
Appendix F

Angular correlations

Consider the basic coincidence reaction

A(Sπ1
1 ) [e, e′ X(SπX

X )] A′(Sπ2
2 ) (F.1)

The angular distribution of particle X in the C-M system can be analyzed
in more detail using some basic results from [Ja59]. If particle X is massive,
so that all helicity states are present, one can make a change of basis to
L–S coupling states for the final two-particle system.

|JMλ2λX〉 =
∑
LS

〈J;LS |J; λ2λX〉 |JM;LS〉

〈J;LS |J; λ2λX〉 =
√

(2L + 1)(2S + 1)(−1)S−S2+SX−L−2λ

×
(

L S J

0 λ −λ

)(
S2 SX S

λ2 −λX −λ

)
(F.2)

Here λ = λ2−λX. This transformation reproduces the usual non-relativistic
L–S coupling wave functions [Ja59]; however, it is also a completely gen-
eral unitary transformation, for with some algebra [Wa84], one establishes
the relations ∑

LS

〈LS |λ1λ2〉〈LS |λ′
1λ

′
2〉 = δλ1λ

′
1
δλ2λ

′
2∑

λ1λ2

〈LS |λ1λ2〉〈L′S ′|λ1λ2〉 = δLL′δSS ′ (F.3)

Here J is suppressed. The transformation thus remains valid for arbitrary
relativistic motion of the final two particles. The transformation in Eq.
(F.2) is real, and the coefficients are independent of M just as in the proof
of the Wigner–Eckart theorem.
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The L–S basis states have two advantages. First, since they reduce to the
usual non-relativistic L–S wave functions, one can use angular-momentum
barrier arguments in this case to classify the contributions. Second, they
produce eigenstates of parity, for again with some algebra [Wa84], one
establishes the relation

P |JM;LS〉 = η2ηX(−1)L|JM;LS〉 (F.4)

The change of basis in Eq. (F.2) can now be substituted in the expression
for the bilinear product of current matrix elements appropriately summed
and averaged over the final and initial helicities in Eq. (13.68). The result
is, again after some algebra [Wa84]

(
Jλk

)�
λf ,λi

(
Jλ′

k

)
λf ,λ

′
i

=
1

4k�q

1

2S1 + 1

∑
λ1

∑
J

∑
J ′

∑
L

∑
L′

∑
S

∑
l

×(2J + 1)(2J ′ + 1)
√

(2L + 1)(2L′ + 1)(−1)l+J+J ′−S+λi

×
(

L l L′

0 0 0

){
J J ′ l

L′ L S

}√
4π(2l + 1)Yl, λ′

k
−λk (θq, φq)

×
(

J J ′ l

λi −λ′
i λk − λ′

k

)
〈LS |TJ |λ1λk〉�〈L′S |TJ ′ |λ1λ

′
k〉 (F.5)

Here λi = λ1−λk and λ′
i = λ1−λ′

k , and a 6-j coefficient has been introduced
[Ed74].

Transition amplitudes into states of definite parity can be defined by

c(LS; J; λ1) ≡ κ�

ω�
〈LS |TJ |λ1, 0〉

t(LS; J; λ1) ≡ 〈LS |TJ |λ1,+1〉 (F.6)

Recall these are functions of (W, k2) and still contain all the dynamics.
Parity invariance then implies that

〈LS |TJ |λ1, λk〉 = η(−1)L+J−S1〈LS |TJ | − λ1,−λk〉 (F.7)

Again η ≡ η1η
�
2η

�
X. This relation allows one to eliminate 〈LS |TJ | −λ1,−1〉

and leads to the selection rule

c(LS; J; λ1) = η(−1)L+J−S1c(LS; J; −λ1) (F.8)

Upon substitution of the appropriate values of λk , one can identify the
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coefficients appearing in Eqs. (13.71) as

Al =
∑

Kl
JJ ′(LL′Sλ1) (F.9)

×
(

J J ′ l

λ1 −λ1 0

)
c(LS; J; λ1)

�c(L′S; J ′; λ1)

Bl = −2
∑

Kl
JJ ′(LL′Sλ1)

×
(

J J ′ l

λ1 − 1 −λ1 + 1 0

)
t(LS; J; λ1)

�t(L′S; J ′; λ1)

Cl =
−2√
l(l + 1)

∑
Kl

JJ ′(LL′Sλ1)

×
(

J J ′ l

λ1 −λ1 + 1 −1

)
Re c(LS ; J; λ1)

�t(L′S; J ′; λ1)

Dl =
−1√

(l − 1)l(l + 1)(l + 2)

∑
Kl

JJ ′(LL′Sλ1)(−1)L
′+J ′−S1

×
(

J J ′ l

λ1 − 1 −λ1 − 1 2

)
t(LS; J; λ1)

�t(L′S; J ′; −λ1)

Here
∑ ≡ ∑

J

∑
J ′
∑

S

∑
L

∑
L′
∑

λ1
and the common summand factor is

defined by

Kl
JJ ′(LL′Sλ1) ≡ 2l + 1

2S1 + 1
(2J + 1)(2J ′ + 1)

√
(2L + 1)(2L′ + 1)

×(−1)J+J ′+l−S+λ1

{
J J ′ l

L′ L S

}(
L L′ l

0 0 0

)
(F.10)

Thus we have derived a general expression for the angular distribution in
the C-M system for the coincidence reaction in Eq. (F.1). The derivation
is completely relativistic, as long as particle X has non-zero rest mass so
that all helicity amplitudes are present in the reaction.

For a 0+ nuclear target, these angular correlation coefficients are dis-
cussed and tabulated in [Kl83, Wa84]. We give one other application
here.

Consider pion electroproduction from the nucleon so that particle X
is a pion and the initial and final target states are the nucleon with
Jπ = 1/2+. For the pseudoscalar pion SX = 0 and ηX = −1. For the
nucleon S1 = S2 = 1/2 and η1 = η2 = +1. It follows from Eq. (F.2) that
only one value of the total spin S = 1/2 enters the analysis, and this
quantum number will subsequently be suppressed. The parity of the final
π–N states follows from Eq. (F.4)

P |JM;L〉 = (−1)L+1|JM;L〉 (F.11)
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There are now only two values of the initial nucleon helicity λ1 = ±1/2,
and the sum over this quantity can be immediately performed. Introduce
the notation

c(LJλ1) ≡ k�

ω�
〈L|TJ(W, k2)|λ1, 0〉

t(LJλ1) ≡ 〈L|TJ(W, k2)|λ1,+1〉 (F.12)

Equations (F.9), which give the angular distributions in the C-M system
through Eqs. (13.71) then reduce to the form

Al =
∑

Kl
JJ ′(LL′) (F.13)

×
(

J J ′ l

1/2 −1/2 0

)
c(LJ

1

2
)�c(L′J ′ 1

2
)

Bl = −
∑

Kl
JJ ′(LL′)

×
[(

J J ′ l

−1/2 1/2 0

)
t(LJ

1

2
)�t(L′J ′ 1

2
)

−
(

J J ′ l

−3/2 3/2 0

)
t(LJ,−1

2
)�t(L′J ′,−1

2
)

]

Cl =
−1√
l(l + 1)

∑
Kl

JJ ′(LL′) Re c(LJ
1

2
)�

×
[(

J J ′ l

1/2 1/2 −1

)
t(L′J ′ 1

2
)

−η(−1)L+J−1/2

(
J J ′ l

−1/2 3/2 −1

)
t(L′J ′,−1

2
)

]

Dl =
−1√

(l − 1)l(l + 1)(l + 2)

∑
Kl

JJ ′(LL′)(−1)L
′+J ′−1/2

×
(

J J ′ l

−1/2 −3/2 2

)
Re t(LJ

1

2
)�t(L′J ′,−1

2
)

Here one is left with
∑ ≡ ∑

J

∑
J ′
∑

L

∑
L′ , and the common summand is

now

Kl
JJ ′(LL′) ≡ (2l + 1)(2J + 1)(2J ′ + 1)

√
(2L + 1)(2L′ + 1)

×(−1)J+J ′+l

{
J J ′ l

L′ L 1/2

}(
L L′ l

0 0 0

)
(F.14)

Also

η ≡ η1η2ηX = −1 (F.15)

As one application, suppose the pion electroproduction proceeds entirely
through the first excited state of the nucleon with Jπ = 3/2+. In this case
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only one total angular momentum contributes so that J = J ′. Furthermore,
since L = J ∓ 1/2 the positive parity picks out L = L′ = 1 from Eq.
(F.11). The summand can be evaluated with the aid of [Ed74] to give
K2

3/2,3/2(11) = 8
√

5, and further evaluation of the required 3-j symbols

leads to the explicit angular distributions

|Jc|2 =
1

k�q
[1 + P2(cos θq)]

∣∣∣∣c
(

1
3

2

1

2

)∣∣∣∣2

|J+1|2 + |J−1|2 =
1

k�q

{[∣∣∣∣t
(

1
3

2

1

2

)∣∣∣∣2 +

∣∣∣∣t
(

1
3

2
,−1

2

)∣∣∣∣2
]

+P2(cos θq)

[∣∣∣∣t
(

1
3

2

1

2

)∣∣∣∣2 −
∣∣∣∣t
(

1
3

2
,−1

2

)∣∣∣∣2
]}

Im J�
c (J+1 + J−1) =

1

k�q
sinφq P

(1)
2 (cos θq)

×
[

− 1√
3
Re c

(
1
3

2

1

2

)�

t

(
1
3

2
,−1

2

)]

Re (J+1)�(J−1) =
1

k�q
cos 2φq P

(2)
2 (cos θq)

×
[

1

2
√

3
Re t

(
1
3

2

1

2

)�

t

(
1
3

2
,−1

2

)]
(F.16)

The integrals over the angle-dependent terms vanish when
∫
dΩq is per-

formed, leaving just the angle-independent terms in the inclusive cross
section.
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