from the two cases above. �

Since each finite order element of SL2(K) has only finitely many possible traces, we
obtain the following special case of [27, Lemma 2.4].

COROLLARY 2.6. The set {tr(X) : X ∈ SL2(K) has finite order} is finite.

We now prove Theorems A and B. We first define the constant

MK = max{v(tr(X) − 2) : X ∈ SL2(K) has finite order and tr(X) � 2}.

Corollary 2.6 shows that MK is well defined. Moreover, since finite order elements of
SL2(K) are elliptic [26, I.4 Proposition 19], it follows from the ultrametric inequality
and Proposition 2.4 that MK is nonnegative.

PROOF OF THEOREM A. Suppose that G = 〈A, B〉 ≤ SL2(K) is discrete and violates
(1-1), that is,

min{v(tr2(A) − 4), v(tr([A, B]) − 2)} > MK ≥ 0.

If A (respectively [A, B]) is hyperbolic, then [8, Ch. 2, Lemma 1.4] and Pro-
position 2.4 imply that v(tr2(A) − 4) = v(tr2(A)) < 0 (respectively v(tr([A, B]) − 2) =
v(tr([A, B])) < 0), which is a contradiction. Since G contains no infinite order elliptic
elements by Lemma 2.1, we deduce that A and [A, B] are both elliptic of finite order.

Now, after applying the well-known trace equality tr2(A) = tr(A2) + 2, it follows
from the definition of MK that tr(A) = ±2 and tr([A, B]) = 2. Hence, A has character-
istic polynomial x2 ± 2x + 1 = (x ± 1)2 and repeated eigenvalue ±1, so A fixes exactly
one end η of TK . Lemma 2.2 then shows that B fixes η, thus G fixes an end of TK . �
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PROOF OF THEOREM B. Let G = 〈A, B〉 be a discrete nonelementary subgroup of
SL2(K), where either K = Qp or G contains no elements of order p. Since v(2) and
v(4) are nonnegative, Proposition 2.4 and the ultrametric inequality show that (1-2)
holds with strict inequality if A or [A, B] is hyperbolic. Hence, we may assume that A
and [A, B] are elliptic.

If B is also elliptic, then the fixed point sets of A and B are disjoint since G is
nonelementary. The proof of [10, 1.5] shows that the axes of AB and A−1B−1 translate
in the same direction along the unique geodesic between the fixed point sets of A and
B. It follows from [10, 1.8] that [A, B] is hyperbolic, which is a contradiction. Hence,
B is hyperbolic.

Note that A and BA−1B−1 must fix a common vertex, as otherwise [A, B] is
hyperbolic by [10, 1.5]. Since A cannot fix an end of the translation axis Ax(B) of
B, this implies that A fixes a subpath of Ax(B) of finite length Δ ≥ l(B).

Since G is discrete, A has finite order and Δ = l(B) by Lemma 2.1 and [9, Lemma
3.10]. Proposition 2.4 implies that Δ ≥ 2 and hence the fixed point set of A cannot
be a vertex or an edge. Thus, A fixes two ends of TK by [9, Proposition 3.4] and is
hence diagonalisable over K. Let λ, λ−1 ∈ K be the eigenvalues of A which, since G is
nonelementary, must be distinct n th roots of unity for some n > 2. By Hensel’s lemma
[25, II Section 4, Proposition 7], each n th root of unity in K is the unique lift of an n th
root of unity modulo π, where π is the uniformiser of K. It follows that λ � λ−1(mod π)
and hence v(tr2(A) − 4) = 2v(λ − λ−1) = 0, so we obtain equality in (1-2). �

3. Nonelementary groups

In the following two sections, we establish results that are necessary to prove the
remaining statements in the introduction, some of which are interesting in their own
right. Throughout, unless otherwise specified, we use T to denote a R-tree with path
metric d, and Isom(T) to denote the isometry group of T. We equip Isom(T) with the
topology of pointwise convergence.

As in [10], we consider each element g ∈ Isom(T) to be either elliptic or hyperbolic.
We denote the corresponding translation length by l(g). We also denote the fixed point
set of an elliptic isometry g by Fix(g), and the translation axis of a hyperbolic isometry
h by Ax(h).

As in [12, Section 3.1], we say that a subgroup of Isom(T) of T is elementary if it
stabilises a vertex, an end or a pair of ends of T, and nonelementary otherwise.

LEMMA 3.1. If G is a nonelementary subgroup of Isom(T), then it contains two
hyperbolic elements whose axes have pairwise distinct ends.

PROOF. We start by showing that G must contain a hyperbolic element g. Suppose
for a contradiction that all elements of G are elliptic. Note that Fix(gi) ∩ Fix(gj) � ∅
for each pair of distinct elements gi, gj ∈ G, as otherwise, [10, 1.5] shows that gigj is
hyperbolic. Hence, G fixes either a vertex or an end by [28, Lemma 1.6], which is a
contradiction.
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[7] Basic nonarchimedean Jørgensen theory 7

Let η+, η− be the two ends of Ax(g). We may suppose that the axis of every
hyperbolic element of G has an end in common with Ax(g), as otherwise, there is
nothing to prove. Since G is nonelementary, there are hyperbolic elements h1, h2 such
that h1 fixes η+ (but not η−) and h2 fixes η− (but not η+). If Ax(h1) and Ax(h2) have
pairwise distinct ends, then the proof is complete, so we may suppose that Ax(h1)
and Ax(h2) have a common end ζ � {η+, η−}. Since the ends η+ and ζ of Ax(h1)
are distinct from the ends h2 · η+ and η− of Ax(h2gh−1

2 ) = h2 · Ax(g), this proves the
lemma. �

We now observe that in a discrete group G of isometries of a locally finite simplicial
tree T, no element of G can fix precisely one end of the axis of a hyperbolic element
of G.

LEMMA 3.2. Let G be a discrete subgroup of Isom(T), where T is a locally finite
simplicial tree. Suppose that h ∈ G is hyperbolic. If g ∈ G fixes at least one end of
Ax(h), then g commutes with a power of h, whence g fixes both ends of Ax(h).

PROOF. Let η− and η+, respectively, be the repelling and attracting ends of Ax(h).
Without loss of generality, we may suppose that g fixes η−.

If g is elliptic, then g fixes a halfray R on Ax(h). If x is a point on R, then high−i fixes
x for each i ≥ 0. Since StabG(x) is finite by Lemma 2.1, we obtain that high−i = hjgh−j

for some distinct i and j. Thus, g commutes with hk, where k = i − j.
If g is hyperbolic, then Ax(g) intersects Ax(h) in at least a halfray R and we may

assume (by inverting g if necessary) that η− is also the repelling end of Ax(g). Let
x ∈ R and observe that ghig−1h−i fixes x for each i ≥ 0. A similar argument to above
then shows that g commutes with hk for some integer k.

In either case, g · η+ = ghk · η+ = hk(g · η+), so g · η+ ∈ {η−, η+}. Hence, g
fixes η+. �

We also prove the following nonarchimedean analogue of [16, Lemma 5].

LEMMA 3.3. Suppose that G = 〈g1, . . . , gr〉 ≤ Isom(T) is a discrete nonelementary
subgroup of Isom(T), where T is a locally finite simplicial tree. If h ∈ G has infinite
order, then the group 〈gi, h〉 is nonelementary for some i ∈ {1, . . . , r}.

PROOF. By Lemma 2.1, h must be hyperbolic. Let η− and η+ be the ends of Ax(h) and
suppose for a contradiction that 〈gi, h〉 is elementary for every i. By Lemma 3.2, gi

cannot fix precisely one of η− or η+, and hence gi stabilises the set {η−, η+}. Thus, G
stabilises {η−, η+} and is hence elementary, which is a contradiction. �

We recall the following well-known nonarchimedean analogue of Scott’s core
theorem [24].

LEMMA 3.4. A discrete, nonelementary and compactly generated subgroup G of
SL2(K) is finitely presented.
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PROOF. Since G is a discrete subgroup of a Hausdorff group, it is closed. Hence, by
[7, Remark 2.3 and Lemma 2.4], there exists a subtree of T on which the action of G
is cocompact. Since G acts properly on TK , it follows from [5, Corollary I.8.11] that G
is finitely presented. �

Finally, we show that within the class of discrete subgroups of SL2(K), the property
of being nonelementary is preserved under isomorphism. In general, this property does
not have to be preserved under isomorphism; see Example 6.4.
LEMMA 3.5. A discrete subgroup G of SL2(K) is elementary if and only if it is virtually
abelian. In particular, if G1 and G2 are isomorphic discrete subgroups of SL2(K), then
G1 is nonelementary if and only if G2 is nonelementary.

PROOF. Let G be a discrete elementary subgroup of SL2(K). If G fixes a vertex of TK ,
then G is finite by Lemma 2.1. So suppose that G fixes precisely one end of TK . By
Lemma 3.2, G consists entirely of finite order elliptic elements. Using the identification
of ∂TK with the projective line P1(K) [26, page 72], we may conjugate G into a group of
upper triangular matrices. Its unipotent elements form an abelian normal subgroup H
of G, such that G/H can be identified with a finite subgroup of the collection of roots of
unity of K; for instance, see the argument given in [2, page 87]. (Note that, in this case,
H is trivial if char(K) = 0, and is an elementary abelian p-group if char(K) = p > 0.)
Hence, G is virtually abelian. Finally, we suppose that G stabilises a pair of ends of TK .
Thus, G contains a subgroup H of index at most two which pointwise fixes these two
ends. Again using the identification of ∂TK with P1(K), we may assume by conjugation
that H consists entirely of diagonal matrices and is therefore abelian.

Conversely, suppose that G is discrete and virtually abelian. If G is finite, then
it fixes a vertex of TK by [28, 2.3.1], so suppose that G is infinite. In particular, G
contains an infinite abelian normal subgroup H. If H contains a hyperbolic element h,
then Lemmas 2.2 and 3.2 show that every element of H fixes both ends η± of Ax(h).
Moreover, if g ∈ G \ H, then since H � G, we obtain that (g−1Hg)(η±) = η±, whence
g stabilises {η+, η−}. However, if H contains only elliptic elements, then [28, Lemma
1.6] implies that H fixes either a vertex or an end of TK . The former option contradicts
Lemma 2.1, whence H fixes an end of TK and a similar argument to the above then
shows that G fixes this same end. �

4. Converging sequences

Using the same notation as in the previous section, we continue to establish some
results needed to prove the remaining statements in the introduction.
LEMMA 4.1. Let {gn} be a sequence of elements of Isom(T) converging to
g ∈ Isom(T).

(1) If g is elliptic and there is a uniform lower bound lmin on the translation length
of hyperbolic elements in the sequence {gn}, then the sequence {gn} is eventually
elliptic.

(2) If g is hyperbolic, then the sequence {gn} is eventually hyperbolic.
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[9] Basic nonarchimedean Jørgensen theory 9

PROOF. If g is elliptic, then let x ∈ Fix(g). Using the topology of pointwise conver-
gence, we may choose a positive integer N such that d(gn · x, x) = d(gn · x, g · x) < lmin

for each n ≥ N. It follows that gn fixes x for each n ≥ N.
However, if g is hyperbolic, then assume for a contradiction that there is a

subsequence {hn} of {gn} that consists only of elliptic elements and converges to g. Let
x be a point of T and let m be the midpoint of [x, g · x]. Using the topology of pointwise
convergence, we may choose a positive integer N such that d(hn · x, g · x) < 1

2 l(g) and
d(hn · m, g · m) < 1

2 l(g) for each n ≥ N. By [10, 1.3(iii)], the midpoint mn of [x, hn · x] is
fixed by hn for every n. Note that d(mn, m) ≤ 1

2 d(hn · x, g · x) < 1
4 l(g) by [5, Proposition

II.2.2] and thus

d(hn · m, m) ≤ d(hn · m, hn · mn) + d(hn · mn, mn) + d(mn, m) < 1
2 l(g)

for each n ≥ N. Hence, d(g · m, m) ≤ d(g · m, hn · m) + d(hn · m, m) < l(g) for suffi-
ciently large n, which is a contradiction. �

REMARK 4.2. Without the bound lmin in Lemma 4.1(1), one could take a sequence of
hyperbolic elements {gn} of translation length 1/n that converges to an elliptic element
of Isom(T).

We obtain the following nonarchimedean analogue of [13, Lemma 2] as a conse-
quence of Lemma 4.1(1). Note that this version does not use Theorem A; this contrasts
with the proof in [13] which requires Jørgensen’s inequality.

COROLLARY 4.3. Let {gn} be a sequence of elements of SL2(K) such that the cyclic
groups 〈gn〉 are discrete. If {gn} converges to an elliptic element g ∈ SL2(K), then the
sequence {tr(gn)} is eventually constant.

PROOF. By Lemma 4.1(1), the sequence {gn} is eventually elliptic. It follows from
Lemma 2.1 that {gn} eventually consists of finite order elements. Since the trace
function is continuous, Corollary 2.6 shows that {tr(gn)} is eventually constant. �

LEMMA 4.4. Let {Gn} be a sequence of elementary subgroups of Isom(T). If {Gn}
converges algebraically to G, then G is elementary.

PROOF. Suppose for a contradiction that G is nonelementary. By Lemma 3.1, there are
hyperbolic elements h1, h2 ∈ G such that the ends of Ax(h1) and Ax(h2) are distinct.
Without loss of generality, we may assume that h1 and h2 translate in the same direction
along the (possibly empty) finite path Ax(h1) ∩ Ax(h2). There is some positive integer
k such that Ax(h1) and Ax(hk

2h−1
1 h−k

2 ) = hk
2 · Ax(h1) intersect along a (possibly empty)

path of length strictly less than l(h1), and hence [10, 1.5 and 3.4] show that [h1, hk
2]

is hyperbolic. By Lemma 4.1(2), there is a sufficiently large positive integer N such
that the corresponding elements h1N , h2N and [h1N , hk

2N
] of GN are hyperbolic. Since

[h1N , hk
2N

] is hyperbolic, Ax(h1N ) and Ax(h2N ) must have finite (or empty) overlap by
[10, Corollary 2.3], which contradicts the fact that GN is elementary. �

The following is a nonarchimedean analogue of [16, Lemma 9]. Note that the
assumption of eventual discreteness is necessary; see Example 6.5.
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LEMMA 4.5. Let {Gn = 〈gn, hn〉} be a sequence of subgroups of SL2(K) converging
algebraically to G = 〈g, h〉 ≤ SL2(K), where h is hyperbolic. If {Gn} is eventually
discrete, then g fixes an end of Ax(h) if and only if gn and hn fix a common end of
TK for all sufficiently large n.

PROOF. Suppose first that gn and hn fix a common end of TK for all sufficiently large
n. By Lemma 2.2, tr([gn, hn]) = 2 for all sufficiently large n, and so tr([g, h]) = 2 since
the trace function is continuous. Hence, Lemma 2.2 shows that g fixes an end of Ax(h).

Conversely, suppose that g fixes an end of Ax(h). By Lemma 2.2, tr([g, h]) = 2 and
hence [g, h] is elliptic by Proposition 2.4. Corollary 4.3 then shows that tr([gn, hn]) = 2
for all sufficiently large n. Since hn is hyperbolic for sufficiently large n by Lemma
4.1(2), another application of Lemma 2.2 proves the result. �

We use the following technical lemma several times.

LEMMA 4.6. Let g ∈ SL2(K) and suppose that h1, h2 ∈ SL2(K) are hyperbolic ele-
ments whose axes have pairwise distinct ends. If both 〈g, h1〉 and 〈g, h2〉 are elementary
groups, then g = ±1.

PROOF. Since 〈g, h1〉 and 〈g, h2〉 are elementary, g stabilises the ends of both Ax(h1)
and Ax(h2). Hence, g2 fixes four ends of TK and, since ∂TK can be identified with the
projective line P1(K) [26, page 72], it follows that g2 = 1. �

We conclude this section by proving a nonarchimedean analogue of [13,
Proposition 1].

PROPOSITION 4.7. Let G be a nonelementary subgroup of SL2(K) and let {Gn} be a
sequence of eventually discrete subgroups of SL2(K). If {Gn} converges algebraically
to G, then G is discrete.

PROOF. Let {gi} be a sequence of elements of G converging to 1. By Lemma 3.1,
we may choose hyperbolic elements h1, h2 ∈ G whose axes have no end in common.
Observe that the sequences {[gi, h1]} and {[gi, h2]} both converge to 1. For sufficiently
large i and n, it follows that min{v(tr2(gin ) − 4), v(tr([gin , hjn ]) − 2)} > MK for j ∈ {1, 2}.
Theorem A hence implies that the subgroups 〈gin , h1n〉 and 〈gin , h2n〉 of Gn are
elementary for sufficiently large i and n. By Lemma 4.4, the subgroups 〈gi, h1〉 and
〈gi, h2〉 of G are also elementary for sufficiently large i. Hence, {gi} is eventually
constant by Lemma 4.6, so G is discrete. �

5. Proofs of the remaining statements

PROOF OF PROPOSITION 1.2. Let G be a nonelementary subgroup of SL2(K). If G is
discrete, then so is every subgroup of G. So suppose that every two-generator subgroup
of G is discrete, and that {gi} is a sequence of elements of G converging to 1. By
Lemma 3.1, we may choose hyperbolic elements h1, h2 ∈ G whose axes have pairwise
distinct ends. For sufficiently large i, the following inequality holds for each j ∈ {1, 2}:

min{v(tr2(gi) − 4), v(tr([gi, hj] − 2)} > MK .
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Hence, Theorem A shows that 〈gi, h1〉 and 〈gi, h2〉 are both elementary for sufficiently
large i. By Lemma 4.6, {gi} is eventually constant and hence G is discrete. �

PROOF OF PROPOSITION 1.3. If G is discrete, then every cyclic subgroup of G is
discrete. Hence, we may suppose that every cyclic subgroup of G is discrete. Since
G acts by isometries on a locally finite simplicial building X of type Ãn−1 [6, 2.2.8
and 7.4.11], Lemma 2.1 shows that every element in G that fixes a vertex of X has
finite order. Thus, every vertex stabiliser in G is periodic, that is, it consists only of
finite order elements. Moreover, every vertex stabiliser in G has finite exponent by
Lemma 2.5. Thus, every vertex stabiliser in G is finite by [29, Theorem 9.1(ii) and
(iii)], so G is discrete by Lemma 2.1. �

PROOF OF THEOREM C. We first prove that φ is an isomorphism. Since φ is surjective
by construction, it suffices to show that φ is injective.

Let A ∈ Γ be nontrivial. If A is hyperbolic, then the proof of Lemma 3.1 shows that
we may choose a hyperbolic element B ∈ Γ such that Ax(A) and Ax(B) have pairwise
distinct ends. If A is elliptic, then there exists a hyperbolic element B ∈ Γ such that
A does not stabilise the set of ends of Ax(B). In either case, there exists a hyperbolic
element B ∈ Γ such that 〈A, B〉 is nonelementary. By Lemma 3.5, 〈φn(A), φn(B)〉 is then
a nonelementary subgroup of Gn for sufficiently large n.

Now suppose for a contradiction that φ(A) = 1. The sequence {φn(A)} converges to
1, so for sufficiently large n, we obtain

min{v(tr2(φn(A)) − 4), v(tr([φn(A), φn(B)]) − 2)} > MK .

Theorem A then implies that 〈φn(A), φn(B)〉 is elementary for sufficiently large n,
which gives the desired contradiction. Hence, φ is an isomorphism.

Now suppose that {gi = φ(γi)} is a sequence of elements of G converging to 1. Since
Gn is isomorphic to Γ, Lemma 3.5 shows that Gn is nonelementary for sufficiently
large n. For each such n, there exist hyperbolic elements φn(h1), φn(h2) ∈ Gn whose
axes have pairwise distinct ends by Lemma 3.1. For sufficiently large i and n, observe
that

min{v(tr2(φn(γi) − 4)), v(tr([φn(γi), φn(hj)]) − 2)} > MK

for j ∈ {1, 2}. Theorem A hence implies that the subgroups 〈φn(γi), φn(h1)〉 and
〈φn(γi), φn(h2)〉 of Gn are elementary for sufficiently large i and n. Lemma 4.6 thus
shows that φn(γi) = ±1 for sufficiently large i and n. Since φn and φ are isomorphisms,
it follows that {gi = φ(γi)} is eventually 1, whence G is discrete. Moreover, Lemma 3.5
shows that G is nonelementary. �

PROOF OF THEOREM D. By Proposition 4.7, if G is nonelementary, it is also discrete,
so we start by proving the former.

https://doi.org/10.1017/S1446788724000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000028


12 M. J. Conder, H. Leung and J. Schillewaert [12]

For each n, one of the elements in the set {gin : 1 ≤ i ≤ n} ∪ {gin gjn : 1 ≤ i < j ≤ r}
must be hyperbolic as otherwise, Gn fixes a point [26, I.6.5 Corollary 2 of
Proposition 26] and is hence elementary. We denote this hyperbolic element by hn. By
Lemma 3.3, for each n, there exists in ∈ {1, . . . , r} such that the group Hn = 〈hn, gin〉
is discrete and nonelementary. Since each Gn is finitely generated, for infinitely many
n, we must have picked the same indices to define both generators of Hn. Hence,
there exists a subsequence of {Hn} converging to some two-generator subgroup H
of G. Since G is nonelementary when H is, it thus suffices to prove the statement
for r = 2.

If every element of {g1, g2, g1g2} is elliptic, then Lemma 4.1(1) shows that every
element of {g1n , g2n , g1n g2n} is also elliptic for sufficiently large n. By [26, I.6.5
Corollary 2 of Proposition 26], Gn is elementary, which is a contradiction. Hence,
we may choose some hyperbolic element h ∈ {g1, g2, g1g2}.

If g ∈ {g1, g2, g1g2}\{h} is such that ghg−1 fixes an end of Ax(h), then Lemmas
4.1(2) and 4.5 show that, for n sufficiently large, hn is hyperbolic and gnhng−1

n
fixes an end of Ax(hn). Thus, Lemma 3.2 shows that Gn is elementary, which is a
contradiction. Therefore, there is some g ∈ {g1, g2, g1g2}\{h} such that the hyperbolic
elements h and ghg−1 have no ends in common, so G is nonelementary (and hence
discrete).

To prove that the maps ψn : gi 
→ gin extend to surjective homomorphisms, we
argue as in [13, Theorem 2]. Note that Lemma 3.4 shows that G is finitely presented.
Therefore, a necessary and sufficient condition for ψn to be a homomorphism is that
the images of relators in G are equal to the identity.

Let R1, . . . , Rk be a basis for the relations for G. It remains to find a sufficiently large
N such that for n ≥ N, the corresponding elements in Gn are equal to the identity. By
Lemma 3.1, we can find two hyperbolic elements h1, h2 ∈ G whose axes have pairwise
distinct ends. It follows from Lemmas 4.1(2) and 4.5 that, for sufficiently large n, there
exist hyperbolic elements h1n , h2n ∈ Gn whose axes have pairwise distinct ends.

Since the sequence {Gn} converges to G, the corresponding elements Rsn converge
to 1 for each s ∈ {1, . . . , k}. By Theorem A, the groups 〈Rsn , htn〉 are elementary for each
s ∈ {1, . . . , k}, t ∈ {1, 2} and sufficiently large n. Hence, Lemma 4.6 shows that Rsn = 1
for each s ∈ {1, . . . , k} and sufficiently large n. �

PROOF OF PROPOSITION 1.5. Let G be dense in SL2(K). Since SL2(K) contains a
two-generator dense subgroup, there exist g, h ∈ G that generate a dense subgroup H
of SL2(K). Let {gn} and {hn} be sequences of elements of G converging to g and h,
respectively. If all but finitely many of the subgroups Hn = 〈gn, hn〉 of G are elementary,
then H is elementary by Lemma 4.4. This is a contradiction by [9, Lemma 6.6], so
we may assume without loss of generality that the sequence {Hn} consists entirely of
nonelementary subgroups of G. If all but finitely many of these subgroups are discrete,
then H is discrete by Theorem D, which is again a contradiction. Hence, there exists a
positive integer N such that HN is nonelementary and not discrete. It follows from [9,
Lemmas 6.6 and 6.7] that HN is dense. �
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6. Examples

In this final section, we include several examples which are referred to throughout
the paper.

EXAMPLE 6.1. Let p be a prime and let G be the subgroup of SL2(Fp((t))) generated by

X =
{[

1 x
0 1

]
: x ∈ Fp[[t]]

}
.

Each element of X has order p and fixes the vertex corresponding to Fp[[t]]2 in the
corresponding Bruhat–Tits tree. Since X is infinite, G is not discrete by Lemma 2.1.
However, every two elements of X generate a finite (and hence discrete) group.

EXAMPLE 6.2. We define the following matrices in SL2(Qp):

An =

[
1 pn

0 1

]
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p 0

1
1
p

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p 0

0
1
p

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , Dn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 + pn 1

0
1

1 + pn

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Observe that:

• each group Gn = 〈An, B〉 is nonelementary and not discrete, but {Gn} converges
algebraically to the elementary discrete group 〈B〉 � Z;

• each group Hn = 〈An, C〉 is elementary and not discrete, but {Hn} converges
algebraically to the elementary discrete group 〈C〉 � Z;

• each group 〈Dn〉 is elementary and discrete, but {〈Dn〉} converges algebraically to
an elementary group that is not discrete.

EXAMPLE 6.3. Note that −3 is a quadratic residue modulo 7, so Hensel’s lemma shows
that we can define the following matrices of SL2(Q7) which commute:

A =
[
0 −1
1 0

]
, B =

[
2 −

√
−3√

−3 2

]
.

Since tr2(A) − 4 = −4 and tr2(B) − 4 = 12 are both quadratic nonresidues modulo 7,
the matrices A and B are not diagonalisable over Q7 and therefore fix no ends of TQ7 .

However, A and B are elements of SL2(Z7) and hence they both fix the vertex of TQ7

corresponding to Z2
7. In general, however, two elements of SL2(K) that fix a common

vertex need not have the trace of their commutator equal to 2; for instance, consider
the pair of generators for SL2(Z) in Example 6.4.

EXAMPLE 6.4. Let SL2(Z) � C4 ∗C2 C6 be the group generated by the matrices
[
0 −1
1 0

]
and

[
0 −1
1 1

]
;

https://doi.org/10.1017/S1446788724000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000028


14 M. J. Conder, H. Leung and J. Schillewaert [14]

see [26, Ch. I, 1.5.3]. Since SL2(Z) fixes the vertex of TQp corresponding to Z2
p and

also contains infinite order elliptic elements, it is an elementary nondiscrete subgroup
of SL2(Qp). However, the subgroup of SL2(Qp) generated by the matrices

[
0 −1
1 0

]
and

⎡⎢⎢⎢⎢⎢⎢⎢⎣0 − 1
p

p 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is discrete, nonelementary and also isomorphic to C4 ∗C2 C6; for the corresponding
quotient in PSL2(K), see [9, Section 5, Case (c)].

EXAMPLE 6.5. We define the following matrices in SL2(Qp):

An =

[
1 + pn 1

pn 1

]
, A =

[
1 1
0 1

]
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p 0

0
1
p

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
The sequence of nondiscrete groups {〈An, B〉} converges algebraically to 〈A, B〉. Each
elliptic element An does not fix an end of Ax(B), whereas A does fix an end of Ax(B).
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