DESCENDINGLY INCOMPLETE ULTRAFILTERS AND THE CARDINALITY OF ULTRAPOWERS

ANDREW ADLER AND MURRAY JORGENSEN

Let *D* be an ultrafilter on *I*, and let κ be a cardinal. *D* is said to be κ -descendingly incomplete (κ -d.i.) if there exists a chain $X_{\alpha} : \alpha < \kappa$ of elements of *D* such that $\alpha < \beta \rightarrow X_{\alpha} \subseteq X_{\beta}$ and $X_{\alpha} = \phi$. Such a chain will be called a κ -chain for *D*. The notion of κ -descending incompleteness is due to Chang [3].

In this paper we explore the relationship between the cardinality of the ultrapower κ^{I}/D and the existence of certain chains on D. Since we deal so much with questions of size, we do not ordinarily make a notational distinction between a set and its cardinality. Where such a distinction is useful, the cardinality of a set A will be denoted by |A|.

The cardinal κ has a natural well-ordering which we denote by \langle . In the usual way, \langle induces an order on κ^{I}/D , which we also denote by \langle . There is a natural (order-preserving) embedding of κ into κ^{I}/D . We make the usual identification and assume that $\kappa \subseteq \kappa^{I}/D$.

The following result is already implicit in Chang [3].

LEMMA 1. κ is bounded above in κ^{I}/D with respect to < if and only if D is κ -d.i.

Proof. Suppose that κ is bounded in κ^{I}/D , and let $f/D \in \kappa^{I}/D$ be an upper bound for κ . For any $\alpha < \kappa$, let $X_{\alpha} = \{i \mid f(i) > \alpha\}$. It is clear that $\{X_{\alpha} : \alpha < \kappa\}$ is a κ -chain for D.

Conversely, let $\{X_{\alpha} : \alpha < \kappa\}$ be a κ -chain for D. Define $f : I \to \kappa$ by $f(i) = \alpha$ if and only if $i \in X_{\alpha} - X_{\alpha+1}$. Then f/D is an upper bound for κ in κ^{I}/D .

For ultrafilters D which are not κ -d.i., we obtain a representation for κ^{I}/D in terms of ultrapowers of smaller objects.

LEMMA 2. If D is not κ -d.i., then

$$|\kappa^{I}/D| = \sup_{\alpha < \kappa} |\alpha|^{I}/D.$$

Proof. For any $\alpha < \kappa$, let $C_{\alpha} = \{ f/D \mid f/D < \alpha \}$. By Lemma 1, κ is confinal in κ^{I}/D with respect to <, and so we have the representation $\kappa^{I}/D = \bigcup_{\alpha < \kappa} C_{\alpha}$. But from the definition of C_{α} , $|C_{\alpha}| = |\alpha|^{I}/D$.

It is well-known that if D is regular and κ -d.i., then $\kappa^I/D > \kappa$. This is essentially a restatement of the fact that if $|I| = \kappa$ and D is uniform, then $\kappa^I/D > \kappa$. The main result of this paper is a partial converse of this theorem.

Received August 26, 1971 and in revised form, August 28, 1972.

If 2^{κ} is the *n*th successor of κ for some integer *n*, a converse essentially as strong as can be expected will follow.

Let $f: I \to A$. Put $i \backsim i'$ if f(i) = f(i'). The relation \backsim partitions I. This partition will be called the partition induced by f. If II is any partition of I, define $g: I \to II$ by g(i) = C, where $C \in II$ is the cell to which i belongs. Let D be an ultrafilter on I. We can now define an ultrafilter E on II by putting $X \in E$ if and only if $g^{-1}(X) \in D$. E will be called the image of D on II. In this situation, there is for any A a natural embedding of A^{II}/E in A^{I}/D . For to any $f/E \in A^{II}/E$ there corresponds an object $\hat{f}/D \in A^{II}/D$, where $\hat{f}(i) = f(C)$ for any cell C and any $i \in C$. A^{II}/E will be treated as a subset of A^{II}/D .

For any ultrafilter D, let th(D) (the thickness of D) be the smallest cardinal μ such that there exists $X \in D$ with $|X| = \mu$. The following small observation will be needed in the proof of the main result:

LEMMA 3. Let Π_{α} : $\alpha < \rho$ be a sequence of partitions of I such that if $\alpha < \beta$, Π_{β} is a proper refinement of Π_{α} . Then for any ordinal η , $|\Pi_{\eta}| \geq |\eta|$.

Proof. We define a sequence C_{α} of subsets of I such that for any α , C_{α} meets a cell of Π_{α} in at most one point. Let $C_0 = \phi$. For any α , $C_{\alpha+1} = C_{\alpha} \cup \{p\}$ where p is in a cell of $\Pi_{\alpha+1}$ to which no element of C_{α} belongs. This is possible since $\Pi_{\alpha+1}$ is a proper refinement of Π_{α} . For α a limit ordinal,

$$C_{\alpha} = \bigcup_{\beta < \alpha} C_{\beta}.$$

Then clearly $|\Pi_{\eta}| \ge |C_{\eta}| = |\eta|$.

We have now:

THEOREM 1. Let $\kappa^{I}/D > \kappa$. Let λ be the smallest cardinal such that $\kappa^{\lambda} > \kappa$. Then D is μ -d.i. for some μ with $\lambda \leq \mu \leq \max(\kappa, 2^{\lambda})$.

Proof. If we can show that the ultrafilter D has an image E such that $th(E) = \mu$, then D is μ -d.i. For any non-principal ultrafilter E is th(E)-d.i., and since E is an image of D, from any μ -chain in E it is easy to construct a μ -chain in D.

Let $f_{\alpha}/D : \alpha < \kappa^+$ be a sequence of κ^+ distinct elements of κ^I/D . For each α , the partition induced by f_{α} has cardinality $\leq \kappa$. Indeed without loss of generality we may assume that for each α the partition induced by f_{α} has cardinality $<\lambda$. For if the cardinality of the smallest partition induced by a representative of f/D is μ , then D has an image of thickness μ , and hence a μ -chain.

We now define a sequence Π_{α} of partitions of I. Let Π_0 be the one cell partition. For any α , let $\Pi_{\alpha+1}$ be the common refinement of Π_{α} and the partition induced by f_{β} , where f_{β}/D is the first element of our sequence which does not have a representative constant on the cells of Π_{α} . If α is a limit ordinal, let Π_{α} be the common refinement of all the Π_{β} with $\beta < \alpha$. For some ordinal $\eta \leq \kappa^+$, every f_{β}/D has representative constant on the cells of Π_{η} , and the process of choosing the Π_{α} terminates. For $\alpha \leq \eta$, let D_{α} be the image of D on Π_{α} . It is clear that (under our identification) $f_{\alpha}/D \in \kappa^{\Pi}\eta/D_{\eta}$ for all $\alpha < \kappa^{+}$. If $\eta \leq \lambda$, we are through. For since $\Pi_{\alpha+1}$ divides any cell of Π_{α} into $<\lambda$ pieces, $|\Pi_{\eta}| \leq 2^{\lambda}$. But since $\kappa^{\Pi}\eta/D_{\eta} \geq \kappa^{+}$, th $(D_{\eta}) \geq \lambda$, and so

$$\lambda \leq \operatorname{th}(D_{\eta}) \leq |\Pi_{\eta}| \leq 2^{\lambda}.$$

But then D is μ -d.i. for some μ with $\lambda \leq \mu \leq 2^{\lambda}$.

If $\eta \geq \lambda$, we show that already $\operatorname{th}(D_{\lambda}) \geq \lambda$. Since $\operatorname{th}(D_{\lambda}) \leq 2^{\lambda}$, this will complete the argument. Let $\operatorname{th}(D_{\lambda}) = \rho$, and let Π_{λ}^{*} be an element of D_{λ} of cardinality ρ . For any α we have a natural projection map $\phi_{\alpha} : \Pi_{\lambda} \to \Pi_{\alpha}$. Let $\Pi_{\alpha}^{*} = \phi_{\alpha}(\Pi_{\lambda}^{*})$. We show that for any $\alpha < \lambda$, $\Pi^{*}_{\alpha+1}$ refines Π_{α}^{*} properly.

For suppose that $\Pi^*_{\alpha+1} = \Pi_{\alpha}^*$, and let f_{β} be any function constant on the cells of $\Pi_{\alpha+1}$. We define a function $g_{\beta}: I \to \kappa$. Let *C* be any cell of Π_{α} , and *K* be the collection of $i \in C$ which belong to some cell of Π_{λ}^* . Suppose there is some $i_0 \in K$. If $i \in C$, let $g_{\beta}(i) = f_{\beta}(i_0)$. If $K = \phi$, let g_{β} be constant on *C*.

Now if $i \in K$, since $\Pi^*_{\alpha+1} = \Pi^*_{\alpha}$, *i* and *i*₀ must belong to the same cell of $\Pi_{\alpha+1}$, and so $g_{\beta}(i) = f_{\beta}(i)$. So f_{β} and g_{β} agree on an element of *D*, and hence f_{β}/D has a respresentative constant on the cells of Π_{α} , contradicting the choice for $\Pi_{\alpha+1}$. It follows that $\Pi^*_{\alpha+1}$ is a proper refinement of Π^*_{α} .

But now it follows immediately from Lemma 3 that $th(D_{\lambda}) = |\Pi_{\lambda}^*| \ge \lambda$, and so Theorem 1 is proved.

It seems plausible that the upper bound for μ obtained in Theorem 1 can be improved to κ . This would yield a best possible result, since for any μ , if Dis a regular ultrafilter on μ , $|\kappa^{\mu}/D| = \kappa^{\mu}$. If κ and λ are as in the statement of Theorem 1, and $2^{\lambda} \leq \kappa$, then Theorem 1 yields a best possible upper bound directly. Lemma 2 can be used together with Theorem 1 to deal with other rather special cardinals κ , but we have no generally valid argument that will improve our upper estimate in all cases.

If 2^{κ} is the *n*th successor of κ for some integer *n*, then the upper bound for μ can indeed be improved to κ . This is a routine application of the main result of [6]. So in particular we have:

COROLLARY 1 (G.C.H.). Let κ be regular. If $\kappa^{I}/D > \kappa$, then D is κ -d.i.

For κ singular, assuming the G.C.H., it is tempting to believe that if $\kappa^{I}/D > \kappa$, D is cf(κ)-d.i. However, if we assume the existence of measurable cardinals, a counterexample can be exhibited using ideas similar to those of [1].

COROLLARY 2 (G.C.H.). If κ is regular, and $\kappa^{I}/D > \kappa$, then $|(\kappa^{I}/D)^{\kappa}| = |\kappa^{I}/D|$.

Proof. Chang [3] has shown that if

$$\kappa = \sum_{\delta < \gamma} \kappa^{\delta},$$

and D is γ -d.i., then $|(\kappa^{I}/D)^{\gamma}| = |\kappa^{I}/D|$. By Corollary 1, Chang's condition is

fulfilled with $\gamma = \kappa$. From Keisler's inequality $(\kappa^{\lambda})^{I}/D \leq (\kappa^{I}/D)^{\lambda}$ [4] one can only conclude that $cf(|\kappa^{I}/D|) \geq \kappa$.

COROLLARY 3 (C.G.H.). Let κ be regular. Then κ is confinal in κ^{I}/D if and only if $|\kappa^{I}/D| = \kappa$.

Proof. The proof follows by Lemma 1.

From the proof of Theorem 4, it is easy to see that (assuming 2^{κ} is the *n*th successor of κ for some *n*) if $|\kappa^{I}/D| = \kappa$, there is an ultrafilter *E* on a set *J* with $|J| < \kappa$ such that $\kappa^{I}/D \simeq \kappa^{J}/E$. So if we think of κ as being equipped with its full structure (all relations and functions on κ), κ^{I}/D is a simple extension of κ [2]. It is natural to ask here whether in the proof of this purely algebraic result special assumptions about exponentiation of cardinals can be eliminated. It is also reasonable to expect that if $|\kappa^{I}/D| \leq 2^{\kappa}$, there is an ultrafilter *E* on a set *J* with $|J| \leq \kappa$ such that $\kappa^{I}/D \simeq \kappa^{J}/E$. At this moment these questions remain open.

Define a function f from ordinals to cardinals by putting $f(0) = \omega$, $f(\alpha + 1) = |(f(\alpha))^{I}/D|$, and for limit ordinals β , $f(\beta) = \sup_{\alpha < \beta} f(\alpha)$. The function f reaches a maximum $\mu \leq |2^{I}|$.

COROLLARY 4 (G.C.H.). μ is the smallest cardinal such that D is not μ -d.i. In particular, if $|\omega^I/D| = |\omega^I|$, then D is κ -d.i. for all infinite $\kappa \leq |I|$.

In the proof of the next result, we need the fact that if $(2^{\kappa})^{I}/D > 2^{\kappa}$, then $\kappa^{I}/D > \kappa$. Without any additional trouble we can prove the slightly stronger

LEMMA 4. $(A^B)^I/D \ge (A^I/D)^{B^I/D}$.

Proof.[†] Any second order existential sentence true in a model \mathscr{C} is true in every ultrapower of \mathscr{C} . Consider the model $\mathscr{C} = \langle A^B, A, B, R \rangle$ where R(a, b, f) if and only if f(b) = a. In the model \mathscr{C}^I/D we have

$$(A^B)^I/D \subseteq (A^I/D)^{B^I/D}$$

with the obvious identification induced by R^{I}/D .

Lemma 4 quickly yields that if $(2^{\kappa})^{I}/D > 2^{\kappa}$, then $\kappa^{I}/D > \kappa$. For let $A = 2, B = \kappa$. Then $(2^{\kappa})^{I}/D \leq 2^{\kappa^{I}/D}$ and so if $(2^{\kappa})^{I}/D > 2^{\kappa}$, we must have $\kappa^{I}/D > \kappa$.

Our final result gives a very weak estimate for the cardinality of κ^{I}/D when κ is a limit cardinal in terms of cardinalities of ultrapowers of cardinals smaller than κ .

THEOREM 2 (G.C.H.). Let κ be a limit cardinal. Suppose there is a sequence λ_{α} of regular cardinals such that $\lambda_{\alpha} \to \kappa$ and $\lambda_{\alpha}{}^{I}/D > \lambda_{\alpha}$. Then $\kappa^{I}/D > \kappa$.

[†]We thank the referee for suggesting this simple proof.

Proof. By Corollary 1, D has a λ_{α} -chain for all α . From a chain $\{X_{\beta} : \beta < \lambda_{\alpha}\}$ one obtains a partition Π_{α} of I whose cells are the sets $X_{\beta+1} - X_{\beta}$. Since we have a λ_{α} -chain and λ_{α} is regular, the image E_{α} of D on Π_{α} is uniform. Let Π be the common refinement of the partitions Π_{α} , and let E be the image of D on Π . $|\Pi| \leq 2^{\kappa} = \kappa^+$. Since each E_{α} is an image of E, and th $(E_{\alpha}) = \lambda_{\alpha}$, th $(E) \geq \kappa$. If th $(E) = \kappa$, E is κ -d.i., so $\kappa^I/D > \kappa$. If th $(E) = \kappa^+ = 2^{\kappa}$, $(2^{\kappa})^I/D > 2^{\kappa}$, and so $\kappa^I/D > \kappa$.

References

- 1. A. Adler, The cardinality of ultrapowers—an example, Proc. Amer. Math. Soc. 28 (1971), 311-312.
- Representation of models of full theories (to appear in Zeitschrift fur Grund. der Math.)
 C. C. Chang, Descendingly incomplete ultrafilters, Trans. Amer. Math. Soc. 126 (1967),
- 108-111. 4. H. J. Keisler, On cardinalities of ultraproducts, Bull. Amer. Math. Soc. 70 (1964), 644-647.
- 5. K. Kunen, Two theorems on ultrafilters, Notices Amer. Math. Soc. 17 (1970), 673.
- 6. K. Kunen and K. Prikry, On descendingly incomplete ultrafilters (to appear).

University of British Columbia, Vancouver, British Columbia; Waterloo Lutheran University, Waterloo, Ontario