Construction d'un difféomorphisme minimal d'entropie topologique non nulle

M. R. HERMAN†

Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau, France

(Received 12 December 1980)

A Laurent Schwartz pour son 65ème anniversaire

Abstract. We construct a real analytic diffeomorphism F_{α} on a compact connected 4-dimensional manifold M, such that F_{α} preserves a probability measure μ defined by a smooth volume form, F_{α} is a minimal diffeomorphism of M and furthermore the metrical entropy of F_{α} with respect to the measure μ is strictly positive. By a theorem of Goodwyn the topological entropy is also strictly positive. We write down the explicit formula of F_{α} that depends on a parameter $\alpha \in \mathbb{T}^1$. This parameter is chosen by Baire category.

1. Introduction

(1.1) On considère un élément (α, A) du produit gauche $\mathbb{T}^1 \times C^{\omega}(\mathbb{T}^1, \operatorname{SL}(2, \mathbb{R}))$, où \mathbb{T}^1 agit sur $C^{\omega}(\mathbb{T}^1, \operatorname{SL}(2, \mathbb{R}))$ par translations. On choisit A tel que, si $\theta \in \mathbb{T}^1$,

$$A(\theta) = A_{\theta} = \begin{pmatrix} \cos 2\pi\theta & -\sin 2\pi\theta \\ \sin 2\pi\theta & \cos 2\pi\theta \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$$

et on suppose que $\lambda > 1$ est fixé, dans la suite.

On pose, si $\alpha \in \mathbb{T}^1$ et si n est un entier $n \ge 1$, $A_{\theta}^n = A_{\alpha,\theta}^n = A_{\theta+(n-1)\alpha} \cdot \cdot \cdot \cdot A_{\theta+\alpha} \cdot A_{\theta}$. $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$ agit sur \mathbb{T}^1 ; à $\alpha \in \mathbb{T}^1$ on associe la rotation $R_{\alpha}(x) = x + \alpha$. Si $\alpha \in \mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z})$, R_{α} est un difféomorphisme minimal et strictement ergodique de \mathbb{T}^1 préservant la mesure $d\theta$. Il en de même de $R_{n\alpha}$, $n \in \mathbb{Z} - \{0\}$.

(1.2) $SL(2,\mathbb{R}) \rightarrow PSL(2,\mathbb{R})$ agit canoniquement sur $\mathbb{P}_1(\mathbb{R})$ à gauche. Au produit gauche (α, A) on associe le difféomorphisme

$$(\theta, y) \in \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R}) \xrightarrow{G\alpha} (\theta + \alpha, A_{\theta}(y)) \in \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R}).$$

(1.3) On considère $\Gamma \subset SL(2,\mathbb{R})$ un sous-groupe discret à quotient compact et on suppose, pour simplifier, que $SL(2,\mathbb{R})/\Gamma$ est le fibré tangent unitaire à une surface compacte orientable de courbure négative constante = -1. Voir, par example [7].

On pose $M_1 = \operatorname{SL}(2,\mathbb{R})/\Gamma$. Le groupe $\operatorname{SL}(2,\mathbb{R})$ agit sur M_1 à gauche par $(g,h\cdot\Gamma) \to gh\Gamma$ préservant l'unique mesure de probabilité ν d'espace homogène de M_1 , et en fait ν peut être définie par une forme volume C^{ω} (noter que $\operatorname{SL}(2,\mathbb{R})$ est unimodulaire).

[†] Address for correspondence: M. R. Herman, Centre de Mathématiques de l'Ecole Polytechnique, Plateau de Palaiseau, 91128 Palaiseau Cedex, France.

Soit $\mathbb{T}^1 \times SL(2,\mathbb{R})/\Gamma = M$; le groupe $\mathbb{T}^1 \times SL(2,\mathbb{R})$ agit à gauche sur M préservant la mesure $\mu = d\theta \otimes d\nu$, (α, A) agit donc sur M par $(\theta, y) \rightarrow (\theta + \alpha, A_{\theta}y) = F_{\alpha}(\theta, y)$ préservant la mesure μ .

Nous proposons de démontrer le:

THÉORÈME. Il existe $\alpha \in \mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z})$ tel que F_{α} soit un difféomorphisme minimal de M et tel que l'entropie par rapport à la mesure μ vérifie $h_{\mu}(F_{\alpha}) \ge 2 \log (1/2\lambda + \lambda/2)$. Le théorème sera une conséquence immédiate de (5.1) et (5.3)

On rappelle qu'un homéomorphisme h d'un espace topologique X est dit minimal si pour tout $x \in X$, $\{h^n(x)|n \in \mathbb{Z}\}$ est dense dans X. Le lecteur pourra consulter [3].

- 2. Rappels sur le théorème sous additif
- (2.1) On considère un espace métrique compact X (non vide) et $g: X \to X$ un homéomorphisme strictement ergodique préservant une mesure de probabilité λ de X. On suppose que pour tout $k \in \mathbb{Z} \{0\}$, g^k est uniquement ergodique.

On considère $a \in C^0(X, \mathrm{SL}(n, \mathbb{R}))$; au couple (g, a) on associe l'homéomorphisme:

$$G: X \times \mathbb{R}^n \to X \times \mathbb{R}^n$$

 $(x, y) \to (g(x), a_x(y))$

où si $x \in X$, $a(x) \equiv a_x$ avec

$$G^k(x, y) = (g^k(x), a_x^k(y))$$
 pour $k \in \mathbb{Z}$,

et si $n \in \mathbb{N}$,

$$a_x^k = a_{g^{k-1}(x)} \cdot \cdot \cdot a_{g(x)} \cdot a_x.$$

Soit $\|$ une norme de End_R (\mathbb{R}^n). Par le théorème ergodique sous additif [2][6], si $k \to +\infty$, et λ -presque tout x

$$\frac{1}{k}\log\|a_x^k\| \to \lambda_+(g, a) = \inf_{k\geq 1} \frac{1}{k} \int_X \log\|a_x^k\| \, d\lambda(x) \in \mathbb{R}.$$

On définit aussi

$$\lambda_{-}(g, a) = \inf_{k \ge 1} \frac{1}{k} \int_{X} \log \|a_{x}^{-k}\| d\lambda(x).$$

 λ_{+} et λ_{-} sont indépendants de la norme choisie sur End_R (\mathbb{R}^{n}).

(2.2) LEMME. On a $\lambda_+(g, a) \ge 0$.

Démonstration. On choisit $\| \|$ une norme d'algèbre de Banach sur End (\mathbb{R}^n) . Si $B \in SL(n,\mathbb{R})$, on a $\|B\| \|B^{-1}\| \ge 1$ mais en utilisant les cofacteurs, on a $\|B^{-1}\| \le C\|B\|^{n-1}$ et donc, $\|B\| \ge C^{-1/n}$, où C est une constante dépendant que de la norme choisie.

(2.3) On a aussi $\lambda_{-}(g, a) \ge 0$. Si n = 2, en utilisant un argument de convergence en probabilité et en remarquant que si $B \in SL(2, \mathbb{R})$ alors $||B^{-1}|| = ||B||$ où

$$\left\| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\| = \sup (|a|, \ldots, |d|);$$

on conclut que $\lambda_{+}(g, a) = \lambda_{-}(g, a)$.

(2.4) PROPOSITION. Pour tout $\varepsilon > 0$, il existe $k_0 > 0$ tel que, si $k \ge k_0$, $-\varepsilon \le (1/k) \log ||a_x|| \le \lambda_+(g, a) + \varepsilon$.

Démonstration. La minoration résulte de (2.2). On suppose ici que $\| \|$ est une norme d'algèbre de End (\mathbb{R}^n) . Si p et $k \in \mathbb{N}$, on a

$$\frac{1}{kp}\log\|a_x^{kp}\| \le \frac{1}{p}\sum_{i=0}^{p-1}\frac{1}{k}\log\|a_g^{k_{ik}}(x)\|.$$

On pose $\lambda_{+}(g, a) = \lambda_{+}$.

Soit k tel que

$$\frac{1}{k}\int \log \|a_x^k\| d\lambda(x) < \lambda_+ + \varepsilon.$$

Par la stricte ergodicité de g^k on a uniformement en x, si $p \to +\infty$,

$$\frac{1}{pk}\log\|a_x^{kp}\|<\lambda_++\varepsilon.$$

Si on écrit $p_1 = pk + r$, $0 \le r < k$, il suit que

$$\forall \varepsilon > 0, \quad \exists k_0, \qquad p_1 \ge k_0 \Rightarrow \frac{1}{p_1} \log ||a_x^{p_1}|| \le \lambda_+ + \varepsilon.$$

(2.5) On en déduit que, si $k \to +\infty$,

$$\frac{1}{k} \log \|a_x^k\|_{C^0} \to \lambda_+(g, a) \quad \text{avec } \|a_x^k\|_{C^0} = \sup_x \|a_x^k\|.$$

- (2.6) Si $\lambda_+(g, a) = 0$ alors, si $k \to +\infty$, $(1/k) \log ||a_x|| \to 0$ uniformément.
- 3. On se donne (α, A) comme dans (1.1)
- (3.1) Théorème. Si $\alpha \in \mathbb{T}^1 (\mathbb{Q}/\mathbb{Z})$ on a $\lambda_+(\alpha, A) \ge \log (\lambda/2 + 1/2\lambda)$.

Démonstration. Par (2.4), il suffit de démontrer, pour $\alpha \in \mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z})$ fixé

$$\lim_{k \to +\infty} \frac{1}{k} \log \|A_{\theta}^k\|_{C^0} \ge \log \left(\frac{\lambda}{2} + \frac{1}{2\lambda}\right).$$

On considère $SL(2,\mathbb{R}) \subseteq SL(2,\mathbb{C})$ et on considère une norme d'algèbre sur \mathbb{C} de $End_{\mathbb{C}}(\mathbb{C}^2)$. Soit

$$B_{\theta} = U^{-1}A_{\theta}U$$
 avec $U = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$, $U^{-1} = U^*$.

On a

$$U^{-1}A_{\theta}U = U^{-1} \begin{pmatrix} \cos 2\pi\theta & -\sin 2\pi\theta \\ \sin 2\pi\theta & \cos 2\pi\theta \end{pmatrix} UU^{-1} \begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix} U$$
$$= \begin{pmatrix} \exp(-2\pi i\theta) & 0 \\ 0 & \exp(2\pi i\theta) \end{pmatrix} \cdot \Lambda$$

et

$$\Lambda = \begin{pmatrix} a & b \\ b & a \end{pmatrix}, \qquad a = \frac{\lambda}{2} + \frac{1}{2\lambda}, \quad b = \frac{\lambda}{2} - \frac{1}{2\lambda}.$$

Comme U est une matrice constante, on a

$$B_{\theta}^{n} = B_{\theta+(n-1)\alpha} \cdot \cdot \cdot B_{\theta} = U^{-1}A_{\theta}^{n}U.$$

Soit

$$C_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & \exp(4\pi i\theta) \end{pmatrix} \cdot \Lambda;$$

on a

$$B_{\theta} = \begin{pmatrix} \exp(-2\pi i\theta) & 0 \\ 0 & \exp(-2\pi i\theta) \end{pmatrix} C_{\theta} = D_{\theta}C_{\theta}.$$

Or, D_{θ} est une matrice diagonale unitaire. On a donc pour tout $\theta \in \mathbb{T}^1$,

$$||B_{\theta}^n|| = ||C_{\theta}^n||.$$

LEMME. Pour $n \ge 1$, on a

$$C_{\theta}^{n} = \begin{pmatrix} a^{n} + P_{n}^{1}(\theta) & b_{n} + P_{n}^{2}(\theta) \\ P_{n}^{3}(\theta) & P_{n}^{4}(\theta) \end{pmatrix}$$

avec

$$a = \frac{\lambda}{2} + \frac{1}{2\lambda}, \quad b_n \in \mathbb{C} \quad et \quad P_n^k(\theta) = \sum_{\substack{p \geq 1 \ p \geq k}} a_{n,p}^k \exp(4\pi i p \theta), \quad a_{n,p}^k \in \mathbb{C},$$

et les $P_n^k(\theta)$, $1 \le k \le 4$, sont des polynomes trigonométriques.

Démonstration.

$$C_{\theta} = \begin{pmatrix} a & b \\ b \exp(4\pi i\theta) & a \exp(4\pi i\theta) \end{pmatrix} \quad \text{si} \quad \Lambda = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

et le lemme suit par récurrence.

Fin de la démonstration de (3.1). On a

$$\left\| \int_{\mathbb{T}^1} C_{\theta}^n d\theta \right\| \leq \int_{\mathbb{T}^1} \left\| C_{\theta}^n \right\| d\theta \equiv \int_{\mathbb{T}^1} \left\| B_{\theta}^n \right\| d\theta.$$

Or,

$$\int_{\mathbb{T}^1} C_{\theta}^n d\theta = \begin{pmatrix} a^n & b_n \\ 0 & 0 \end{pmatrix}, \quad a = \frac{\lambda}{2} + \frac{1}{2\lambda}.$$

Il en résulte que

$$\lim_{n\to+\infty}\frac{1}{n}\log\|B_{\theta}^n\|_{C^0}\geq\log a$$

et donc,

$$\lim_{n \to +\infty} \frac{1}{n} \log \|A_{\theta}^n\|_{C^0} = \lambda_+(\alpha, A) \ge \log a.$$

(3.2) COROLLAIRE. Pour tout $\alpha \in \mathbb{T}^1$, on a

$$\int_{\mathbb{T}^1} \lambda_+(\alpha, A)(\theta) d\theta \ge \log a \quad o\dot{u} \quad \lambda_+(\alpha, A)(\theta) = \lim_{n \to +\infty} \frac{1}{n} \log ||A_{\alpha, \theta}^n|| \qquad \text{p.p.}$$

Démonstration. Soit $\alpha \to \phi(\alpha) = \inf_{k \ge 1} \int (1/k) \log ||A_{\alpha,\theta}|| d\theta \in \mathbb{R}_+$. L'application $\phi(\alpha)$ est semi-continue supérieurement et donc, l'ensemble

$$F = {\alpha \in \mathbb{T}^1 | \phi(\alpha) \ge \log a}$$
 est fermé dans \mathbb{T}^1 .

Si $\alpha \in \mathbb{T}^1$, on a $\phi(\alpha) = \int \lambda_+(\alpha, A)(\theta) d\theta$; par (3.1) on a

$$\mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z}) \subset F$$

et donc $F = \mathbb{T}^1$.

(3.3) COROLLAIRE. Si $p/q \in \mathbb{Q}/\mathbb{Z}$, il existe θ_0 tel que si $n \to +\infty$, alors $(1/n) \log ||A_{p/q,\theta_0}^n|| \to C \ge \log a$.

Démonstration. Pour tout $\theta \in \mathbb{T}^1$, si $n \to +\infty$, $(1/n) \log ||A_{p/q,\theta}^n|| \to \lambda_+(p/q,A)(\theta)$ et on a

$$\int_{\mathbb{T}^1} \lambda_+(p/q, A)(\theta) d\theta \ge \log a.$$

4. Etude de G_{α}

(4.1) En (1.2), au couple (α, A_{θ}) nous associons un difféomorphisme $G_{\alpha}:(\theta, y) \in \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R}) \to (\theta + \alpha, A_{\theta}y)$ que nous allons étudier. Si on relève le difféomorphisme

$$\bar{f} = \begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix} \in PSL(2, \mathbb{R}) \subseteq Diff_+^{\omega}(\mathbb{T}^1)$$

en un difféomorphisme $f \in D^{\omega}(\mathbb{T}^1) = \{g \in \text{Diff}^{\omega}(\mathbb{R}) | g - \text{Id} \in C^{\omega}(\mathbb{T}^1) \}$ on peut relever $\theta \in \mathbb{T}^1 \to A_{\theta} \in \text{PSL}(2, \mathbb{R}) = \text{SL}(2, \mathbb{R}) / \{-1, 1\}$ en $\theta \in \mathbb{R} \to 2\theta + f \equiv f_{\theta} \in D^{\omega}(\mathbb{T}^1)$.

- (4.2) Rappelons que si $g \in D^0(\mathbb{T}^1)$ on associe son nombre de rotation $\rho(g) \in \mathbb{R}$, l'application $g \to \rho(g)$ est continue et pour tout $k \in \mathbb{Z}$, on a $|g^k k\rho(g) \mathrm{Id}|_{C^0} < 1$. Pour les propriétés du nombre de rotation cf. [4, II et III].
- (4.3) Remarques. (a) Si on veut relever $\theta \in \mathbb{T}^1 \to A_\theta \in SL(2, \mathbb{R})$, il faut considérer $\theta \to \theta + h$ où $h(x) = \frac{1}{2}f(2x) \in D^\omega(\mathbb{T}^1)$.
- (b) Tout élément $A \in \operatorname{PSL}(2,\mathbb{R}) \subseteq \operatorname{Diff}^{\omega}_{+}(\mathbb{T}^{1})$ est conjugué dans $\operatorname{PSL}(2,\mathbb{R})$ a une matrice de la forme suivante:

$$\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix}$$
, $\mu \in \mathbb{R}_+^*$, $\mu \neq 1$, appelé matrice hyperbolique;

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
 ou $\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$, $t \in \mathbb{R}^*$, appelé matrice parabolique;

$$\begin{pmatrix} \cos 2\pi\alpha & -\sin 2\pi\alpha \\ \sin 2\pi\alpha & \cos 2\pi\alpha \end{pmatrix}$$
, $\alpha \in \mathbb{R}$, appelé matrice elliptique.

De plus, si $\rho(A) \neq 0 \pmod{1}$ alors A est une matrice elliptique. On pose $f_{\alpha,\theta}^n = f_{\theta+(n-1)\alpha} \circ \cdots \circ f_{\theta+\alpha} \circ f_{\theta}$, $\rho(f_{\alpha,\theta}^n) = \psi_{\alpha}^n(\theta)$ qui est une fonction continue de θ et α .

(4.4) LEMME. On $a \psi_{\alpha}^{n}(\theta + \frac{1}{2}) = n + \psi_{\alpha}^{n}(\theta)$.

Démonstration. Cela vient de: si $f \in D^0(\mathbb{T}^1)$ on a $\rho(1+f) = 1 + \rho(f)$.

(4.5) LEMME. Si $\theta_1 < \theta_2$ on a $\psi_{\alpha}^n(\theta_1) \le \psi_{\alpha}^n(\theta_2)$.

Démonstration. Si f et g sont dans $D^0(\mathbb{T}^1)$, on écrit f < g si, pour tout $x \in \mathbb{R}$ on a f(x) < g(x). Si $f_1 < g_1$ et $f_2 < g_2$ alors $f_1 \circ f_2 < g_1 \circ g_2$. Si $\alpha \in \mathbb{R}$ et si $\theta_1 < \theta_2$ alors $2(\theta_1 + \alpha) + f < 2(\theta_2 + \alpha) + f$. On a donc pour $\theta_1 < \theta_2$, $f_{\alpha,\theta_1}^n < f_{\alpha,\theta_2}^n$ et donc $\psi_{\alpha}^n(\theta_1) \le \psi_{\alpha}^n(\theta_2)$.

(4.6) LEMME. Soit $p/q \in \mathbb{Q}$, (p, q) = 1 alors

$$\psi_{p/q}^{q}(\theta+1/q)=\psi_{p/q}^{q}(\theta)+2.$$

Démonstration. Puisque ρ est un invariant de conjugaison, on a pour tout f et g dans $D^0(\mathbb{T}^1)$, $\rho(f \circ g) = \rho(g \circ f)$ et donc $\psi_{p/q}^q(\theta + p/q) = \psi_{p/q}^q(\theta) + 2p$ et le lemme suit de (4.4).

(4.7) LEMME. Soit $p/q \in \mathbb{Q}$, (p,q) = 1; si pour θ_0 , $A_{p/q,\theta_0}^q = \operatorname{Id} \in \operatorname{PSL}(2,\mathbb{R})$, alors pour $\theta > \theta_0$ (resp. $\theta < \theta_0$) on a $\psi_{p/q}^q(\theta) > \psi_{p/q}^q(\theta_0)$ (resp. $\psi_{p/q}^q(\theta_0) > \psi_{p/q}^q(\theta)$).

Démonstration. On suppose que $\theta > \theta_0$ (l'autre cas étant analogue). On a $\psi_{p/q}^q(\theta) \ge \psi_{p/q}^q(\theta_0)$; mais $f_{p/q,\theta}^q > f_{p/q,\theta_0}^q = R_k$, $k \in \mathbb{Z}$. Si on avait $\psi_{p/q}^q(\theta) = \psi_{p/q}^q(\theta_0) = k$ alors $R_{-k} \circ f_{p/q,\theta}^q$ aurait un point fixe et par l'absurde, il suit que $\psi_{p/q}^q(\theta) > \psi_{p/q}^q(\theta_0)$.

(4.8) LEMME. Soit $p/q \in \mathbb{Q}/\mathbb{Z}$, (p,q)=1; si $A_{p/q,\theta_0}^q$ est une matrice parabolique de $PSL(2,\mathbb{R})$ il est de même de $A_{p/q,\theta_0+i/q}^q$ pour $i=1,\ldots,q-1$.

Démonstration. Soit $\theta \in \mathbb{T}^1$ fixé. Alors pour $0 \le i \le q-1$ les matrices $A_{p/q,\theta+i/q}^q$ sont conjuguées dans PSL $(2,\mathbb{R})$.

(4.9) PROPOSITION. Pour tout $p/q \in \mathbb{Q}/\mathbb{Z}$, (p,q) = 1, il existe $\theta_0 \in \mathbb{T}^1$ tel que les matrices $A^q_{p/q,\theta_0+i/q}$ soient des matrices paraboliques de PSL $(2,\mathbb{R})$.

Démonstration. Par (3.3), il existe θ tel que $A_{p/q,\theta}^q$ soit une matrice hyperbolique. Par (4.3) (b) $\psi_{p/q}^q(\theta) = k \in \mathbb{Z}$.

Soit $\theta_0 = \sup \{\theta | \psi_{p/q}^q(\theta) = k\}$. Alors $A_{p/q,\theta_0}^q$ est une matrice parabolique. En effet, si $A_{p/q,\theta_0}^q$ est hyperbolique, alors, par (4.5) et [4, III], il existe $\theta_1 > \theta_0$ tel que $\psi_{p/q}^q(\theta_1) = k$, ce qui est absurde. Si $A_{p/q,\theta_0}^q = \text{Id alors}$, par (4.7), $\psi_{p/q}^q(\theta) < k$ si $\theta < \theta_0$ et il n'existerait pas de θ tel que $A_{p/q,\theta}^q$ soit hyperbolique et vérifiant $\psi_{p/q}^q(\theta) = k$, ce qui est absurde. La proposition résulte alors de (4.8).

- 5. On considère le difféomorphisme F_{α} définie en (1.3) agissant sur $M = \mathbb{T}^1 \times M_1$ préservant la mesure μ
- (5.1) PROPOSITION. Pour tout $\alpha \in \mathbb{T}^1$ on a $h_{\mu}(F_{\alpha}) \ge 2 \log (\lambda/2 + 1/2\lambda)$.

Démonstration. Puisque la mesure μ est de densité C^{ω} par rapport à la mesure de Lebesgue, on a, par Pesin [5],

$$h_{\mu}(F_{\alpha}) \ge \inf_{n \ge 1} \frac{1}{n} \int_{M} \log \|DF_{\alpha}^{n}(x)\| d\mu(x)$$

où $DF_{\alpha}^{n}(x): T_{x}(M) \to T_{F_{\alpha}^{n}(x)}(M)$ est l'application tangente de F_{α}^{n} (en x). (Dans l'exemple ici considéré, on peut vérifier [5] à titre d'exercice: l'existence et l'absolue continuité des feuilletages stables et instables.)

 DF_{α} laisse invariant le sous-fibré ξ de T(M) des vecteurs tangents aux fibres de la fibration $M_1 \to (\mathbb{T}^1 \times M_1) \to \mathbb{T}^1$.

Comme $M_1 = \operatorname{SL}(2,\mathbb{R})/\Gamma$ (i.e. $h\Gamma$) et que pour $\tilde{F}_{\alpha}: \mathbb{T}^1 \times \operatorname{SL}(2,\mathbb{R}) \supset$ définie par $\tilde{F}_{\alpha}(\theta, y) = (\theta + \alpha, A_{\theta} \cdot y)$, l'action de $D\tilde{F}_{\alpha}$ sur ξ s'identifie à l'action de Φ :

$$\mathbb{T}^{1} \times \mathrm{SL}(2,\mathbb{R}) \times T_{y}(\mathrm{SL}(2,\mathbb{R})) \xrightarrow{\Phi} \mathbb{T}^{1} \times \mathrm{SL}(2,\mathbb{R}) \times T_{A_{\theta} \cdot y}(\mathrm{SL}(2,\mathbb{R}))$$

$$(\theta, y, v) \rightarrow (\theta + \alpha, A_{\theta} \cdot y, (DL_{A_{\theta}})_{v}v)$$

où $L_g(h) = gh$ et $R_g(h) = hg$.

Si on identifie $T_y(SL(2,\mathbb{R}))$ aux champs de vecteurs invariants par les translations à droites de $SL(2,\mathbb{R}) \equiv SL =$ algèbre de Lie de $SL(2,\mathbb{R})$, on est ramené à étudier le produit gauche:

$$\mathbb{T}^{1} \times SL \to \mathbb{T}^{1} \times SL$$
$$(\theta, v) \to (\theta + \alpha, Ad_{A_{\theta}}(v))$$

où $Ad_{A_{\theta}}$ est l'application tangente en $h = \text{Id de l'application } h \to A_{\theta} \cdot h \cdot A_{\theta}^{-1}$.

Comme en tout point $x = (\theta, g) \in M$ on a

$$\frac{1}{n}\log \|DF_{\alpha}^{n}(x)\| \geq \frac{1}{n}\log \|Ad_{A_{\theta+(n-1)\alpha}}\cdots Ad_{A_{\theta}}\|.$$

Il suit du lemma 5.2 que

$$\frac{1}{n}\log \|DF_{\alpha}^{n}(x)\| \ge \frac{1}{n}2\log \|A_{\alpha,\theta}^{n}\|$$

et donc,

$$\int_{M} \frac{1}{n} \log \|DF_{\alpha}^{n}(x)\| d\mu(x) \ge 2 \int_{\mathbb{T}^{1}} \frac{1}{n} \log \|A_{\alpha,\theta}^{n}\| d\theta$$

et il suffit d'appliquer (3.1) et (3.2) pour conclure.

(5.2) LEMME. On choisit pour base de SL,

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad et \quad e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Si

$$C = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$$

alors

$$Ad_C = \begin{pmatrix} ad + bc & -ac & bd \\ -2ab & a^2 & -b^2 \\ 2cd & -c^2 & d^2 \end{pmatrix} \in SL(3, \mathbb{R}).$$

Si on choisit pour norme de $B = (a_{ij}) \in SL(n, \mathbb{R})$, $||B|| = \sup |a_{ij}|$ alors on a $2||C||^2 \ge ||Ad_C|| \ge ||C||^2$.

Démonstration. Soit $v \in SL$, exp (tv) le groupe à un paramètre associé à v. Alors

$$Ad_C(v) = \frac{d}{dt}(C \exp(tv)C^{-1})|_{t=0} \in SL.$$

Puis il suffit de faire le calcul.

(5.3) THÉORÈME. Il existe $\alpha \in \mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z})$ tel que le difféomorphisme F_{α} de M soit minimal.

Démonstration. Nous allons montrer par catégorie de Baire qu'il existe $G \subset \mathbb{T}^1$, G est un G_{δ} dense, tel que si $\alpha \in G$ alors F_{α} soit un difféomorphisme minimal de M.

Commençons par remarquer que l'application $\alpha \to F_{\alpha} \in \text{Hom\'eo}(M)$ est continue pour la topologie compacte ouverte. $F_{\alpha} \in \text{Hom\'eo}(M)$ est minimal si et seulement si, pour tout ouvert $U_i \neq \emptyset$ ($(U_i)_{i \in \mathbb{N}}$ est une base d'ouverts non vide de M) il existe $n \in \mathbb{N} \text{ tel que } \bigcup_{0 \le p \le n} F_{\alpha}^{p}(U_i) = M.$

Pour i fixé, posons $W_i = \{\alpha \in \mathbb{T}^1 | \exists n \in \mathbb{N}, \bigcup_{0 \le p \le n} F_{\alpha}^p(U_i) = M \}$. Par [3], W_i est ouvert. Si on montre que W_i est dense dans \mathbb{T}^1 alors $\bigcap_{i \in \mathbb{N}} W_i = G$ est un G_{δ} dense et si $\alpha \in G$, alors F_{α} est un difféomorphisme minimal de M. On note W_i aussi par W_{U_i} .

Tout revient à voir que l'ouvert W_i est dense. On est ramené à étudier le cas où $U_i = I \times V, I = [a, b] \subset \mathbb{T}^1$ et V est ouvert non vide de M_1 (difféomorphe à une boule ouverte de \mathbb{R}^3).

Soit $p/q \in \mathbb{Q}/\mathbb{Z}$, (p,q) = 1, vérifiant 1/q < (b-a)/2. Par (4.9), il existe $\theta_0 \in]a, b[$ tel que $A_{p/q,\theta_0}^q$ soit une matrice parabolique; elle est donc conjuguée au temps $t \neq 0$ du flot horocyclique sur $\{\theta_0\} \times M_1$. Il suite de (7.3) que le difféomorphisme $y \rightarrow F_{p/q}^q(\theta_0, y)$ de $\{\theta_0\} \times M_1$ est minimal.

Il en résulte qu'il existe $n \in \mathbb{N}$ tel que l'ouvert $U = \bigcup_{0 \le k \le n} F_{p/q}^{kq}(I \times V)$ vérifie $U \supset \{\theta_0\} \times M_1$.

Soit $K = [a_1, b_1] \times M_1$, $a_1 \neq b_1$, tel que $K \subseteq U$ et $\theta_0 \in]a_1$, $b_1[$. Soient $(C_k)_{0 \leq k \leq n}$ des ensembles compacts $(\neq \emptyset)$ tels que $\bigcup_{0 \leq k \leq n} (C_k \cap K) = K$ et vérifiant $C_k \subseteq F_{p/q}^{kq}(I \times V)$.

Soit l'ouvert (défini par une condition ouverte pour la topologie compacte ouverte): $V_k = \{ \alpha \in \mathbb{T}^1 | F_{\alpha}^{-kq}(C_k) \subset I \times V \}; V_k \neq \emptyset \text{ puisque } p/q \in V_k.$

Si
$$\alpha \in \bigcap_{0 \le k \le n} V_k \ne \emptyset$$
, on a

$$\bigcup_{0 \le k \le n} F_{\alpha}^{kq}(I \times V) \supset (]a_1, b_1[\times M_1).$$

Si de plus, $\alpha \in \mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z})$, alors

$$\bigcup_{n\in\mathbb{N}} F_{\alpha}^{n}(]a_{1},b_{1}[\times M_{1})=M^{n}$$

et donc, $\alpha \in W_{I \times V}$.

Nous avons ainsi démontré que $W_{I\times V}$ est dense puisqu'il contient dans son adhérence tous les $p/q \in \mathbb{Q}/\mathbb{Z}$ vérifiant (p,q) = 1, 1/q < (b-a)/2.

6. Etude du difféomorphisme G_{α}

On considère le difféomorphisme

$$G_{\alpha}: (\theta, y) \in \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R}) \rightarrow (\theta + \alpha, A_{\theta}(y)) \in \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R}).$$

(6.1) THÉORÈME. Il existe $\alpha \in \mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z})$ tel que le difféomorphisme G_α soit minimal sur $\mathbb{T}^2 \cong \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R})$.

Démonstration. Nous laissons le lecteur vérifier que la démonstration de (5.3) s'adapte en utilisant la remarque suivante. Pour tout $p/q \in \mathbb{Q}/\mathbb{Z}$ il existe $\theta_0 \in \mathbb{T}^1$, tel

que pour $0 \le i \le q-1$ les difféormorphismes $y \in \mathbb{P}_1(\mathbb{R}) \to G^q_{p/q}(\theta_0 + (i/q), y) \in \mathbb{P}_1(\mathbb{R})$ sont conjugués à une rotation irrationelle (et donc minimale). Il suffit d'utiliser la continuité de $\psi^q_{p/q}(\theta)$ et d'appliquer (4.3) (b), (4.4) et (4.5).

(6.2) PROPOSITION. Si $\alpha \in \mathbb{T}^1 - (\mathbb{Q}/\mathbb{Z})$ le difféomorphisme G_{α} a deux mesures de probabilités invariantes et ergodiques.

Démonstration. Si μ est une mesure invariante, alors $p_*(\mu) = d\theta$ où $p: \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R}) \to \mathbb{T}^1$ est la première projection.

Puisque $\lambda_+(\alpha, A) > 0$, par le théorème d'Osedelec [6], pour $d\theta$ -presque tout θ il existe v_{θ}^+ et v_{θ}^- dans $\mathbb{P}_1(\mathbb{R})$ (i.e. des directions de \mathbb{R}^2) tel que

$$\lim_{k \to \pm \infty} \frac{1}{|k|} \sum_{i=0}^{k-1} \phi \circ G_{\alpha}^{i}(\theta, v_{\theta}^{+}) = \lambda_{+}(\alpha, A)$$

$$\lim_{k \to \pm \infty} \frac{1}{|k|} \sum_{i=0}^{k-1} \phi \circ G_{\alpha}^{i}(\theta, v_{\theta}^{-}) = -\lambda_{+}(\alpha, A)$$

où $\phi(\theta, v) = \log(\|A_{\theta}v\|/\|v\|)$ est une fonction continue de $(\theta, v) \in \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R})$.

De plus, pour $d\theta$ -presque tout θ et tout v_{θ} , $v_{\theta} \neq v_{\theta}^{+}$ ou v_{θ}^{-} , on a

$$\lim_{k \to \pm \infty} \frac{1}{k} \sum_{i=0}^{k-1} \phi \circ G_{\alpha}^{i}(\theta, v_{\theta}) = \lambda_{+}(\alpha, A) \tag{*}$$

ou si $k \le 0, k \in \mathbb{Z}, \sum_{i=0}^{k-1} \phi \circ G_{\alpha}^{i} = \sum_{i=0}^{-(k-1)} \phi \circ G_{\alpha}^{-i}.$

(Noter que

$$\sum_{i=0}^{k-1} \phi \circ G_{\alpha}^{i}(\theta, v) = \begin{cases} \log (\|A_{\alpha, \theta}^{k} v\| / \|v\|) & \text{si } k \ge 1 \\ -\log (\|A_{\alpha, \theta}^{k-1} v\| / \|v\|) + \phi(\theta, v) & \text{si } k \le 0. \end{cases}$$

Il suit qu'il existe deux mesures de probabilités μ_+ et μ_- ayant pour supports boréliens les graphes des applications $d\theta$ -mesurables $\theta \to v_{\theta}^-$ et $\theta \to v_{\theta}^-$. Comme μ_+ et

 μ_- se projettent sur $d\theta$, μ_+ et μ_- sont ergodiques pour G_α et vérifient $\int_{\mathbb{T}^2} \phi \ d\mu_{\pm} = \pm \lambda_+(\alpha, A)$.

Par (*),
$$\mu_+$$
 et μ_- sont les seules mesures ergodiques de G_{α} .

(6.3) PROPOSITION.† Soit α tel que G_{α} est un difféomorphisme minimal de $\mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R})$; alors l'ensemble

$$G = \left\{ (\theta, v) \in \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R}) \middle| \text{ si } k \to +\infty, \frac{1}{k} \sum_{i=0}^{k-1} \phi \circ G_{\alpha}^i(\theta, v) \text{ n'a pas de limite} \right\}$$

contient un G_{δ} dense de $\mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R})$.

Démonstration. Puisque G_{α} est minimal et par ce nous avons rappelé dans la démonstration de (6.2), alors les ensembles

$$G_{\pm} = \left\{ x \left| \liminf_{k \to +\infty} \left| \frac{1}{k} \sum_{i=0}^{k-1} \phi \circ G_{\alpha}^{i}(x) \pm \lambda_{+}(\alpha, A) \right| = 0 \right\}$$

sont des G_{δ} dense, et $G \supset G_{+} \cap G_{-}$.

[†] Voir aussi, R. A. Johnson, J. Diff. Eq. 28, (1978), 23-34.

(6.4) PROPOSITION. Soit α tel que G_{α} est un difféomorphisme minimal. Alors il existe $\theta \in \mathbb{T}^1$ tel que, si $k \to +\infty$, $(1/k) \log ||A_{\alpha,\theta}^k||$ n'a pas de limite.

Démonstration. Il résulte de la démonstration de [6] que, si $\theta \in \mathbb{T}^1$ et $k \to +\infty$, $(1/k) \log ||A_{\alpha,\theta}^k||$ converge, alors pour tout $v \in \mathbb{P}_1(\mathbb{R})$, si $k \to +\infty$,

$$\frac{1}{k}\log(\|A_{\alpha,\theta}^k v\|/\|v\|) = \frac{1}{k}\sum_{i=0}^{k-1}\phi\circ G_{\alpha}^i(\theta,v) \text{ a une limite.}$$

 \Box

La proposition résulte alors de (6.3).

(6.5) Description du difféomorphisme G_{α}

On suppose que G_{α} est minimal et que μ_{+} est la mesure ergodique invariante associée à $\lambda_{+}(\alpha, A)$. G_{α} a deux exposants de Lyapunov: $-2\lambda_{+}(\alpha, A) < 0$ et 0 (i.e. les exposants de (G_{α}, μ_{+}) pour le produit gauche de la dérivée de G_{α} , DG_{α} , sur le fibré tangent de $\mathbb{T}^{1} \times \mathbb{P}_{1}(\mathbb{R})$). Pour presque tout θ , la variété stable en $(\theta, v_{\theta}^{+}) \in \text{supp}(\mu_{+})$ est $\{\theta\} \times (\mathbb{P}_{1}(\mathbb{R}) - v_{\theta}^{-})$.

Le lemme suivant montre en certain sens qu'il n'existe pas de variété invariante par G_{α} tangente à la direction neutre.

LEMME. Soit $I \subset \mathbb{T}^1 \times \mathbb{P}_1(\mathbb{R})$ un arc de courbe plongé et se projectant sur un intervalle $[a,b] \subset \mathbb{T}^1$, $a \neq b$. Alors les intervalles $G^i_{\alpha}(I)$ s'intersectent une infinité de fois, si $i \to +\infty$.

Démonstration. Quitte à remplacer I par $G^p_{\alpha}(I)$, $0 \le p \le n_0$, n_0 étant tel que $\bigcup_{0 \le p \le n_0} R_{p\alpha}(]a, b[) = \mathbb{T}^1$, en utilisant (4.5) et (4.6) on peut supposer qu'il existe un arc

 $J \subseteq I$ se projectant sur $[c, d] \subseteq]a, b[, c \ne d]$, et une suite d'entiers (n_i) tel que si $i \to +\infty$, $n_i \to +\infty$ et vérifiant $n_i \alpha \to 0 \pmod{1}$ et $\psi_{\alpha}^{n_i}(d) - \psi_{\alpha}^{n_i}(c) \to +\infty$. On conclut alors en remarquant si $\theta \in]c, d[$ on a sup $|f_{\alpha,\theta}^{n_i}(x) - \psi_{\alpha}^{n_i}(\theta) - x| < 1$ et donc, si $i \to +\infty$,

 $G_{\alpha}^{n_i}(J)$ doit récupérer I une infinité de fois et $G_{\alpha}^{n_i}(J)$ n'est pas inclus dans I (figure 1).

7. Rappels sur le flot horocyclique

(7.1) Soit Γ_1 un groupe discret de PSL (2, \mathbb{R}) à quotient compact:

$$M_1 = \text{PSL}(2, \mathbb{R})/\Gamma_1 = \text{SL}(2, \mathbb{R})/\Gamma.$$

Soit g, le groupe à paramètre

$$g_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
 ou $g_t = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$.

 g_t définit un flot ou action de \mathbb{R} sur M_1 définie par $h\Gamma \to g_t h\Gamma$.

(7.2) On montre que le flot horocyclique g_t sur M_1 est une action minimale de \mathbb{R} sur la variété compacte M_1 qui est ergodique pour la mesure ν d'espace homogène [1]. (7.3) Pour tout $t \in \mathbb{R}^*$, g_t est un difféomorphisme minimal de M_1 (i.e. le flot g_t est totalement minimal).

En effet, il existe un $t_0 \in \mathbb{R}^*$ tel que g_{t_0} (et donc g_{-t_0}) soit un difféomorphisme minimal de M_1 .

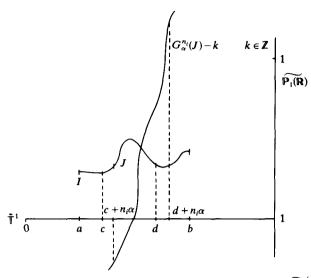


FIGURE 1. Dessin dans le revêtement universel $\mathbb{R} \times \mathbb{R}$ de $\mathbb{T}^1 \times \widetilde{\mathbb{P}_1(\mathbb{R})}$.

Puis il suffit de remarquer que les flots g_t et g_{k^2} , $k \in \mathbb{R}^*$ sont conjugués dans Diff (M_1) : on a

$$\binom{k}{0} \binom{1}{1/k} \binom{1}{0} \binom{1}{1} \binom{1/k}{0} \binom{1}{k} = \binom{1}{0} \binom{k^2t}{1}$$

et

$$\binom{k}{0} \quad \binom{0}{1/k} \binom{1}{t} \binom{1}{t} \binom{1/k}{0} \quad \binom{0}{k} = \binom{1}{k^{-2}t} \quad \binom{0}{1}.$$

Il suit de (4.3), que toute matrice parabolique de PSL $(2, \mathbb{R})$ définit un difféomorphisme minimal de M_1 .

(7.4) On suppose que V est une surface compacte orientable de courbure négative constante = -1. Comme le revêtement universel est isométriquement le disque de Poincaré, on peut choisir $\Gamma_1 = \pi_1(V)$ et tel que $M_1 = \text{PSL }(2, \mathbb{R})/\Gamma_1$ soit le fibré tangent unitaire de V.

On suppose que V a une involution isométrique renversant l'orientation S. Bien qu'en général, une surface V comme ci-dessus ne possède pas d'involution S; on peut très simplement construire V avec une involution S, en supposant par exemple, que le domaine fondamental de V dans le disque de Poincaré est un polygone régulier.

LEMME. Sous les hypothèses ci-dessus le flot horocyclique g_i de M_1 est conjugué dans $Diff^{\omega}(M_1)$ au flot g_{-i} .

Démonstration. S définit un élément $S \in PGL(2, \mathbb{R}) = GL(2, \mathbb{R})/\{\lambda Id, \lambda \in \mathbb{R}^*\}$, PGL $(2, \mathbb{R})$ étant le groupe des isométries (y compris ceux qui renversent l'orientation) du disque de Poincaré. Après conjugaison dans PSL $(2, \mathbb{R})$ on peut supposer

que S est l'image de $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. On a $S\Gamma_1 S = \Gamma_1$ et donc S définit un difféomorphisme \mathbb{R} -analytique de $M: h\Gamma_1 \to ShS\Gamma_1$.

Comme

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix}$$

et que tous les groupes à un paramètre parabolique sont conjugués dans PSL $(2, \mathbb{R})$ soit à

$$t \to \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

soit à

$$t \to \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix},$$

le résultat suit.

(7.5) La proposition suivante est une source de difficultés pour des généralisations. On se donne M_1 comme en (7.4) avec un automorphisme S tel que $Sg_cS^{-1} = g_{-t}$.

PROPOSITION. Soit l'action de \mathbb{R}^2 sur $M_1 \times M_1$ définie par $f_t(x, y) = g_{t_1} \times g_{t_2}(x, y) = (g_{t_1}(x), g_{t_2}(y)) \in M_1 \times M_1$ pour $t = (t_1, t_2) \in \mathbb{R}^2$. Cette action est minimale. Si $\psi : \mathbb{R} \to \mathbb{R}^2$ est un homomorphisme continu alors l'action de \mathbb{R} , $g_{\psi(t)}$ sur $M_1 \times M_1$ n'est jamais minimale.

Démonstration. $\psi(t) = (at, bt)$ a et $b \in \mathbb{R}$. On peut supposer que $ab \neq 0$. Alors, par (7.3) et (7.4), $f_{\psi(t)}$ est conjugué à l'action de $g_t \times g_t$ sur $M_1 \times M_1$ qui n'est pas minimale.

REFERENCES

- [1] L. Auslander, L. Green & F. Hahn. Flows on Homogeneous Spaces, Ann. of Math. Studies No. 53. Princeton University Press: Princeton 1963. (Voir aussi dans cette référence, G. A. Hedlund 1.)
- [2] Y. Derriennic. Sur le théorème ergodique sous additif. C. R. Acad. Sc. Paris 281 (1975), 985-988.
- [3] A. Fathi & M. R. Herman. Existence de difféomorphismes minimaux. Proc. Conf. Systèmes dynamiques, Varsovie (1977), Astérisque 49 (1979), 37-59.
- [4] M. R. Herman. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. *Publ. de l'I. H. E. S.* 49, (1979), 5-234.
- [5] J. B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32
 (4) (1977), 55-114.
- [6] D. Ruelle. Ergodic theory of differentiable dynamical systems. Publ. de l'I. H. E. S. 50 (1980), 27-58.
- [7] C. L. Siegel. Topics in Complex Function Theory, vol. 2. Wiley-Interscience: New York, 1971.