BULL. AUSTRAL. MATH. SOC. Vol. 61 (2000) [173-174]

Nonmetrisable manifolds

SINA GREENWOOD

Nyikos [1] has defined a tree, denoted Υ , associated with any given Type I space. This thesis examines the properties of an Υ -tree if the space is a Type I nonmetrisable manifold. It is shown that a tree, T, is an Υ -tree of a Type I manifold if and only if T is a well-pruned ω_1 -tree. Furthermore, if T is any well-pruned ω_1 -tree, there are 2^{\aleph_1} different Type I manifolds for which T is the Υ -tree. The relationships between the properties of a Type I manifold and the properties of its Υ -tree are examined. It is shown that whenever a Type I manifold contains a copy of ω_1 , its Υ -tree must contain an uncountable branch. The thesis then addresses the problem of whether or not an arbitrary tree T admits a Type I manifold which is ω_1 -compact. If T does not contain an uncountable antichain, or a Suslin subtree, then there exists a Type I manifold with Υ -tree T. If T contains an uncountable antichain, then whether there exists an ω_1 -compact Type I manifold with Υ -tree T is undecidable. (*) implies there does not exist such a tree while \diamondsuit implies that there does. If we assume \clubsuit^+ , then at least one such manifold exists. \diamondsuit also implies that if T contains a Suslin subtree, then there exists an ω_1 -compact manifold with Υ -tree T.

Nyikos has recently defined a Type II space. We may associate an Υ -tree with such a space. This thesis shows that a Tree, T, admits a Type II manifold if and only if T has height not greater than ω_1 , and each level has cardinality no greater than c.

The final chapter examines the relationship between microbundles and fibre bundles over nonmetrisable manifolds. In 1964 Milnor [2] defined the notion of a microbunble. He ceased developing the theory of microbundles when later in the same year Kister showed that a microbundle over a metrisable manifold is equivalent to a fibre bundle. This thesis proves that the tangent microbundle over a manifold is a fibre bundle if and only if the manifold is metrisable. As a consequence of this we obtain further properties equivalent to metrisability in a manifold.

Received 6th September, 1999

Thesis submitted to the University of Auckland, March 1999. Degree approved, July 1999. Supervisors: Professor David Gauld and Dr David McIntyre.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

S. Greenwood

[2]

References

- P. Nyikos, 'The theory of nonmetrizable manifolds', in *Handbook of Set-theoretic Topology*, (K. Kunen and J.E. Vaughan, Editors) (North-Holland, Amsterdam, New York, 1984), pp. 633-684.
- [2] J. Milnor, 'Microbundles Part I', Topology 3 (1964), 53-80.

Department of Mathematics The University of Auckland Private Bag 92019 Auckland New Zealand