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Abstract. We define a new property of a Borel group action on a Lebesgue measure
space, which we call approximate transitivity. Our main results are (i) a type III0

hyperfinite factor is ITPFI if and only if its flow of weights is approximately transitive,
and (ii) for ergodic transformations preserving a finite measure, approximate transi-
tivity implies zero entropy.

0. Introduction
von Neumann algebras are the non-commutative analogue of measure theory spaces.
The product measures of measures on finite sets give rise to a class of factors called
ITPFI factors (see terminology). However, in the classification problem the most
natural class turned out to be the approximately type I factors [4] (those factors
which are well-approximated by finite-dimensional ones - see terminology). It is
trivial that ITPFI implies approximately type I, but the converse is false and
non-trivial [12], [2], [6]. (Since all non-atomic standard Borel measures are Borel
isomorphic, the corresponding problem does not arise in measure theory.) The
ITPFI factors are certainly the most natural subclass of the approximately type I
factors. Their exact position among the approximately type I factors (up to isomorph-
ism of factors) has remained an interesting mystery for some time. In particular,
there is still no direct spatial construction of a non-ITPFI approximately type I
factor. The crucial existential step is always carried out in the flow of weights (an
ergodic flow which is naturally defined as an invariant of the factor). The problem
only arises for factors of type III0 or IIIi. The known examples of non-ITPFI
approximately type I factors are all of type III0. In this paper we completely
characterize the ITPFI factors among the type III0 approximately type I factors by
a new ergodic property of their complete invariant, the flow of weights, which we
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call approximate transitivity. Of course this transfers the original problem to under-
standing approximate transitivity for ergodic flows. Our second major result is that
for finite measure preserving flows, approximate transitivity implies zero entropy.

Approximate transitivity is a new and apparently interesting notion in ergodic
theory. Our proof that ITPFI implies approximate transitivity is rather straightfor-
ward (lemma 8.1) and is, in fact, how this property was discovered. Our proof of
the converse is of particular interest because it is obtained by attempting directly
to 'invert the flow of weights arrow'. The argument is quite similar to the Murray-von
Neumann proof of the uniqueness of the hyperfinite IIt factor [15]. They embed a
finite-dimensional algebra in a finite type I factor in a very precise manner relative
to the trace. For type III factors no trace exists and, instead of only comparing
minimal projections inside the finite-dimensional algebra, we compare such minimal
projections together with the restriction of a state to these projections. This com-
parison directly yields measure theoretical objects on the flow of weights, and (except
in the III, case) is non-trivial even though the comparison of projections is trivial.
Our paper is intended to illustrate this technique. In fact an alternate proof of
Krieger's theorem, not using the cohomological technique of Krieger, can be based
on the original Murray-von Neumann proof of the uniqueness of the hyperfinite
II, together with the above refined comparison of projections. (Krieger's theorem
[13] states, in part, that the flow of weights considered as a mapping from type III0

Krieger factors with algebraic isomorphism as the equivalence relation, to strictly
ergodic flows with conjugacy as the equivalence relation, is one-to-one and onto
between equivalence classes.)

It is easy to translate our proof to the purely ergodic setting of non-singular
transformations. Our result would then follow from Krieger's theorem (our proof
does not use Krieger's theorem). However, as mentioned above, part of our goal
was to exhibit the flow of weights as a useful technique. Indeed we present more
of the comparison theory of finite weights than is needed for our proof.

§ 1 contains some terminology. In § 2 we define approximate transitivity (hereafter
referred to as AT) for Borel group actions and give some elementary properties. In
§ 3 we prove that for finite measure preserving transformations, AT implies zero
entropy. In § 4 we give three different constructions of the flow of weights which
will be used later. § 5 contains a comparison theory for finite periodic weights, and
§ 6 gives the comparison theory for finite (not necessarily periodic) weights. In § 7
we introduce a 'product property' which is equivalent to being ITPFI. In § 8 we
prove the equivalence of the ITPFI and AT properties.

1. Terminology
A von Neumann algebra M is said to be approximately type I if it is of the form

M = UMn ,
\n-\ I

where Mn <= Mn+I for each n, and each Mn is a finite-dimensional matrix algebra
(the names approximately finite, hyperfinite, approximately finite dimensional, and
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matricial have all been used in the literature for this concept). A factor M is said
to be ITPFI if it is of the form M = (§)™=1 {Mn, <f>n) where each Mn is a finite type
I factor ([1], [21]). A factor M is called a Krieger factor if it can be obtained from
an ergodic action of Z by the Murray-von Neumann group measure space construc-
tion. (It is straightforward that ITPFI =>Krieger=>approximately type I.)

For a detailed explanation of the following standard terminology see, for example
[20]. The term weight always means a normal semi-finite weight. If 0 is a weight
on the von Neumann algebra M then o-f is the modular automorphism group. The
invariant T(M) is the set of all t such that erf is inner. M^ denotes the predual of
M, and M% is then the set of all finite weights. If <Ae Af* then s(i/0 denotes the
support of if/. The flow of weights of M is an ergodic action of Rj on some measure
space (XM, fj.M). The construction of [5] gives not that measure space, but the
measure algebra whose elements are equivalence classes [<I>] of integrable weights
$ of infinite multiplicity. The flow is then defined by f̂*[<I>] = [t<t>]. It is sometimes
convenient to consider the flow as an action of U, in which case it is written F™ = S1™
(if M is understood, it is usually omitted).

If / is a function on a measure space (X, fi) then ||/ | | denotes the L'-norm of/
If fi, v are finite measures on X then ||/A - »>|| is the L'-norm defined by \\dfi/da-
dv/da\\ where fi,p<a. If x is a finite weight or operator then ||x|| denotes the
usual norm.

2. AT actions-elementary properties
We define approximate transitivity of a Borel group action on a Lebesgue measure
space, and establish some elementary properties.

Definition 2.1. Let G be a Borel group, (X, v) a Lebesgue measure space, and
a: G-» Aut (X, v) a Borel homomorphism. We say that the action is approximately
transitive (AT) if given n < oo, finite measures fiit..., /*.„ < v, and e > 0, there exists
a finite measure /u. < v, gu... ,gmeG for some m < oo, and Ajt>0, k = 1 , . . . , m
such that

- I •e, j = ! , . . . , « . (2.1)

If G = Z and a is AT, then we say that T= a ( l ) is AT.

Remark 2.2. There are a number of elementary variations on this definition.
(i) The index k need not be restricted to a finite set. Typically we will take keZ

and consider \Jk as a function Aj-e/+(Z).
(ii) One can demand that ||^|| = 1 and ||A,|| = £fc \jk = \\fij\\.
(iii) By taking \\fi\\ sufficiently small, one can take the \Jk to be integers.
(iv) It is sufficient to ask that eq. (2.1) hold for n=2. (If /*' approximates

/* i , . . . , )ttn_, in the sense of eq. (2.1), choose fi to approximate fi' and /*„)•
(v) For continuous actions of a locally compact group, the kjk can be replaced

by functions A7 e L\(G, dg) such that

•e, j=l,...,n. (2.2)
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To show that eq. (2.2) implies eq. (2.1), approximate the A;(g) by simple functions.
To prove the converse, write the sum as an integral over delta functions 5(ggfc')A k̂

and then approximate by functions in L\.(G, dg).
(vi) The equation h = dcr/di> gives a one-to-one correspondence between func-

tions h e L+(X, v) and finite measures a <v. We have

d(aga-)/dv = pgag(da/ dv),

where pg = d(agv)/dv. Then

(Ptf)(x)=f(g-lx)Pg(x) (2.3)

defines a homomorphism /3 from G into the invertible isometries on L[(X, v). It is
therefore equivalent to ask that for any / , , . . . , / „ e L\(X, v) and e > 0, there exist
/ e L\(X, v), g , , . . . , gm e G and \Jk > 0 such that

It m II
p " ^ / ^ ' ^ " e » 7 = 1 , •••,«• (2.4)

If Oĝ  = i' for all geG, then fi = a.

LEMMA 2.3. An AT action is ergodic.

Proof. Let BcX,v(B)> 0, i / (X\B) > 0, and agB = B for all geG. Choose B, c B
and B 2 c X \ B such that 0< i>(B,-)<<», 7 = 1,2. Let Hj=v\Bj. Then eq. (2.1) for
7 = 2 implies that fi(B)<e. If e<5^(B,) this contradicts eq. (2.1) forj = 1. D

Remark 2.4. Let (X, SB, i', G, a) be a Borel group action, *>(X)<oo. Let S80 be a
sub-o--algebra of the <r-algebra 38 of Borel subsets of X, such that ag3ft0= S80 for
all geG. Then the restriction (X, @l0, v,G,a) is called a. factor action of the given
action. If a- is any finite measure on (X, 38) we have Hfllcx.aso)— Il°"ll(x,s8)- Hence
any factor action of an AT action is again AT.

The base and ceiling function construction of a flow is particularly useful when the
ceiling function is constant. In this situation one naturally expects that the flow will
have a certain property if and only if the base transformation has the corresponding
property.

LEMMA 2.5. Let (X, v, Fs) be a flow built over the base transformation (B, vB, T)
with a ceiling function with constant height H. Then Fs is AT if and only if T is AT.

Proof. We can write X = BxI where the interval / = [0, H) carries Lebesgue
measure. We have

Fs(b,t) = (T"b,u), (2.5)

where s +1 = nH + u, n e Z , 0 < w < H
Assume that T is AT. Let /u.u..., fin< v, IXJ(X) < 00, and e > 0. Since rectangles

generate the measure algebra, it follows by a straighforward but tedious argument
that one can approximate the /t,- by a sum of product measures. More precisely,
there exists an integer L and measures fiJk, k = 0 , . . . , L - 1 on B such that

fl~ I If/* x mk\\ <e, j=l,...,n (2.6)
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where mk is the restriction of Lebesgue measure to the interval Lk =
[kH/L, (k+l)H/L). Since T is AT there exist crB< vB and \jke /+(Z) such that

Define

and

Then

- I
qeZ

cr = crB X m0

\j(qL+ k) = kjk{q),

<eL~ (2.7)

(2.8)

(2.9)

- I *j(r)FrH/L<r <e •V ( W x e * - I Xj(r)FrH/Lo)
k = 0 I \ reZ /

L - l

<2e. (2.10)

Thus F, is AT.
Now assume that Fs is AT. Let fit,..., ixn< vB, /x,(B)=l, and 0 < e < | .

Let Jk = [kH/6, (k+\)H/6), k = 0, 1. . . . .5, and let mk denote the restriction of
Lebesgue measure to Jk. Let

iij = HXm3, j=\,...,n. (2.11)

Then there exist /x < v, ||/i|| = 1 and Aj€<f+(Z), ||A |̂| = 1, and skeU, fceZ such that

Xj(k)F,,ji

In particular we have

<e/6, 7 = 1 , . . . , » .

<e /6 .

(2.12)

(2.13)

In order to produce the desired measure a- on B and Aj€^+(Z) it is necessary to
restrict the supports of Ay and //. somewhat. Since ||/*|| = 1 there is some 0< K < 5
such that

MBXJJH. (2.14)

By shifting the sk and shifting /i under Fs (if necessary) we can assume that K — 4.
Let

Then fc^ y implies that (FSk(^i\BxjA))(BxJ3) = 0. It now follows from eqs. (2.13)
and (2.14) that

(2.16)

and thus

(2.17)
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Write /x = fi' + /A" where

/*"= I

If fee Y then (FSkv")(B x73) = 0, and eqs. (2.13) and (2.17) imply that

Eqs. (2.17) and (2.19) imply that

\j(k)FSk,x- I Xj(k)Fsy
IceZ

(2.18)

(2.19)

(2.20)

Let P%cr denote the canonical projection of the finite measure cr on X = B x / onto
B. We have

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

The tower construction of a single transformation (see for example [9]) is the
analogue of the base and ceiling function construction of a flow.

COROLLARY 2.6. Let the transformation (X, v, S) be constructed as a tower over
(B, vB, T) with constant height H. Then S is AT if and only if T is AT.

Proof. The flow Fs built over (X, v, S) with constant height one is obviously a
flow built over (B, vB, T) with constant height H. The result now follows from
lemma 2.5. •

Recall that a finite measure preserving transformation is said to have rank one if
there is a sequence of Rohlin towers which approximate the measure algebra. More
precisely one asks that given/,, . . . , / „ £ L\x, v) and e > 0, there exist B c X, m < oo,
and \JkeIR such that B,TB,..., TmB are disjoint and

and

if sk e yp where

(It is eq. (2.22) that depends crucially on the support properties.) Let

A,(p)= I A,(fc).

Since P* is norm decreasing, eqs. (2.12), (2.20) and (2.21)-(2.24) give

M,- I Aj(p)Tpo- < 8 H - ' e ,

where cr =

k=0
7 = 1 , . . . , n. (2.26)

(Note that if j J s O we can require that XJk>0.) A slightly weaker condition, called
funny rank one, is obtained by replacing the sequence B, TB,..., TmB by the sets
T"°B, T"'B,..., T"mB where {«,} is an arbitrary sequence (depending on / , , . . . ,/„
and e}.
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LEMMA 2.7. Given (X, T, v) with Tv — v, v(X) = 1. Then funny rank one implies AT.

Proof. It is convenient here to use the AT condition on functions in L+(X, v) (see
remark 2.2 (iv)). L e t / , . . . , / n eL+(X, v), e > 0 . Then there exist Be X, a sequence
{nk}k=0 m and \jk such that

U - Z ijkXr-kB >e. (2.27)
II k = 1

Let

A* = (A-'t ' (2-28)

10 i/A; k<0.

Since the T"kB are disjoint, we have

II f -Y A'tT""*fll< II/"--y A tT~"'tf!l (2 291
11 / / Z* A j l c l J II — l l / j Zw / vj(c J 7 ll» V z - Z " /

where / = * B - D
COROLLARY 2.8. / / (X, T, *>) fcas pure point spectrum then T is AT.
Proof. Pure point spectrum implies rank one [11]. •

COROLLARY 2.9. A pure point spectrum flow is AT.

Proof. Such a flow can be built over a pure point base transformation with a constant
ceiling function. The result now folllows from corollary 2.8 and lemma 2.5. D

It is also known that certain diffeomorphisms of the circle are AT [10].

3. AT transformations and entropy
In this section we prove that if (X, /u,, T) is a finite measure preserving transformation,
then AT implies that T has zero entropy (theorem 3.5).

In analyzing the implications of the AT condition one immediately observes that
an expression of the form

T(\)f = y^\jT
if (3.1)

where \ef+(Z) and / e L+(X, /x), is in effect a convolution, and 'convolutions
spread functions out'. This spreading can present some difficulties when one tries
to satisfy the AT condition for functions/ =XA1,fi = XA2 where Au A2<= X. In order
to give a precise meaning to the idea that T(A)/ is 'less concentrated' than / we
define upper and lower truncations of Ll functions (definition 3.1). The upper
truncation is used to measure the concentration of / (see eq. (3.5)), and lemma 3.2
then gives a precise meaning to the statement that convolutions spread. We give a
'spectral analysis' of L1 functions, which allows one to handle the difficulties that
arise in an argument when L1 functions take on either very large or very small values.

Lemmas 3.3 and 3.4 are technical lemmas required for the proof of theorem 3.5.
(Hint: read the proof of theorem 3.5 before reading lemmas 3.3 and 3.4.) The basic
idea of the argument is as follows. One applies the AT condition to / = XA for some
A<=X, a second function /2, and some e > 0 . This gives functions A,,A2 and /
satisfying ||T(A,)/—/|| s e, i = l , 2 . Since convolutions spread, choosing/2 very
concentrated relative to the set A forces / to be very concentrated relative to / , .
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This in turn forces A, to be very 'spread out' (lemma 3.3). However A, being very
spread out makes it difficult to keep the support of T(A,)/ close to A, which it must
approximate, and simultaneously to keep T(A,)/ small on Ac. In particular, when
the partition (A, X \ A ) moves independently under T, this becomes impossible
(theorem 3.5). In order to make this argument precise, one must replace A, and /
by functions AsA, and g =f with better support properties. This is done in lemma
3.4 by a technical application of the spectral analysis for V functions. The condition
that T(A)g be small on Ac then forces the support of T(X)g to be too small to
approximate A. In particular, the proof seems somewhat stronger than the statement
of the theorem. It suffices that kft(B)^0 (see eqs. (3.30), (3.31), (3.41), (3.42),
(3.52), (3.53)).

Let (X, ft) be a Lebesgue measure space. Then (X, ft) is isomorphic to Lebesgue
measure on [0, 1]. Let /e L\(X, ft). Then one can choose the isomorphism so that
the (transformed) function / is monotone decreasing. The upper (resp. lower)
truncation of/ is a function whose graph is identical to the graph of/ except that
the upper left hand corner (resp. lower right hand corner) has been 'chopped off'.
More precisely we have:

Definition 3.1. Let fe L\.(X, ft), a > 0. We define the upper truncation of fat a by

.//«;«: a 2 )

and the lower truncation of f at a by

The continuity of upper truncations is expressed by the condition
l l / -gN e ^ | | / [ " ] -g [ a ] | |< e , (3.4)

which follows immediately from eq. (3.2). It should be noted that eq. (3.4) does
not hold for lower truncations.

Consider the inequality

||/-/[<"]||> H/ll -v, (3.5)
where a, 77 >0. If 17 is small compared to ||/||, this inequality forces most of the
contribution to the L1 norm of / to come from that part of the graph of / lying
above a. If in addition a is large compared to ||/||, it then forces most of/ (in the
sense of L1 norm) to be supported on a set of small measure. It can therefore be
used as a measure of the 'concentration' of a function. The following lemma now
gives a precise meaning to the statement that 'convolutions spread'.

LEMMA 3.2. Given (X, ft, T), Xef[
+(Z), ||A|| = 1, andfe L[

+(X, ft), then

|| T(A)/- (T\)/)["]|| < | | / - / [ a l | | . (3.6)
Proof. If/, I \jfj<=Ll

+(X, ft) then it follows directly from eq. (3.2) that

(lA,Z)[a](x)2lA,(/ta ])(x). (3.7)

Since | | / - / [ a ] | | = 11/11 - ||/[a]||, and ||T(A)/|| = ||/||, eq. (3.6) follows immediately. •
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We now proceed to the spectral analysis of L' functions. This analysis is, in effect,
a consequence of considering \fdfx in terms of horizontal slices of the graph of/
Let fe L'+(X, /A). For each a > 0 we define a function Ea{f) on X by

(Ea(f))(x)
fl if
10 if

(3.8)

We define a measure vf on R, absolutely continuous with respect to Lebsgue measure
da, by

It follows that a.e. we have
r oo r co

/ ( * )= (£fl(/))(x)<fa = Ei
Jo Jo

(/) dvAa),

(3.9)

(3.10)

where

E'a(f) = (3.11)

otherwise.

We then have

= ^ dvf E'a(f) = | dvf,

and

(3.12)

(3.13)

(3.14)

(Equality in eq. (3.14) holds only when/=0.) These equations indicate the signifi-
cance of the measure vf.

LEMMA 3.3. Given (X, fi, T),n° T = /*,/, e Ll+(X, /x), | | / i | | s l ande>0, then there
exists / 2 e U ( X , M ) , | |/2| | = 1, such that for any fe V+{X, M ) , | | / | | = 1, and A, ,A2€

^i .(Z), l | A , | | s l , ||A2|| = 1 satisfying

WTMf-Mse, « = 1;2 (3.15)

we have

supAly<6e. (3.16)

Proof. The proof of this lemma consists of a long sequence of inequalities. Neverthe-
less it is a completely straightforward and obvious application of the above ideas.
Choose a < oo such that

(3.17)
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Choose / 2 e L\.(X, /LA), II/2II = 1, such that

||/2-/2fle"1]||S:l-E. (3-18)

It follows from eqs. (3.4) and (3.15) that

||/[
2

a£"'] - (T(A2))/[aE"']|| < e. (3.19)

Eqs. (3.15), (3.18) and (3.19) give

l|7XA2)/-(T(A2)/)[aE~']||>l-3£. (3.20)

Eq. (3.20) and lemma 3.2 give

\\f-fi''-'i\\>l-3e. (3.21)

Let

A = {x:f(x)>ae-1}. (3.22)

Since ||/| | < 1 we have

n(A)<a~xe. (3.23)

Eq. (3.15) gives for each^eZ,

f
J T-'A

^ (A,,Ty-/,) d/x. (3.24)
JT'A

Eqs. (3.21) and (3.22) give

A, , r /du>A 1 ; ( l -3e ) . (3.25)
JT-'A

Eqs. (3.17) and (3.23) give

/ , d M < 2 e . (3.26)

Eqs. (3.24)-(3.26) give ( l -3e )A u <3e and hence

Since convolutions preserve L1 norms and ||/|| = 1, it follows from eq. (3.15) that
|| A, || > H/ill - e . Thus if e is very small, eq. (3.16) forces the support of A, to be very
large.

LEMMA 3.4. Given (X,/J,, T), Ac X, fe Ll
+(X,/x), \xe€\(Z) and e>0 such that

l|7XA,)/-*A||<e, (3.27)

then there exist g e L+{X, /*), A e €+(Z) such that

| | /-g| |<4e5, (3.28)

l|Ai-A||<£J, (3.29)

and

(3.30)
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where S is the support o/T(A)g, fc is the number of elements in the support K of\, and

(3.31)

Proof. Eq. (3.27) implies that

| Ti^
JA<
| (3.32)

A<

It follows from eq. (3.10) that

T(A1) = j dvXl(a)T(E'a{\x)). (3.33)

Let

p(a)=\ T(E'a(X))fdn. (3.34)
JAC

Eqs. (3.32)-(3.34) give

^dVxl(a)p(a)^e, (3.35)

and hence
e'>}<eK (3.36)

It follows from eqs. (3.34)-(3.36) that there exists b>0 such that

p(b)<£2 (3.37)

and

f dvki{a)
Jo

(3.38)

It follows that A = (A,)[b] satisfies eq. (3.29). Since K is also the support of E'b{k),
eq. (3.37) becomes

>>\ duk'1 I Vf=k~x I f
J A' je K jeK J T~'AC

= [ d

J.

(3.39)
jeK J

Eqs. (3.31) and (3.39) give

(3.40)
IB'

It follows that g(x) = XB(x)f(x) satisfies eq. (3.28). Eq. (3.30) is satisfied by construc-
tion. •

THEOREM 3.5. Let (X, fi, T) be an AT transformation, n(X)= 1, and /x° T=ix.
Then the entropy h{T) = 0.

Proof. Assume that h(T)>0. By a well-known result of Sinai there is a partition
{A, Ac} of X that moves independently under T (see for example [18, p. 43]). We
can assume that 0 < / A ( A ) < 5 . Consider the set B given by lemma 3.4 (where e, f,
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and A! will be chosen below). Then (JL(B) depends only on the number k of elements
in K, and can be calculated directly from the binomial coefficients. Since the special
case fi{A) = ^ dominates, one easily obtains the inequality

n(B)<2-\ (3.41)

Choose k0 sufficiently large that

fco2-*°<iM(A), (3.42)

and choose e > 0 sufficiently small that

e + 5e5<i/U,(A) (3.43)

and

12e*o</i(A). (3-44)

Now let /i(x) = XA(X). By lemma 3.3 there exists / 2 e L+(X, fj.), ||/2|| = 1, such that
eq. (3.16) is satisfied. Since T is AT there exists fe L\(X, n), ||/|| = 1 and A,, A2e
<?+(Z), ||A2|| = 1, such that

\\T(X,)f-f\\^e, « = 1,2. (3.45)

By lemma 3.4 there exist A and g = Xnf satisfying eqs. (3.28)-(3.30). Eqs. (3.28)-
(3.29) and (3.43) give

\\n\)g-XA\\*&(A), (3-46)
and hence

M(S)>^(>*), (3-47)
where S is the support of T(\)g. Since ||g|| s ||/ | | = 1 and convolutions preserve V
norms, it also follows from eq. (3.46) that

| | A | | > 1 M ( A ) . (3.48)

Since A =(A,)[()], eq. (3.16) implies that we also have

supA(j)<6e. (3.49)
ieZ

Eqs. (3.48)-(3.49) give

6efc>i/x(A), (3.50)

where k is the number of elements in the support K of A. Eqs. (3.44) and (3.50) give

k>k0. (3.51)

Eqs. (3.51), (3.41) and (3.42) give

(3.52)
Eq. (3.30), which was obtained from the requirement that T(At)/ is small on Ac, j
now gives j

p(S)<&(A) (3.53) j

which contradicts eq. (3.47). • i

4. Constructions of the flow of weights
In order to make our exposition reasonably self-contained, we give here three
different constructions of the flow of weights, each of which will be used at some
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point in our argument. We also construct some measures on the resulting spaces.
For the proofs of all statements in this section, see [5].

Discrete construction. Let M be a type III0 factor acting on the Hilbert space H,
with T G T ( M ) , r>0 . ( I f7~(M) = {0} one is then forced to use one of the following
two constructions.) Let 4> be a faithful state on M, <x* = l. Let (en)n e Z be the
canonical orthonormal basis for €2(1.), and define

Sen = en+U (4.1)

p,en = X"en, (4.2)

where neZ and A = exp (—2TT/ T). The equation wA(x) = Trace pKx defines a faithful
semifinite normal weight wA on J£(f2(Z)). We have

o-7>(S) = pi{Sp-A'l = \"S, (4.3)

and

<ox(SAS*) = X(oA(A). (4.4)

Let

\ (4.5)

(4.6)

(4-7)

S = S®1. (4.8)

Then af = a"h®af and it follows from eq. (4.3) that the automorphism 0 = AdS
leaves the centralizer N = Mj, invariant. Eqs. (4.4), (4.7) and (4.8) give

4>°6 = \4>. (4.9)

The centre C of N is isomorphic to L°°(B, vB) where (B, vB) is a Lebesgue measure
space. 0 then defines an automorphism, which we shall also denote by 6, of {B, vB).
The flow of weights for M is the flow (X, v, F,) built over the base transformation
(B, vB, 6) with a ceiling function of constant height 2TT/T. Furthermore

f
= \

J

f
N=\ N{b)dVB(b), (4.10)

J B

where the N(b) are type II^ factors. If M is injective then the N(b) are all
(isomorphic to) the unique injective II,*. factor R0l (see [4]). One can then write

c©
N = ROJ®LC°(B, vB)=\ ROtldpB(b), (4.11)

J B

and
re

4> = T®VB=\ rbdvB{b), (4.12)

where T is a trace on JR0,I and Tb is a trace on N{b).
We now assign to certain positive operators in N, measures /J. on B, fi < vB. Let

f©
A= A(b)dvB(b)eN+ (4.13)

JBI B
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be such that

$(A) = | rb(A(b))dvB{b)«x>. (4.14)
J B

The equation

fiA(c) = $(Ac), ceC (4.15)

defines a finite measure fiA< vB. It follows from eqs. (4.14) and (4.15) that

(dnA/dpB)(b) = rb(A(b)). (4.16)

It follows from eq. (4.16) that if, e, f are ^-finite projections in N, then /xe = nf if
and only if e~f in JV. Since N(b)~ N(b)®R0J one can construct families of
projections eb(a)e N(b), a>0 such that

rb(eb(a)) = a, (4.17)

and eb(f(b)) is a vB-measurable family of projections for any feL'+(B, pB). It
follows that every finite measure fx<vB occurs as /u,e for some e, namely

•-r
J B

dvB. (4.18)

Continuous construction. Let M be a type III0 factor acting on the Hilbert space H,
4> a faithful state on M. On L2{U) we define

(VJ){t)=f(t-s), (4.19)

and

(pf)(t) = e'f(t). (4.20)

The equation w(x) = Trace px defines a faithful semifinite normal weight o> on
i?(L2(R)). We have

<(Vs) = e-ilsVs, (4.21)

and

w{VsAVf) = e'(o(A). (4.22)

Let

(4.23)

(4.24)

w = w®0, (4.25)

V^=VS®1. (4.26)

Then 6SN6;' = N where N = Mj and 0S = Ad Ws. We have

c©
JV= N(x)dv(x), (4.27)

Jx
where the JV(x) are type II^ factors, and the centre C of N is isomorphic to
L°°(X, i/) where (X, ^) is a Lebesgue measure space. The automorphisms 6S define
a flow Fs on (X, i-) which is the flow of weights for M If M is injective then
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N(x)~R0J [4], and one can write

re
i,v)=\ R^dv{

Jx
= R0l®Lcc{X,v)=\ Roxdv{x) (4.28)

IX

and
c©

U = T®V= rdv (4.29)

where r is a trace on /?0,i-
The construction of measures in the continuous construction is quite analogous

to the discrete case, except that they occur on the flow space X rather than the base
space B. Let

- J : A(x)di>(x)eN+ (4.30)
Jx

be such that

«5(A)=| Tx(A(x))dv(x)«x>. (4.31)
Jx

Then the equation

HA(C) = d i ( A c ) , ceC (4.32)

defines a finite measure \xA < v such that

(dfiA/dv)(x) = Tb(A(x)). (4.33)
If e, f are a5-finite projections in N, then fie = nf if and only if e ~f in N. As in
the discrete case, every finite measure fi < v occurs as fie for some projection e. We
shall need the following lemma.

LEMMA 4.1. Let (Y, a) be a measure space, and let ey be a cr-measurable family of
di-finite positive operators in N such that

is ii-finite. Then

Proof. We have

e= eydo-(y) (4.34)
J Y

fie= | fierdtr(y). (4.35)
J Y

f©
e= e{x)dv{x) (4.36)

Jx
and

f®
ey = ey dv(x). (4.37)

Jx

Eqs. (4.34), (4.36) and (4.37) imply that

e(x) = I ey(x) dcr(y) (a.e. v). (4.38)
JY

Eq. (4.38) implies eq. (4.35). •
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Lacunary construction. Let M be a factor of type III0, 4> a faithful lacunary weight
of infinite multiplicity on M (lacunary means that 1 is an isolated point in Sp A,,,).
Then

\ M(b) dvB{b), (4.39)
B

where the M(b) are type Hoc factors, and the centre C^ of the centralizer M$ is
isomorphic to L°°(B, vB) where (B, vB) is a Lebesgue measure space. If M is injective
then M{b)~ROi. There exists p e Q , 0 < p s A o for some AO<1, and a unitary
UeM such that

<f>( UxU*) = cf>(px), xeM, (4.40)

tU}", (4.41)
and

UM^U*^M^. (4.42)

Then 6 = Ad U defines an automorphism, which we also denote by 0, of (B, vB).
The flow of weights for M is the flow (X, v, 9S, sent) built over (B, vB, 6) with
the ceiling function p, where

X = {(b,t):beB,l>t>p(b)} (4.43)

and &s{b, t) = (b, e"sr)if 1 > e~st> p{b) with the obvious extension to other values
of 5.

We again construct certain measures on the flow space X. Let ifi e M*. Then there
exists h 6 M j such that s(h)p s /j < 1,1 - h is non-singular, and there exists a unitary
ue M such that

.KX) = 0(/IE(IIXM*)), (4-44)

where E is the conditional expectation from M onto M^. We have

\ hbdvB{b) (4.45)
B

where s{hb)p(b)< hb< 1. L e t / e L°°(X, v). Then the operator

f®
*/(*)= hbfb(hb) dvB(b), (4.46)

JB
where /fc(r) =/(b, f), is well-defined. The equation

^(f) = <f>(¥(h)) (4.47)

defines a measure /x̂ , on the flow space X (which we will sometimes write as p,h).
(Eqs. (4.47) and (4.32) are related as follows. Let 4i = u>e, eeM^. Then /ij, = /i,e.)
Some terminology is helpful at this point.

Definition 4.2. Let (X, v, F,) be a flow. We call the measure fi on X smooth if p. < v,
and smoothable if

/ * / * = ( dtf(t)FtlL (4.48)
J —GO

is smooth for all / e LX+(U, dt).
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The finite weight ip is integrable if and only if / ^ is smooth. The smoothable
measures are precisely the measures of the form J ixbdvB(b) with respect to some
base and ceiling function construction of the flow. It is then obvious from eqs.
(4.45)-(4.47) that given any smoothable measure /A, one can choose h,,, beB so
that <p(hf(h)) = fi.(f),fe L°°(X, v). I.e. every smoothable measure fi is of the form
^ for some i/i e M^..

5. Comparison of finite periodic weights
Let M be a type III0 factor with TeT(M) for some 0 < T<oo, and let 0 be a
faithful state on M, v%= 1. Let A, M, 0, S, M#, C+, 0, B, vB be as in eqs. (4.1)-(4.12).
To each finite weight I/»G M\ (see definition 5.1) we associate a finite measure fi^,
on B, fjL.^, < pB. We establish a number of properties of the map ip -* fj.^. In particular
lemmas 5.7, 5.8 and 5.9 are required for the proof that AT implies ITPFI in the
discrete case T(M) ^ {0} (see lemma 8.2).

If ip is a weight on M such that a%= 1, then (Dip: D<f>)T = e"*s(ip) where 0 < a <
2TT, and (Dip: D0),, l e R is the cocyle Radon-Nikodym derivative (see [5, pp. 478-
479]). The weight 0 = \p®<l> will satisfy a-% = 1 if and only if a = 0. Note that for
j8 > 0 we have

so that for some A < ^ < 1 we have (D(fiip): D<f>)T = s(ili).

Definition 5.1. Let a> be a faithful weight on the von Neumann algebra si such that
o-r = 1 for some 0 < T < oo. Then siT

m denotes the set of all finite weights ip on si
such that (Dip: D<o)T = s(if/). If u is a partial isometry in si with uu* e siw then the
equation ip(x) = w(uxu*), xesi+ defines a weight ip with support w*w. We write

Definition 5.2. Let w and ip be weights on a von Neumann algebra si. We say that
a) and ip are equivalent and write u> ~ ip if there exists a partial isometry u e si such
that uu* = S(CJ), u*u = s(il/) and ip = wu.

LEMMA 5.3. Let M, T, <f>, M, <£ be as above. Let ip e M J. Then there exists a projection
e e M$ such that ip ~ 4>e. If e, f are projections in M<f then 4>e ~ <pf if and only if e ~f
in M$.

Proof. The assertion <f>e ~ <$>f if and only if e ~f in M$ is lemma 1.4(d) of [5]. To
prove the first assertion, consider the weight 0 defined on P = M®F2 by

2 \

X xij®eij) = 4>(xu) + ip(x22). (5.2)

From ([2, lemma 1.2.2]) and ([5, pp. 478-9]) we have

(5.3)

(5.4)

and

o-°(x®e22) = crt(x)®e22 (5.5)

for all x e M , where u, = {D\jf. D$)t, teU. By [5, lemma 1.4(b)]) we have ^i~4>e
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for some e if and only if

s(il>)®e22<l®eu(Pe), (5.6)

(i.e. s(i^)®e22 is equivalent in the centralizer Pe to a sub-projection of l®e n ) .
Since M$ is properly infinite (see eq. (4.10)), there exist projections e,e M$,jeZ
such that e}ek = 0 if/ ^ k, e, ~ ek and £ e, = 1. It follows from eq. (5.3) that e, ® e, [ € Pg,
ej®en~ek®exx(Pe), and hence that l®e,i = E / 6 2

 e j®en is a properly infinite
projection in Pe. Hence to prove eq. (5.6) it suffices to show that given any projection
/;= s(i//), / # 0, / e M^, there exists yePe such that

( / ® e 2 2 M l ® e u ) * 0 . (5.7)

Since ae
T = 1 it follows from eq. (5.4) that u, is periodic with period T and hence

M,= I u ( t ) c i 2 * / T , (5.8)
IceZ

where

* Jo
^ | X)e-i2«ktlT. (5.9)
* Jo

Now

(5.10)

and hence fu(K)*0 for some X e Z. Eq. (5.9) gives

o-?(«<K)®e2,) = e l 2 " K ' / V K ) ®e 2 1 . (5.11)

It follows from eq. (4.3) that the unitary S defined by eq. (4.8) satisfies

o?(S) = e-'2i r ' /7S, (5.12)
since A" = e-'2irI/T. Define

>> = (u ( K )®e2 1)(S-K®e i l ) . (5.13)

Eqs. (5.11)-(5.13) give <r?(y) = y, hence ye Pe. Since S is unitary and/w(K)5^0, eq.
(5.7) is satisfied. •

Definition 5.4. Let M, (#i be as above, ^ e M J. We define the measure /t̂ , associated
with t/> as the measure fie defined by eq. (4.15) where \ji~ ^>P

LEMMA 5.5. Let ^r,, i/»2€ M j . TTien ^ L = û.̂  if and only ifip, ~ i/»2.

Proof. The lemma follows immediately from lemma 5.3 and the fact that ne = nf if
and only if e~f in M$ (see eq. (4.16)). •

LEMMA 5.6. Let «/»I,I/»2€ Ml be such that s(i/»i)s(t/'2) = 0. 77»e« /U.1/,I+^2 = /U.1/,, + /A<^.

Plroo/ Note that eq. (4.16) implies that if e = e1 + e2 where e, eue2eM^, then
Me= Me, + /*c2- By lemma 5.3 we have ty = <}>Uj, j =1,2 where, since M$ is properly
infinite, we can choose u, and u2 such that exe2 = 0 where e, = M^W,. Then u = M, + M2

is a partial isometry such that i/f, +1/>2 = <£u, and M*M = et + e2. Since <̂ u ~ <£„.„ and
<̂ UJ ~ 0e/ the result follows. •

L E M M A 5.7. Let ipeM$. Let /* , , . . . , fj.n be measures on B such that / t 0 =
Zj=i Mr Then there exist orthogonal projections eu...,en such that s(tp) =X"=i ej
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Proof. Since every fi<vB occurs as nP for some p e M J (see eq. (4.33)), there exist
mutually orthogonal projections fu... ,/„ e M and p , , . . . , pn € M j such that

*(PJ)=J5 (5-14)
and

AtPj = M> j = l , . . . , « . (5.15)

By lemma 5.5 and 5.6, p = Z P/ ~ </>• Hence there is a partial isometry u with
M*M = S(P) = £./;, uu* = s(if/), and <A = pu. Then e, = u/J are the desired pro-
jections. •

LEMMA 5.8. Let t/f 6 M J, </> ~ <£c. T7ien

^M* = Ap-A-V = AM»(e)-

Proof. We have ^ = ju.e. Let ce C,j. Using eqs. (4.9) and (4.15) we have

= ($ o »)(«(e)c) = A<£(0(e)c) = A/t.(«)(c). (5.16)

It remains only to prove that /AA* = Me-'<*)- Let u be a partial isometry in M such
that <j) = 4>u and uu* = e. Then

(A«A)(X) = A<MUXU*) = <M0-|(MXW*)), xeM. (5.17)

Since fl = AdSwe get

(A<A)(x) = <^(S«xu*S*) = 0 & (x) . (5.18)

But £ , - 4 ^ . and SMU*S* = »-'(e). •

LEMMA 5.9. Let I/J, e M J, i/», # 0, and e > 0. Lef jt2 5̂  0 fee a înife measure on B,
fi2< vB. Then there exists </>2e M j such that

(i) J ( * 2 ) = S ( * , ) ;

(ii) M*2 = M2; a«d
(iii) H^-^H^IlM^-^ll + e.

Proof. Write (1, = ̂ ^ and fj = dfij/dpB, j" = 1,2. By a routine argument one can
choose a family of projections e(a)e ROi, 0<a<oo such that

e(a)e(P) = e(a) ifa</3 (5.19)

and

r ( e ( a ) ) » a (5.20)

where T is the trace on ?̂0,i such that <£ = T ® J/B (see eqs. (4.11) and (4.12)). Then
Hj = Hej,j=l,2 where

e(fj(b)) dvB{b). (5.21)

Let

B+ = {b:f2{b)>Mb)}, (5.22)

(5.23)

(5.24)
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Then

where
e, =

re
eJ+=\ e(fj

JB+

dvB(b)

(5.25)

(5.26)

etc. Let M be a partial isometry in M such that (/>, = <£„ where MM* = e,, u*u = 5(i/>,).

Case (i). vB(B+)= vB(B-) = 0. Take ^2 = <P>-

Case (ii). vB(B+), vB(B_)>0. Let w be a partial isometry in M mapping the
non-zero projection e2+ - e1 + onto the non-zero projection e,_ - e2— Define i//2 = </»„
where

ll> = $el-(ei_-e2_)+(te2+-ej»- (5.27)

Then ifi~ <t>€2 so that fi^, = fi2. Furthermore s(i/») = e,, s(tp2) = M*M = s ^ i ) , and

1 1 * 2 - ^ 1 1 = 1 1 ^ - ^ , 1 1 . (5 -28 )
We have

* - &, = (^^+-e,+)« - ^, ,- e 2_- (5-29)

Since \\4>f\\ = $(/) = fif(B) we obtain

Case (iii). vB{B+) = O,

and

Let

0. Choose g(fo), fceB such that

0< | g{b)dvB(b)<ke.
J B

g= I e{g{b)) dvB(b).
JB

(5.30)

(5.31)

(5.32)

(5.33)

Let w be a partial isometry in M such that a>*a> = g, oxo* = e{ — e2 + g. Define </>2 = i/»u

where

xjj = 4>e2_g + {4>g)o>. (5.34)

Then ip ~ 0<,2 so that / ^ = fi2. Furthermore s(i/f) = e, so that s(tp2) = u*u = s(ip{), and

11^-^11 = 11^-^,11. (5-35)
Since

& , - * = <£, + <£«,-«,-(&). (5-36)
and

- J= | g{b)dvB<\e

we obtain || i/>2 — <̂ i II — IIM i — M2II + £•

Case (iv). *>
B(B+)^0, ^B(B_) = 0. The argument is similar to case (iii).

(5.37)

•
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6. Comparison of finite weights: the general case
We extend the results of § 5 to the general case. This is straightforward except for
lemma 5.9, where we now use the lacunary construction (see lemma 6.4). In this
section M is a type III0 factor, and we follow the notation of § 4.

LEMMA6.1. LetipeM^., thenixx^, = X^-'/J,^. Ifif/U t/»2e M% tfien t/f,

and M^,+^2 = M ,̂ + M*2 if s(<l>i)s(4>2) = 0-

Proof: This is corollary 1.13 (ii) of [5]. •

LEMMA 6.2. Let tpeM%, /x^, = Y,"= i /*;• Then there exist orthogonal projections
eu...,en such that s(<l>) = I " = I e, and </» = I J = 1 tk, where /u,^. = Mr
Proof Since every smoothable measure occurs as /J.X for some \ (see eq. (4.48) et
seq.) the proof of lemma 5.7 holds verbatim. •

The next lemma is a technical result needed in the proof of lemma 6.4.

LEMMA 6.3. Let o-x, cr2 be non-atomic measures on I = [0, lj.cr^/) = cr2(I) < °o. Let
Fj(x) = o-j([0, x]), and let

Sj = {xel: Fj(y) = Fj(x) implies y = x},

7" = 1,2. Then cr,(/\S,) = 0 and the equation F,(y(x)) = F2(x) defines a monotonic
bijection y: S, -» S2 satisfying

f{y(t))do-x{t)=[ f{t)da2{t)
Jo

for allfe £,'(/, a2). Furthermore

\t-y{t)\do-M. (6.1)f
Jo

Proof. To prove eq. (6.1) consider the function / defined by

f + 1 \U>y(t)

f'U) = \ 0 i f f = y (O , (6.2)

(-1 ift<y(t),

and/(0) = 0. Since H/IU^ 1 we have

=l\t-y(t)\do-M. (6.3)

All other properties are obvious. •

LEMMA 6.4. Let i/»i be a finite integrable weight on M, and let /JL2 be a smooth measure
on X (i.e. /x2< v, see definition 4.2).Then there exists i/»2e M^ such that:

(i) s(*2) = «(*,);
(ii) fit2 = n2; and
(iii) ||i/',-</'2||
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Proof. We use the lacunary state construction of the flow of weights (eqs. (4.39)-
(4.48)) where we choose the lacunary state 4> so that j < p < 1. We have

*,(x) = *(*,£(!««*)), (6.4)

where A ,eMj so that
f© f'e

>»>= dvB{b)\ tdaub(t), (6.5)
JB J p(b)

where we can choose the measures <rub so that fo r / e L\X, MI) we have

M.(/)=f dvB(b) P f/(M)<K>(0 (6.6)
JB Jp(b)

where Mi = M*,« By the remark following definition 4.2, we can choose measures o-2,b
such that

[ tf(b,t)d*2tb(t). (6.7)
B J p(b)

We begin by altering the measures slightly so that lemma 6.3 can be used. Let

B+ = {beB:<ru([p(6),l])><r2,t([p(()),l])}, (6.8)
and

B_ = B\B+. (6.9)

For be B+ define t2tb = 1 and

U,b= sup{p(b)^t^\:aub([p(b),t]) = o-2>b([p{b), I])}, (6.10)

and for b e B_ define tlb=l and

t2.6 = sup{p(6)srs.l:a'2>fc([p(6),0) = or1,t([p(fc),l])}. (6.11)

Define /*;, / 4 by

( d M V ^ ) ( ^ O = A'[P(b,.(,h](O. (6.12)
Then

II M i " Mi 11 = P>i (*"[!, .„!])

(6.13)

where the last inequality follows from the fact that dfij/duB ° o-j=t>\. Similarly

| | M 2 - M 2 N 2 | | M , - M 2 | | . (6.14)

We can now write MJ = VB ° c'j, j = 1,2 where

<b([p(b),l]) = <7'2,b([p(b),l]), beB. (6.15)

By lemma 6.3 there exists a measurable function y(b, t) such that for a l l /e L'(X, p.\)
we have

I y(6,0/(6; y(fc, 0) <K»(0 = | »/(*, 0 Ari.*(0, (6.16)
Jpfb) Jp(fc)

for a.e. b e B. We define
f© f'e

h\= dvB{b) tda'ub(t) (6.17)
JB J p(b)
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h'2= I dvB(b) I * y(b, t) da\,b{t), (6.18)
JB Jp((>)

and

t/0'(x) = <£(/.,'£(«*«*)), 7 = 1 , 2 . (6.19)

Using eq. (6.13) we obtain

| | ^ , - ^ | | = *(|*,-fcl,|) = ||/*1-/*ill=s2||AiI-i»2||. (6.20)

We also have

'ub-alb\\ = \\n\-,j,'2\\, (6.21)

where the last inequality follows from lemma 6.3.

Case (i). fi\ = fix and /JL'2 = (JL2. Then i//2 = * 2 satisfies the lemma.

Case (ii). nt* fi\ and n2* (JL'2. Let h"x=hx-h\. Then s(h'{)s{h\) = 0 and s(li5')^0.
Construct /i2' such that s(A2) = s(AJ) and /*fc2" = fi2-fi'2. Let h2 = h'2 + h2 and define

tli2=(t>(h2E(uxu*)). (6.22)

By construction ^ = /A2 and 5(^2) = •s('Z'i)- We have i/>2 = *l>'2+ <l>2 where

11*511 = 0(|*2|)=ll/*2-M2||=s2||/*i-/*2|| (6-23)

(see eq. (6.14)). Eqs. (6.20), (6.21) and (6.23) give

| | * , - * 2 | | = S 5 | | A I 1 - / I 2 | | . (6.24)

Case (iii). fi, =/tJ and /LI2^M2- Choose a projection e e M such that 0 < e < s ( / i 2 ) ,
and

0(efcj)=s HM1-M2II. (6-25)

Choose h2' such that s(ft2') = e and

M/.5=M2-M2 + Mefc2- (6.26)

Then eqs. (6.14) and (6.25) give

| | / * M | | S 3 | | M I - M 2 | | . (6-27)

Define

4,2(x) = <j>((h'± + (l-e)h'2)E(uxu*)). (6.28)

By construction ^i^ = ix2 and s(t//2) = s(*l/i). Eqs. (6.25) and (6.27) give

ll*2-*i|| ^411/4,-/4211. (6-29)
Since ip, = ij/'u eq. (6.21) now gives

| |*,-*2| |=s5| | /*1-/*2 | | . (6.30)

Case (iv). /u., ?* fi\ and /t2 = p'2- Choose a projection ee M such that 0 < e<s(ft'i) =
s(h'2) and

Mi-A*2ll- (6.31)
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Choose h'i such that s(h$) = s(hl)-s(h[) +e and

f*hi = Hehi- (6-32)

Define ip2 by eq. (6.28). By construction /tfc = /A2 and s(<//2) = 5(i/»,). Eqs. (6.31),
(6.32) and (6.28) give

llfc-^II^H/u.-^ll. (6.33)
Eqs. (6.20) and (6.21) now give

| | ^ - * 2 | | £ 5 | | M l - / t 2 | | . (6.34)

D

7. Product property and ITPFI factors
We introduce the 'product property' (definition 7.1) which is a variation of St0rmer's
property of being 'asymptotically a product state' [19]. This is a technical property
which is equivalent to ITPFI (corollary 7.4 and lemma 7.6). Its purpose is to simplify
the task of verifying the ITPFI property by eliminating the iterative part of the
argument.

Definition 7.1. Let M be a von Neumann algebra. A finite weight <f> on M is said
to have the product property if given e > 0, a strong neighbourhood V of 0, and
x,,... ,xne M, there exists a finite type I factor K<^ M and finite weights <f>u <f>2

on K, Kc = K'nM respectively such that:
(i) Xj; e K + V, j = 1 , . . . , n, and

(ii) ||^-<h®«fcll<e.
If M has a faithful finite weight with the product property, then M is said to have
the product property.

Remark 7.2. It follows immediately from the above definition that the product
property implies approximately type I (see [8]). Clearly one can require that $, and
<f>2 are faithful, and (ii) can be replaced by

If one were to study von Neumann algebras of the form (§)„ {Mv, #„) where the siv

are finite-dimensional matrix algebras, the appropriate product property would be
to require only that K be a finite-dimensional subalgebra.

In order to prove that an ITPFI factor has the product property we will use the
following martingale condition, which was introduced by Araki and Woods
([1, lemma 6.10]).

LEMMA 7.3. Let M = ® " = , (Mk, <pk) be an ITPFI factor. For each neJf there is a
conditional expectation En:M^ M( n ) = ®^ = 1 Mk such that

(i) En(x) -» x strongly for all x e M;
(ii) En(Mlt,) = M^ where ^ ( g C . <t>k and<t>in) = ®"k=l 4>k\ and
(iii) EnEm = Enifn<m.

Proof. Define En by the equation

(En(x)a,P) = (x(a®( 0 dOY/W 0 **)) (7.1)
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for all xe M, a, )3 e(g)£ = 1 Hk where Mk acts on Hk and ^(.y) = ( y ^ , <&&) for all
j e Mk. That £„ is a conditional expectation and properties (i) and (iii) follow
directly from eq. (7.1) (compare [1, lemma 6.10]). Condition (ii) follows from

af"\En{x)) = En(o-f(x)) (7.2)

which in turn follows from the observation that

A4>=A^®A^kZn+lM (7.3)

and a routine calculation using eq. (7.1). •

COROLLARY 7.4. Any ITPFI factor has the product property.

Proof. Lemma 7.3 implies that any product state 0 <$>k has the product property. •

LEMMA 7.5. Let M be a von Neumann algebra with the product property. Then any
finite weight \\i has the product property.

Proof. Let e > 0, V a strong neighbourhood of 0, and xu... ,xne M. Let <j> be a
faithful finite weight on M with the product property. It follows from the Hahn-
Banach theorem that the set of all finite weights x s u ch that x £ A</> for some A > 0,
is norm-dense in M^. It then follows from [17, theorem 1.24.3, p. 76] that there
exists h e M+ such that

\4,(a)-ct>(hah)\<e\\a\\, (7.4)

for all ae M. By assumption there exist a finite type I factor K <= M, ke K, and
finite weights </>,, <t>2 such that

Xj<=K+V, j=\,...,n, (7.5)
22\\h\\-2U\\-\ (7.6)

\^ s\\h\\-2, (7.7)

and

||fc||<||fr||. (7.8)

That one can achieve eq. (7.8) follows, as in the proof of the Kaplansky density
theorem, by approximating an element h'e M such that h =2h'(l +(h')2)"' (see [7,
p. 44]). Since

4>{hah) = 4>(kak) + <t>((h-k)ah) + 4>(ka{h-k)),

it follows from the Cauchy-Schwarz inequality and eq. (7.6) that

\ct>{hah)-4>(kak)\<2e\\a\\. (7.9)

Eqs. (7.4), (7.7) and (7.9) give

l k - 0 i ® « M ^ 4 e , (7-10)

where <p\{a) = <t>^kak), ae K, and ^2(«) = </>2(«), ae Kc. •

LEMMA 7.6. Let M be a properly infinite von Neumann algebra with the product
property. Then M is ITPFI.

Proof. Let i/< be a faithful state on M. Let (Xj)j£N be dense in the unit ball M, of
M, let Vj be a sequence of strong neighbourhoods of 0 decreasing to 0, and let
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7}n > 0 with

I ifc < 1 . (7.11)

We will construct a sequence of mutually commuting finite type I factors K{ and
faithful states <£, on Kt such that

xJeK(n)+Vm j=l,...,n (7.12)

where

)1, (7.13)
\ i = 1 /

and

where (K{n))c = (K{n))'n M. It will then follow that M ~0nEN{Km<f>n).
By assumption there is a finite type I factor X, and a faithful state $, such that

eqs. (7.12) and (7.14) are satisfied for « = 1 (use remark 7.2). Now assume that
Ku...,Kn and <j>{, ...,</>„ have been chosen so that eqs. (7.12) and (7.14) are
satisfied. Let e\"\ i,j = 1 , . . . , kn be a complete set of matrix units for Kin), and let
e = e\"K Since M is properly infinite, e ~ 1 and Me = eMe ~ M. In particular Me has
the product property. Let W b e a strong neighbourhood of 0 such that the sum of
any k2

n elements from W must lie in Vn+1. There exists a finite type I subfactor Ln+1

of Me, yi"lj e !„+,, i,j = 1 , . . . , kn, k = 1 , . . . , n + 1, and a state <f>n+l such that

en V^i/Ci"' - e{£)xke
i£) eW, (7.15)

and eq. (7.14) is satisfied with n replaced by n + 1 (where we have used the canonical
identification of Me with K(n)c). Let

kn

y(kn) = I ^ify^ije^e K(n+'\ (7.16)

fc=l,...,n + l, where Xn + I is the finite type I subfactor of M obtained from the
canonical embedding of Ln+l. Then

y k
n ) - j c k €v B + l

so that eq. (7.12) is satisfied. Now let <f> = ® " = 1 <t>k- It follows from eqs. (7.11) and
(7.14) that \\4>~ »ft|i < I- Hence the representation TT̂ , of the UHF C*-algebra
si = UjePsj Kj induced by <f> is unitarily equivalent to TT̂ , (see for example [16, theorem
2.7]). Eq. (7.12) implies that TT<,{S4)"=M.

Remark 1.1. By further arguments, which we omit, one can show that in the general
case the product property implies ITPFI.

8. ITPFI factors and AT flows
In this section we prove our major result, namely the equivalence of the ITPFI and
AT properties (theorem 8.3). The proof that ITPFI implies AT (lemma 8.1) is rather
straightforward. It follows from the known existence of a factor martingale (lemma
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7.3), together with the relationship between certain positive operators in the cen-
tralizer and finite measures on the flow space (see eqs. (4.13)-(4.18) and (4.30)-
(4.33)). The converse is obtained by proving that AT of the flow of weights implies
the product property (lemma 8.2).

LEMMA 8.1. Let M be an ITPFI factor of type III0. Then the flow of weights for M
is AT.

Proof. Since the proof for the discrete case T(M)^{0} is much more transparent
and, furthermore, motivates the proof for the general case, we present it first.

Case (i). T(M) * {0}. Let Te T(M), T*0. Using either lemma 11.2 of [1] or results
from [2] we can write M = ® ^ = 1 (Mk, (f>k) where ap = 1 for all k. We will use the
discrete construction of the flow of weights here. Let A, M, <£, 6, B and vB be as in
eqs. (4.1)-(4.12). We will prove that the base transformation 6 is AT. By lemma 2.5
this is equivalent to the flow being AT.

Let e > 0, and let fi,,..., ixn be finite measures on the base space B, fit,..., fin<
vB. Using eqs. (4.15) and (4.18) we obtain projections e^eM^ such that ixei = fj.j,
j = 1 , . . . , n. It follows from our lemma 7.3 and lemma 2.3 of [14] that there exist
w<oo and positive operators J$ e M(J.J> where Mim) = ®k=0 Mk, </><m) = o>A®
( ® r . i <h) and M0 = i?(/2(Z)), such that

4(\ej-Ji\)^e, j=l,...,n. (8.1)

Since e,, f e M^ we have the inequality

\*((ej-fj)c)\*\\c\\t(\ej-/j\), ceM,

(see for example, [7, lemma 11, p. 63]. It now follows from eqs. (8.1) and (4.15) that

\\ne.-/jLfl\\<e, j=l,...,n. (8.2)

The proof will be completed by showing that

J 5 = I I cjklejkl, 7 = 1 n, ( 8 . 3 )
keZ 1=1

where cjU > 0, eJk, are minimal projections in M( ?̂2>, ejU ~ 0ke where e is a fixed
minimal projection in M$l>, and N<oo, Eqs. (8.3) and (4.15) and lemma 5.8 then
give

%, = I cJkk ~kekne, j = 1, . . . ,« , (8.4)

where cjk=Ydl cjkl. The AT now follows directly from eqs. (8.2) and (8.4). Eq. (8.3)
will follow directly from the structure of M̂7™> which we now determine.

Recall that if \p{x) = Trace(px), x e P i s a weight on a type I factor P and pe P,
then af = Ad p" and hence P^, = {p}'. Thus the determination of the structure of
Mffii becomes an elementary exercise in linear algebra. We have <j>(m)(x) =
Trace(p(m>x), x e M ( m ) where p ( m ) e M ( m ) has eigenvalues rik=oA*,;(*> w h e r e

{^kj}j=i,...,nk is the eigenvalue list of (Mk, <j>k) and nfc<oo for fc^O. Since o-p = 1,
all ratios Afcr/Aks are precisely some integral power of A. For k = 0, each Ap, peZ
occurs precisely once as an eigenvalue. Hence the eigenvalues of p<m) are of the
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form a\s where a is fixed, and each s e Z occurs precisely

N = fl nt (8.5)
k = \

times. It follows that

M^ = {pim)}'=®keZM(k), (8.6)

where M(k) = FN, and eqs. (4.1), (4.2) and (4.8) and 6 = Ad S imply that 6(M(k)) =
M(k+ 1). Eq. (8.3) now results directly from diagonalizing f.

Case (ii) is the general case. We use here the continuous construction of the flow
of weights. Let M, a>, ds, X and v be as in eqs. (4.19)-(4.29). Let e>0 , and let
fti,..., fin be finite measures on the flow space X, fit,..., fin<v. Precisely as in
case (i) there exist ejeM^, such that fjLe. = (ij (see eqs. (4.32), (4.33)), and positive
operators fj e M^lt for some m <oo, satisfying eq. (8.2). The same argument used
above shows that this time we have

y dtM(t), (8.7)

where M(t) = FN and TV is again given by eq. (8.5). Let fe M ^ L Then

and

where

where

and

/=J dtf(t),

f©
ej=\ dtf(t-s),

^(y)= dte'rifit)),

T is the trace on FN. Diagonalizing the positive operators f,

J5/ = J ° dtMt),

(8.8)

(8.9)

(8.10)

we obtain

(8.11)

(8.12)

(8.13)

where Cj,(t) > 0 and efl{t) are minimal projections in M(t). Since &K./J) = fi/p
eq. (8.10) implies that e'c,,(r)e L'(K). Since the transitive action of U on U is AT,
there exist A,,£L'(IR) and c(0, e'c(r)e Ll(U) such that

r
< E N " ' . (8.14)cj,(t)- | dsAj7(s)es+'c(s+0

Let

- J dtcj,(t)e(t), (8.15)
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where e{t) is a measurable family of minimal projections in M(t). Since e(t) ~ ej,(t)
in M(t) we have Fjl~fjl in M(

07i> and hence

Let

f®
C= dtc{t)e(t), (8.17)

and

i dtgjl(t)e{t) (8.18)

where

&,(0 = j d s A ^ e ' ^ s + O. (8-19)

Then

Gj,= ds\j,(s)esesC. (8.20)

Lemma 4.1 now gives

MG7 = J ds kj,(s)e%fic. (8-21)

Using eqs. (8.10), (8.14), (8.15), (8.18) and (8.19) we obtain

tel\cl{t)-gj,(t)\^eN-1. (8.22)

The AT of 0, now follows from eqs. (8.2), (8.11), (8.16), (8.21) and (8.22). •

LEMMA 8.2. Let M be a Krieger factor of type III0. If the flow of weights is AT, then
M has the product property.

Proof. Let e > 0, x , , . . . , xp e M, V a strong neighbourhood of 0 in M, and 0 a
faithful state on M. We give first an outline of the argument. Connes' martingale
condition [3] gives the existence of a conditional expectation E onto a finite-
dimensional subalgebra TV such that <j>° E = 4>, and xu ... ,xpe N+ V. If TV were
a finite type I subfactor, the condition <f> ° E = <f> would imply that </> was a product
state relative to M = N® Nc and the product property would be trivially satisfied.
The strategy is to embed TV in a finite type I subfactor P so that </> is approximately
a product state. The basic idea is to use the AT condition to construct a new state
4> such that \\<j> - </>|| < e, and a set of matrix units for P which are eigenvectors of
erf (which implies that \\i is a product state relative to M = P®PC). More precisely,
one selects a minimal projection e(fc) from each full matrix algebra in TV. A measure
fik is associated with each e<k). Using the AT condition the fj,k can be approximated
by measures fi 'k = X Mfc/- "The /xki determine both the desired subprojections of the
e(k) (which are minimal projections in P), and the state tj/.
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We give first the argument for the discrete case 7 (M)^{0} . The argument for
the general case then proceeds in exactly the same way.

Case (i). There exists T e T{M), T * 0. Let <j> be a faithful state on M such that a% = 1.

Step (i). By [3] there is a conditional expectation £:M-»/V where TV is a finite-
dimensional subalgebra of M such that

<£(£(*)) = </>(*) fo ra l lxeM, (8.23)

and

E(Xj)eV + Xj, j=\,...,p. (8.24)

We have

N=@Nh (8.25)

where the Nk are type Imi factors. Let <j>k denote the restriction of <f> to Nk. Then

4>k{x) = Trace pkx, xeNk, (8.26)

where pk e iVfc. Choose matrix units ek for 7Vk such that pk is diagonal, i.e.

Pke$j = XueqSij, i,j=\,...,mk (8.27)

and

Af c ,&Af c 2>-•->Ak m t>0. (8.28)

Then, since a?°E(E(x)) = o-f(£(x)), we have

o-f ( 4 ) = o-f l(«S) = (Aw/Ay)"^. (8.29)

5<e/7 (ii). In order to use the AT condition, we construct the flow of weights as in
§ 4, eqs. (4.1)-(4.18). Let Po denote the projection onto the basis vector e0 of /2(Z).
Let

f = P0®ek, k=\,...,n (8.30)

where ek = ek
u. Since Poe g(€2{T))Mk and ek e M^ (see eq. (8.29)) we h a v e / 6 M*.

Since <^(/fc) = <j>(ek)<<x>, eq. (4.15) defines measures

M* = MA fc=l,...,n, (8.31)

on the base space fi such that /xk < vB. Using the AT condition and a variant of
remark 2.2(iii) we obtain a measure n<vB and integers nk(l), k=l,...,n,
l = -L,..., L such that

l lMfc-MlMn"'"!* '*, fc=l,..,n (8.32)

where the measures

Mi= +I nt(/)A-'flV (8.33)

are non-zero.

Step (iii). We now modify the state </>. We first show that 4> is determined by its
restrictions to ME*, k= 1 , . . . , n where, in effect, it is the conditional expectation.
For x e M we have

E(x)=lxkek, (8.34)
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where the numbers Xy are determined by the equation

£(e*x4) = 4 4 (8.35)
Eqs. (8.23), (8.26), (8.27) and (8.34) give

<£(*)= I Afc,4, (8.36)

Since

Heuxeti) = (A(eit,£(x)ef1) = A k , 4 , (8.37)

we get

i Uf,). (8.38)
k=l i = i

The desired alteration of <f> will now be obtained by changing it on Me
k and using

eq. (8.38) to define the new state ip on M. From eq. (8.32) and lemma 5.9 we obtain
states \fik such that

s(k)=f\ (8.39)

/•".** = /**, ( 8 . 4 0 )

and

\\4>k-4>k\\^n~]tnk
le, (8.41)

where 4>k is defined on Mf
k by

4>k(P0®x) = <{>k(x). (8.42)

We define i//k on Me
k by

tykix)= il>k(Po®x)- (8.43)

We define t/» on M by

Eqs. (8.28) and (8.41)-(8.44) give
|| <A - <£ || s e. (8.45)

Step (iv). We now embed N in a type I factor P c M s o that i/> is a product state
relative to M = P® Pc. Using eqs. (8.33), (8.40) and lemma 5.7 we obtain non-zero
projections jj,j=l,...,qk, k = 1 , . . . , n such that

J* = I /?, (8.46)
j = i

4*k= 1L tykj, (8.47)

where

<i>kj = (<Pk)fk
i, (8.48)

and integers s'kj such that

V-ikl = A ^ 0 V = \-s"'es"'fiiu, (8.49)

where Sy = S y - s , , . It now follows from lemmas 5.5 and 5.8 that

<A*>~AI("i?,|. (8.50)
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Since Po is one-dimensional, we can define projections e) e M by

fi 1 (8.51)
and it then follows from eqs. (8.44), (8.47), (8.48), (8.50), (8.51) and lemma 1.2.3(b)
of [2] that there exist partial isometries MJV e M such that

(«#)*«# = «!, (8.52)

u?Ml)* = e1, (8.53)
and

*t(uX) = \ia*>u$, (8.54)

j = 1 , . . . , qk, k = 1 , . . . , n. We extend the range of the index j to 1 , . . . , mkqk by
defining

»)i = eW,l, (8-55)
where j = (l-l)qk + t, 1 < t < qk, 1= 1 , . . . , mk. Finally we obtain a complete set of
matrix units by defining

«"=«n(«J!)* (8.56)

where i = 1 , . . . , qk, j = 1 , . . . , qh k, I = 1 , . . . , n. We can now define P to be the type
I factor generated by the u". Eqs. (8.44) and (8.54)-(8.56) imply that the u" are
eigenvectors of af. Hence a-f(P) = P which implies that ip is a product state relative
to M = P®PC.

Case (ii) is the general case. The argument is virtually identical. We use here the
lacunary construction of the flow of weights. For this purpose we take (/> to be a
faithful lacunary integrable weight of infinite multiplicity. Basically the only change
is that lemmas 5.5, 5.7, 5.8 and 5.9 are replaced by lemmas 6.1, 6.2 and 6.4.

Step (i) is identical. In step (ii) we now construct the flow of weights as in § 4,
eqs. (4.39)-(4.48). In particular eq. (4.47) defines measures

Mt = M#.k, k=l,...,n, (8.57)

on the flow space X, fik < v. Using the AT condition and again a variation on remark
2.2(iii) we obtain a measure p. < v, t, e U%, nk(l)eZ, I = 1 , . . . , L such that

\\Hk-V-'k\\^n-lmile, k=\,....,n, (8.58)

where the measures

/**=! ^ ( O r ' ^ / i (8.59)
7 = 1

are non-zero.
Step (iii) is almost identical. We work directly on M and use lemma 6.4 to obtain

states 4>k on Mc* satisfying

s{4>k) = e\ (8.60)

M*t = /*!k, ( 8 - 6 1 )

and

e. (8-62)
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ip is again defined by eq. (8.44) and satisfies eq. (8.45). In step (iv) we begin by
noting that the states ifk defined by eq. (8.60) are integrable since the measures /u.'k
are smooth (see eq. (4.48) et seq.). Using eqs. (8.59), (8.61) and lemma 6.2 we obtain
non-zero projections ej,j=l,...,qk, k = 1 , . . . , n such that

ek = I e) (8.63)

and

= I </%, (8.64)

where ipkj= (tpk)e
1;, and t'kjeU such that

where tkj = t'kj-tu. It now follows from lemma 6.1 that

^ y - e - V n - (8-66)
As before, it follows from eqs. (8.44), (8.66) and lemma 1.2.3(b) of [2] that there
exist partial isometries u£' satisfying eqs. (8.52)-(8.56), and the type I factor P
generated by the Uy' has the desired properties. •

THEOREM 8.3. Let M be a type III0 injective factor. Then the following are equivalent.
(i) M is ITPFI.
(ii) The flow of weights for M is approximately transitive.
(iii) M has the product property.

Proof. By [4] M is a Krieger factor. We have the following implications: (i)=>(iii),
corollary 7.4; (iii)=>(i), lemma 7.6; (i)=>(ii), lemma 8.1; and (ii)=»(iii), lemma 8.2.
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