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ON THE CONVERGENCE OF AN ITERATIVE METHOD FOR THE
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Abstract

In this paper we present an Extended Linear-Quadratic Programming method for the
minimax problem. We show that the Extended Linear-Quadratic Programming method
for the minimax problem is equivalent to the Josephy-Newton method for generalized
equation, and establish the local convergence result. Furthermore, we obtain the global
convergence result for the minimax problem by means of the equivalence relation between
the generalized equation and the normal equation.

1. Introduction

In this paper we consider the minimax problem

minmaxL(;t, y), (1)
xeX yeY

where L(x, y) is a saddle function, that is, L is a convex-concave function from
X x Y -> [—oo, +oo], that is, L(-, y) is a convex function on X for each y e Y and
L(x, •) a concave function on Y for each x 6 X, where X and Y are closed nonempty
convex subsets in Rn and Rm, respectively.

Many minimax problems often arise in engineering design [9], computer-aided-
design [10], circuit design [23], chemical design and optimal control [18, 19] and
others.

At present, there are several existing methods for the minimax problem (1), for
example, the feasible direction method [6], the projected Lagrange method [5], a
combined Linear Programming and quasi-Newton method and the barrier function
method. In [13] we research the Kuhn-Tucker condition for the minimax problem (1),
and discuss the local convergence using the Kuhn-Tucker equation and the Sequential
Quadratic Programming method for the dual-pair problem.
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In this paper we transform the minimax problem into a sequence of Extended
Linear-Quadratic Programming (ELQP) problems which are introduced by Rockafel-
lar and Wets [20] in stochastic programming and which can be effectively solved by
some existing algorithms. In addition, by means of some transformations, we can
also use the existing effective algorithms for linear complementarity or linear vari-
ational inequality to get solutions of ELQP problems, which converge to the solutions
of the original minimax problem (1). In order to establish the convergence results,
we discuss how to transform the ELQP subproblem into the model problem of the
Josephy-Newton method and Robinson-Newton method, respectively, and then estab-
lish the local and global convergence results. Our approach provides a new way to
prove convergence results for minimax problems.

The organization of the remainder of this paper is as follows. Section 2 establishes
the ELQP problem as a subproblem of the minimax problem. Section 3 gives local
convergence result by using a result of the Josephy-Newton method and Section 4
discusses the global convergence via the Robinson-Newton method.

2. ELQP problem as a subproblem

Consider the minimax problem (1). From Lemma 36.1 of [18], we have

maxminL(;c, v) < minmaxL(x, v). (2)
yeY xeX xeX yeY

Therefore, a point {x, y) is a saddle point of L if and only if the minimum of

min{maxL(x, v)} (3)
xeX yeY

is attained at x, and the maximum of

maxfmin L(x,y)} (4)
yeY xeX

is attained at y, and these two extremes are equal, that is,

maxfmin L(x, v)} = minfmax L(x, y)l (5)
yeY xeX J " xeX* yeY J "

or

L(x, y) = minL(x, y) = maxL(x, y). (6)
xeX yeY

Equations (3) and (4) can also be written as

), (7)
xeX

max L(x,y). (8)
yeY
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The saddle point condition

L(x,y) <L(x,y) <L(x,y), VxeX,yeY (9)

holds if and only if the convex function L(-, y) achieves its minimum at x, that is,

0 € dxL(x, y) + Nx(x), (10)

and the concave function L(x, •) achieves its maximum at y, that is,

0edyL(x,y) + NY(y), (11)

where dxL{x, y) and dyL(x, y) denote the convex and concave subdifferentials of L
at (x, y) about x and y respectively, and Nx(x) and Ny(y) denote normal cones of X
and Y at x and y respectively. Therefore the saddle point condition (9) is equivalent
to

(0,0)edL(x,y)+NXxY(x,y), (12)

where dL(x, y) denotes the saddle function subdifferential of L at (x, y) and NXxy(x,
y) denotes the normal cone of X x Y at (x, y). If X = Rn, Y = Rm and L is a
continuously differentiable convex-concave function on R" x Rm, then (12) can be
reduced to

which can be solved by Newton's method.
For the constrained minimax problem (1) with continuous function L, its equivalent

problem-pair is

minL(x, y),
(14)

maxL(jc, y),
yeY

where

y = argmaxL(x, y), x = aigminL(x, y).
yeY x€X

Then the solution (x, y) of the problem (1) satisfies

) ,

, (15)
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which means the solution z of (1) satisfies the necessary optimality condition

where z = (x, y), VL(z) = (-V,L(x, y), VyL(x, y)), Z = X x Y, Nz = Nx x Nr.
In order to find the saddle point of the minimax problem (1), we construct a sequence

{(xk, yk)} of (n + m) -vectors which is an estimate of the problem (1). We first linearize
VL to get a series of Extended Linear-Quadratic Programming (ELQP) subproblems,
then solve these ELQP subproblems to obtain the solution sequence {(xk, yk)}. This
approach is similar to the SQP the (Sequential Quadratic Programming) method for
the optimization problem (see [12, 21, 22]). In the following two sections, we
prove that this solution sequence {(xk, yk)} converges to the solution (x, y) of the
minimax problem locally and globally. These ELQP subproblems are introduced by
Rockafellar and Wets [20] in stochastic programming, and can be solved by some
effective algorithms, for example, primal-dual projected gradient method, primal-
dual conjugate gradient method, and sequential quadratic programming method (see
[18, 19, 24]). In this paper we restrict our attention to the motivation and convergence
of an iterative method for the minimax problem (1), and do not discuss the algorithm's
details and modifications for the ELQP subproblem.

We now suppose L is a twice continuously differentiable function on X x Y. We
consider an extended linear-quadratic programming subproblem

minmaxZ^Qc, y) (16)
xeX yev

for (1) with

Lk(x, y) =VxL(xk, yk)
T(x - xk) + VyL(xk, yk)

T(y - yk)

-(y-yk)
TRdx-xk), (17)

where Pk e R"x", Qk e Rmxm, and Rk e Rmxn are the second order partial derivative
matrices of the function L or their approximations. We assume that Pk and Qk are
positive definite matrices.

If let z = (x,y) and

where G{zk) is V2L(xk, yk) or its approximation, then the function (17) can be written
as

Lk(z) = VL(z*)r(z - zk) + -(z - zk)
TG(zk)(z - zk). (19)
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This shows that Lk{z) is a linearization of VL(z) at zk, and also implies that the
rationale behind employing the ELQP subproblems in the minimax problem is that
the ELQP problem is similar to the quadratic programming subproblem in the SQP
method for solving constrained optimization.

For the unconstrained minimax problem, that is, X = R" and Y = Rm, the point
(xk' yD 1S a saddle point of (16) if and only if (xk, yk) satisfies the Newton's iteration
for (13). For constrained minimax problem, the point (xk , yk)isa saddle point of (16)
if and only if (xk, yk) satisfies the Newton's iteration for (12).

We can also use some methods for linear variational inequality or linear comple-
mentarity to deal with ELQP subproblem (16). In fact, from Theorem 2.3 in [19], the
saddle point optimality condition can be written as the linear variational inequality

-VxL(x*k,y*kXx-x*k)<0,

VyL(x*k, yl){y - y*k) < 0.

The above variational inequality can also be transformed to a linear complementarity
problem.

3. Local convergence

In this section we shall establish the local convergence of our iterative algorithm.
First we state the algorithm as follows.

ALGORITHM 1. STEP 1: Start with an estimate (XQ, yo) of a saddle point of problem
(1). Setk = O.

STEP 2: Having (xk, yk), find a saddle point (xk+l,yk+j) of the extended linear-
quadratic programming subproblem (16).

STEP 3: If (xk+i, yk+\) satisfies a prescribed convergence criterion, stop; otherwise
set k := k + 1 and go to Step 2.

Before proving the formal theorem, we give two definitions.

DEFINITION 1. Let Z e Rn x R" be a closed, convex, nonempty set. The normal cone
to Z at a is

Nz(a):={w\ u ) T ( z - a ) < 0 , V z e Z ) . (20)

DEFINITION 2 (Robinson [16]). Consider the generalized equation

0 e F(z) + Nz(z), (21)
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where F : R" x Rm -> Rn x Rm is Frechet differentiable at zo which is a solution of
(21). Define the operator T as

T(z) := F(zo) + F'(2o)(z - zo) + Nz(z). (22)

If there is a neighborhood £2o of 0 and a neighborhood £2^ of zo, such that (T"1 D
^2^)1^0 is single valued and Lipschitzian, that is, for each co e £20> there is a set of
r € £2̂  such that u> e T (T) , and the function is Lipschitzian, then zo is called a regular
solution of (21).

Robinson [15, 16] first established mathematical foundations for generalized equa-
tions, researched their regularity and solutions. Following Robinson's idea, Josephy
gives a convergence theorem of Newton's method for a generalized equation which
is a generalization of a classical result taken from Ortega and Rheinboldt [7]. New-
ton's method for solving the nonlinear equation 0 = F(z) consists of replacing F
by its linearization LFm(z) = F(zn) + F'(zo)(z - Zo) and solving 0 = LF^iz).
The Josephy-Newton method for solving a generalized equation 0 € F(z) + Nz(z)
consists of replacing F by LF^iz) and solving the linearized generalized equation
0 e LFa(z) + Nz(z)- In the following, we establish the local convergence theorem
of Algorithm 1. In this theorem we use Josephy's result [2] to prove that the solution
sequence of the ELQP subproblem converges to the solution of minimax problem (1).
Note that in the following theorem B(z, p) denotes a closed ball with center z and
radius p.

THEOREM 1. Let L : Z c R" x Rm -> R be second order continuously differentiable,
VL have Lipschitz continuous Frechet derivative on Z, I be Lipschitz modulus. Let
Zo € Z. Suppose that the generalized equation

0 e -VL(zo) - V2L(zo)a - to) + Wz(z)

has regular solution i\, and the corresponding Lipschitz modulus is l\. Choose
rx > 0, r2 > 0 and p > 0, such that for any z € B(zo, p),

V2L(z)r((-) - z) + Nz(-)]-1 fl

is single-valued and Lipschitzian with Lipschitz modulus /][1 — /i || V2L(z) —
V2JL(ZI)II]"' when it is restricted on B(0, r2).

Define
r) := ||z, -zoll, h:=llxr,.

Assume that

(a) 0 < h < 1/2,
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(b) lr)2<2r2,
(c) B(zo, ( ' ) C Z n B(zo, p),

where
1 - ( 1 -2h)^2l

—n J'-
Then the sequence {zk} generated by solving the ELQP subproblem is well-defined, and
converges to z 6 B{zo,t*) which is the solution of minimaxproblem (1). Furthermore,
for each k > 1, we have

\\'z-zk\\<(zn+mlllr
l(2hf. (23)

PROOF. Let (x, y) be the solution of (1). Note that (15) is equivalent to

- VxL(x, y) e Nx(x), VyL(x, y) e Nr(y), (24)

which implies that, by the definition of normal cone,

- VxL(x,y)T(x-x) <0, Vx 6 X,

VyL(x,y)T(y-y)<0, Vy e Y. (25)

Set z = (x, y) and
'-V,L(z)"|
L

Then (24)is

VL(z) € Nz(z), (26)

which means that

VL(I)T(z - z) < 0, VZ G Z, (27)

where Z = X x Y, Nz(z) = Nx(x) x ^ ( y ) . Assume F(z) = -VL(z). It follows
from (26) that

0 e F ( z ) + /Vz(z), (28)

which implies that in order to get the solution z of (1), we require to solve the
generalized equation

0 € F(z) + Nz{z). (29)
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Similarly, we consider ELQP subproblem (16). Let (xk+u yk+i) be the solution of
(16). Then we have

\-VxLk(xk+i, yk+i)(x - xk+l) < 0, Vx e X,

VyLk(xk+i,yk+l)(y - yk+l) < 0, Vy e Y.

Set

r-vxL*(z)i
L V,L,(z) J •

Then

VLk(zk+l)
T(z-zk+i) <0, VzeZ,

that is,

0 € -VI4(z*+i) + Nz(zk+i). (3D

Since

then, from (19), the solution sequence {zk+\} satisfies

0 e -VLfe) - G(zk)(z - zk) + Nz(z)

+ VFteKz - Zk) + Nz{z), (32)

which is just a linearization of the generalized equation (29). From the assumptions
of the theorem, the generalized equation 0 6 T^{z) is regular at z\ and

is well-defined. From Josephy's theorem [2, Theorem 2], we obtain that the solution
sequence {zk+i} of (32) converges to the solution z 6 B(ZQ, t*) of (29), and therefore
converges to the solution of minimax problem (1).

Furthermore, from Josephy theorem [2] again, we get

\\'z-Zk\\ <(2"+mlhyl(2hf.

The proof is completed.

REMARK. Similarly, if G(zk) is some approximation to V2L(zt) which satisfies some
suitable conditions, then the superlinear convergence of the quasi-Newton method
for minimax problem (1) can be established from another Josephy theorem [3]. If
^ < 1/2 in Theorem 1, then (23) yields R-quadratic convergence.
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4. Global convergence

The above discussion indicates that the ELQP method for minimax problem (1) is
equivalent to the Josephy-Newton method

0 € F(Zk) + VF(Zk)(z ~ zk) + Nz(z)

for generalized equation 0 e F(z) + Nz(z), where F(z) = -VL(z), and establishes
the local convergence. In this section, following Ralph's global convergence for
nonsmooth equations [14], we show the global convergence of our method.

Consider the normal equation Fz(w) = 0, where w e R"+m,

Fz(w) = F(n(w)) + w- n(w) = F{z) + w - z,

which is defined and discussed by Robinson [17], where z = n(w) and JT(-) is a
projector. Construct a first-order approximation of Fz

Ak(w) = F(zk) + VF(zk)(z -zk) + w-z, (33)

so the next Newton's iterate is wk+l = A^] (0). Consider the Newton's path

PicO) = Wk +t(wk+i - wk), (34)

which is such that

Ak(Pk(0) = (l-t)Fz(wk). (35)

Hence we have

Fz(pk(0) = (1 - f)Fz(wk) + o(t).

Choose a e (0, 1). The monotone path search rule is to find tk e [0, Tk], Tk e [0, 1],
such that tk satisfies

\\Fz(Pk(t))\\ < (1 ~ ot)\\Fz(wk)\\, (36)

and then set wk+l = pk(t).

REMARK 1. In search rule (36), we can use the exact search rule or the inexact search
rule.
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REMARK 2. Instead of the monotone search rule (36), we may also use the non-
monotone path search rule which is presented by Grippo etal. [1]. In this case (36) is
changed to

\\Fz(Pk(t))\\ < ( l - a O m a x { | | F z ( u , , + w ) | | | j = l , - - , min{M, k + 1}}, (37)

where the positive integer M is a control parameter. When M = 1, (37) is just (36).

REMARK 3. Instead of the path search, we may use trust region strategy to obtain
global convergence. For a detailed discussion, see Powell [11], More [4] and Sun and
Yuan [22].

DEFINITION 3. The second-order sufficiency condition of the minimax problem (1) is

d(V2
xLdi > 0, Vrf, ^ 0, dx € Tx(x),

d2
TV2

yLd2<0, W2^0, d2eTY{y), (38)

where Tx(x) and TY(y) are tangent cone to X and Y at x and y respectively.

Ralph [14] uses the following assumptions in the convergence. Let / : X —*• Y be
continuous, a0 > 0 and Xo = [x e X \ \\f(x)\\ < a0}. Assume

Al. srf is a uniform first-order approximation of / on Xo.
A2. srf is uniformly Lipschitzianly invertible near each x e Xo.
A3. There exist paths used by the algorithm.

Under the above assumptions, Ralph [14] proves that for any x0 e Xo, path search
damped Newton's method is well defined and the sequence [xk] converges to zero x*
of/.

Below we present the global convergence theorem.

THEOREM 2. Consider the minimax problem (1). Let Zbea closed, convex, nonempty
set in R" x Rm and L : Z —> R twice continuously differentiate. Assume the second
order sufficiency condition (38) holds, and the level set

Z0 = {zeRnxRm\ \\Fz(z)\\<a0, <x0 > 0}

is bounded. Then, for any zo € Zo, the sequence [zk] generated by the ELQP method
with path search is well-defined and converges to the solution z of the minimax problem
(1).

PROOF. It is well known from the proof of the local convergence that solving problem
(1) is equivalent to solving (7) and (8), which is also equivalent to solving

0 € -VL(z) + Nz(z).
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Set F(z) = —VL(z). Then F is continuously differentiable and

0 e F{z) + Nz(z). (39)

Consider

F(nz(w)) + w-nz(w) = 0, (40)

where nz(w) denotes the nearest point in Z to w with respect to the Euclidean norm.
Setting

Fz{w) = F(nz(w)) + w- nz(w),

we have

Fz(w) = 0, weRn+m. (41)

According to Robinson [17], if w solves (41), then z = nz(w) solves (39). Further-
more, z solves the minimax problem (1).

Next we consider the ELQP method with path search for (1)

minmax Lk(x, y),
xeX y€Y

where Lk is defined by (17). It follows from (31) and (32) that this method is equivalent
to the Josephy-Newton method

0 € F{Zk) + VF(zk)(z - zk) + Nz(z)

for (39). The Robinson-Newton method for the normal equation is

Ak(w) = F{Zk) + VF(zk)(z -zk) + w-z = 0

and

= zk+\ - F(zk) - VF(zk)(zk+\ - zk),

where zk = 7tz(wk), zk+l = nz(wk+i). The path search on [wk, wk+[] produces wk+l

and the projection zk+\ = nz(wk+l). As L(z) is twice continuously differentiable,
the second-order sufficiency condition for minimax problem (1) holds, and VL(z)z

is locally Lipschitzianly invertible from Lemma 14 of [14]. So the second-order
approximation Lk(z) of L(z) is uniformly continuous and Lipschitzianly invertible.
Note that Ak(w) is a first order approximation of Fz which satisfies condition Al
and A2 and the path search satisfies (35) which means condition A3. Therefore, we
obtain directly that, by means of Theorem 9 of [14], for any w0 e Zo, the sequence

https://doi.org/10.1017/S0334270000008857 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008857


[12] On the convergence of an iterative method for the minimax problem 291

{wk} generated from Robinson-Newton method converges to the solution w of the
normal equation (41). Equivalently, this shows that the sequence {zk} generated by
the Josephy-Newton method converges to the solution I = Xz(w) of the generalized
equation (39), that is, the sequence {zk} generated by the ELQP method converges to
the solution of (1). Furthermore, it follows from Theorem 9 of [14] again that the
convergence rate is Q-superlinear.

REMARK. Similarly, we can also use the B-differentiability concept of Pang [8], that
is, use

Bk(w) = Fz(wk) + F'z{wk, w - wk), (42)

as a first-order approximation of Fz(w) instead of Ak(w) in (33), and prove the global
convergence result of B-differentiable Newton's method with line search.
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