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INVERTIBLE BIMODULES, MIYASHITA ACTION IN
MONOIDAL CATEGORIES AND AZUMAYA MONOIDS

ALESSANDRO ARDIZZONI and LAIACHI EL KAOUTIT

Abstract. In this paper we introduce and study Miyashita action in the

context of monoidal categories aiming by this to provide a common framework

of previous studies in the literature. We make a special emphasis of this

action on Azumaya monoids. To this end, we develop the theory of invertible

bimodules over different monoids (a sort of Morita contexts) in general

monoidal categories as well as their corresponding Miyashita action. Roughly

speaking, a Miyashita action is a homomorphism of groups from the group of

all isomorphic classes of invertible subobjects of a given monoid to its group

of automorphisms. In the symmetric case, we show that for certain Azumaya

monoids, which are abundant in practice, the corresponding Miyashita action is

always an isomorphism of groups. This generalizes Miyashita’s classical result

and sheds light on other applications of geometric nature which cannot be

treated using the classical theory. In order to illustrate our methods, we give a

concrete application to the category of comodules over commutative (flat) Hopf

algebroids. This obviously includes the special cases of split Hopf algebroids

(action groupoids), which for instance cover the situation of the action of an

affine algebraic group on an affine algebraic variety.
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Introduction

0.1 Motivation and overview

The notion of what is nowadays known as an Azumaya algebra was first

formulated by Azumaya in [4, page 128] where he introduced the Brauer

group of a local ring [4, page 138], generalizing by this the classical notion

of Brauer group of a field which was extremely important in developing the

arithmetic study of fields.

For a general commutative base ring, this notion was recovered later on by

Auslander and Goldman in [3], where several new properties of Azumaya

algebras were displayed; see for instance [3, Section 3]. In [2], Auslander

extended this notion to ringed spaces, in the case of a topological space

endowed with its structural sheaf of rings of continuous complex valued

functions; Azumaya algebras1 are interpreted as locally trivial algebra

bundles whose fibers are central simple complex algebras (that is, square

matrixes over complex numbers). As was shown by Grothendieck in [19,

1.1], the set of isomorphic classes of Azumaya algebras with constant rank

n2 over a topological space, is identified with the set of isomorphic classes of

GP (n)-principal bundles with base this space. Here GP (n) is the projective

1Or Azumaya monoid in the abelian symmetric monoidal category of quasi-coherent
sheaves.
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INVERTIBLE BIMODULES, MIYASHITA ACTION AND AZUMAYA MONOIDS 3

group with n variables over the complex numbers. By using the classifying

space of this group, a homotopic interpretation of these Azumaya algebras

over CW -complexes, is also possible [19, 1.1].

Naturally, with a compact base space, the global sections of an Azumaya

algebra bundle give rise to an Azumaya algebra over the ring of continuous

complex valued functions (the base ring). In this way, those Azumaya

algebra bundles of rank n2 lead to Azumaya algebras which are finitely

generated and projective of locally constant rank n2 as modules over the

base ring. By the classification theorem [18, Théorème 6.6, Corollaire 6.7], a

given Azumaya algebra is of this form if and only if it is a twisted form [18,

(c) page 29] of an n-square matrixes algebra with coefficients in the base ring.

The latter condition can be interpreted in the case of smooth manifolds2, by

saying that there is a surjective submersion to the base manifold such that

the induced bundle of any Azumaya algebra bundle of rank n2 is a trivial

bundle.

There is no doubt then that Azumaya algebras are extremely rich objects

which, along the last decades, have attracted the attention of several

mathematicians from different areas. Unfortunately, we have the feeling that

Azumaya algebras have not been deeply investigated in the general setting of

abelian monoidal categories. However, the concept of an Azumaya monoid in

symmetric monoidal categories has been earlier introduced in the literature,

[11, 26, 30].

The main motivation of this paper is to try to fulfil this lack of investi-

gation by introducing and studying Miyashita action on Azumaya monoids

in abelian symmetric monoidal categories. Although the results displayed

here can be applied to other situations, we limit ourselves to a concrete

application concerning the category of comodules over commutative (flat)

Hopf algebroids which up to our knowledge seems not to have been treated

before.

0.2 Description of the main results

In the first part of this paper, that is Sections 1 and 2, we introduce

and study Miyashita actions in monoidal categories. To be precise, let

(M,⊗, I) be a Penrose abelian locally small monoidal category whose tensor

products ⊗ are right exact functors (on both arguments), and consider

two morphisms of monoids R→A← S which are monomorphisms in M.

2Or at least for almost complex manifolds.
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4 A. ARDIZZONI AND L. EL KAOUTIT

We first consider the set InvS,R(A) which consists of two-sided invertible

(R, S)-sub-bimodules of A. These are isomorphic classes (X, iX) of (R, S)-

sub-bimodules with monomorphism iX :X ↪→A such that there exists

another sub-bimodule (Y, iY ) with compatible isomorphisms X ⊗R Y ∼= S

and Y ⊗S X ∼=R, each in the appropriate category of bimodules, which are

defined via the multiplications of A with respect to R and S (the pair (X, Y )

with the two isomorphisms is also referred to as a two-sided dualizable

datum). Section 1 is entirely devoted to the properties of these data which

will be used in the proofs of results stated in the forthcoming sections. It is

noteworthy to mention here that the set InvS,R (A) is quite different from

the one already considered in the literature; see Remark 1.8 and Appendix A

where this difference is made clearer.

Our goal in Section 2 is to construct the map Φ:

ΦS,R : InvS,R (A)−→ IsoZ(I)-alg (ZS(A), ZR(A)),

where Z, ZR and ZS are the functors HomM (I, −), Hom
RMR

(R, −)

and Hom
SMS

(S, −), respectively (here RMR denotes the category of R-

bimodules). The codomain of ΦS,R is the set of Z(I)-algebra isomorphisms

between the invariant algebras ZS(A) and ZR(A). In particular, when

R= S, we show in Proposition 2.3 that the morphism ΦR := ΦR,R factors

as a composition of group homomorphisms:

InvR (A)−→AutZR(R)-alg (ZR(A)) ↪→AutZ(I)-alg (ZR(A)).

The morphism ΦR is known in the literature as Miyashita action.

For R= I, we clearly have a morphism of groups Ω : Autalg(A)→
AutZ(I)-alg(Z(A)), , γ 7→ Z(γ), where Autalg(A) is the group of monoid

automorphisms of A.

The main aim of the second part of the paper, that is Sections 3 and 4, is

to give conditions under which the map ΦI, or some of its factors, becomes

bijective. Explicitly in Theorem 3.4, we show that ΦI is injective when the

base category M is bicomplete and I is isomorphic to a specific submonoid

of A. If we further assume that A⊗ A∼A (i.e., A and A⊗ A are direct

summand of a product of finite copies of each other as A-bimodules), Ω is

surjective and the functor −⊗ A is exact, then ΦI comes out to be bijective;

see Theorem 3.12 where other bijections were also established, when Z is

faithful (i.e., the unit object I is a generator).

In Section 4, we study the behavior of ΦI in the case when M is

also symmetric. In Proposition 4.1, we construct a morphism of groups
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INVERTIBLE BIMODULES, MIYASHITA ACTION AND AZUMAYA MONOIDS 5

Γ : InvI(A)→Autalg(A), and show that ΦI decomposes as ΦI = Γ ◦ Ω. After

that, in Corollary 4.9, we show that Γ is bijective for any Azumaya monoid

A whose enveloping monoid Ae =A⊗ Ao is, as an A-bimodule, a direct

summand of a product of finite copies of A, and always under the hypothesis

that Z is faithful.

Our main application, given in Section 5, deals with the category of

(right) H-comodules over a commutative flat Hopf algebroid (R, H), where

the base ring R is assumed to be a generator. In fact, we show that the

group of H-automorphisms of an Azumaya H-comodule R-algebra which

satisfies the above condition is isomorphic to the group of all invertible H-

subcomodules; see Corollary 5.5. The particular case of split Hopf algebroid

is one of the best places where this application could have some geometric

meaning. For instance, let us consider a compact Lie group G acting

freely and smoothly on a manifold M. Assume that this action converts

the ring C∞(M) of smooth (complex valued) functions into an RC(G)-

comodule C-algebra, where RC(G) is the commutative Hopf C-algebra of

representative smooth functions on G. Now, consider the Hopf algebroid

(R, H) with R= C∞(M) and H = C∞(M)⊗C RC(G). In this way the R-

module of smooth global sections of any G-equivariant complex vector

bundle turns out to be an H-comodule. Hence an interpretation of our result

in this setting can be given as follows. Take an Azumaya G-equivariant

algebra bundle (E , θ) of constant rank n2 and consider its G-equivariant

enveloping algebra bundle3(E ⊗ Eo, θ ⊗ θo) such that the canonical splitting

E ⊗ Eo|E in vector bundles is also G-equivariant4. Then we can affirm that

the group of G-equivariant algebra automorphisms of E is isomorphic to the

group of (isomorphic classes) of all invertible G-equivariant subbundles5of E .

Analogous affirmations take place in the context of affine algebraic varieties.

In fact, we have an analogue result when G is an affine algebraic group acting

freely (and algebraically) on an affine algebraic variety X , by taking the split

Hopf algebroid H = P(X )⊗ P(G), where P(X ) is the commutative algebra

3The fibers of Eo are the opposite algebras of the fibers of E and the action θ ⊗ θo is
the obvious one.

4that is the canonical monomorphism E ⊗ Eo ↪→E(n
2) is compatible with the action of

G, that is with the θ’s.
5These are G-equivariant subbundles (X , θ|X ) such that there exists another G-

equivariant subbundle (Y, θ|Y) with X ⊗ Y ∼= M× C to the trivial line bundle endowed
with the trivial G-action.
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6 A. ARDIZZONI AND L. EL KAOUTIT

of polynomial functions on X , and P(G) is the Hopf algebra of polynomial

functions on G.

0.3 Basic notions, notations and general assumptions

LetM be an additive category. The notation X ∈M means that X is an

object inM. The identity arrow IdX of X ∈M will be denoted by the object

itself if there is no danger of misunderstanding. The sets of morphisms are

denoted by HomM (X, Y ), for X, Y ∈M. For two functors F and G the

notation F a G means that F is a left adjoint to G.

Let (M,⊗, I, l, r) be a monoidal additive (resp. abelian) category, that

is,M is an additive (resp. abelian) category such that the tensor product ⊗
is an additive bi-functor. Denote by Z(I) = HomM (I, I) the commutative

endomorphisms ring of the identity object I. Clearly, each of the abelian

groups HomM (X, Y ) admits a canonical structure of Z(I)-bimodule. A

Z(I)-bimodule is called central if the left Z(I)-module structure coincides

with the right one.

Recall from [5, page 5825] that (M,⊗, I, l, r) is said to be Penrose if the

abelian groups of morphisms are central Z(I)-bimodules. This in particular

implies thatM is a Z(I)-linear category (i.e.,M is enriched in the monoidal

category of Z(I)-modules). Notice that a braided monoidal additive category

is always Penrose, cf. [5, remark on page 5825].

In this paper (M,⊗, I, l, r) is a Penrose monoidal abelian category, where

tensor products are right exact on both factors, and the underlying category

M is locally small, that is the class of subobjects of any object is a set.

For a monoid (R, mR, uR) (or simply (R, m, u) when no confusion can be

made), we denote by RM, MR and RMR its categories of left R-modules,

right R-modules and R-bimodules, respectively. The category RMR inherits

then a structure of monoidal abelian (also bicomplete if M is) category

with right exact tensor products denoted by −⊗R −; the unit object is

R and the left, right constraints are denoted, respectively by lR and rR.

Furthermore, the forgetful functor RMR→M is faithful and exact. We

denote by Endalg(R) the ring of monoid endomorphisms of R and by

Autalg(R) its group of units.

Given a second monoid S, we use the classical notation for morphisms

of left, right and bimodules. That is, we denote by HomS-(X, Y ) the set

of left S-module morphisms, by Hom-R(U, V ) the set of right R-module

morphisms, and by HomS, R (P, Q) the set of (S, R)-bimodule morphisms
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INVERTIBLE BIMODULES, MIYASHITA ACTION AND AZUMAYA MONOIDS 7

(S on the left and R on the right). We will use the notation ZR(−) for the

functor HomR, R (R, −) and similarly for ZS(−).

An object X in M is called left (resp. right) flat, if the functor

−⊗ X :M→M (resp. X ⊗ − :M→M) is left exact. Obviously, if M
is symmetric, then left flat is equivalent to right flat, and the adjective left

or right is omitted.

§1. Invertible bimodules and dualizable data, revisited

Let A, R, S be monoids in (M,⊗, I) and let α :R→A, β : S→A

be morphisms of monoids. One can consider in a canonical way A

as a monoid simultaneously in the monoidal categories of bimodules

(RMR,⊗R, R, lR, rR) and (SMS ,⊗R, S, lS , rS). To distinguish the multi-

plications of A in these different categories, we use the following notations:

mR
A, m

S
A.

Consider A as an (R, S)-bimodule via α and β. By an (R, S)-sub-bimodule

of A, we mean a pair (X, iX) where X is an (R, S)-bimodule and iX :X →A

a monomorphism of (R, S)-bimodules. Consider

P (RAS) :=
{

(R, S)-sub-bimodules (X, iX) of RAS

}
.

Since the base category M is locally small, P(RAS) is a skeletally

small category, where a morphism f :X →X ′ is a morphism of (R, S)-

bimodules satisfying iX′ ◦ f = iX . We will not make a difference between

the category P(RAS) and its skeleton set, that is, between an object

X and its representing element (X, iX). In this way, an element (or an

object) (X, iX) ∈P(RAS) will be simply denoted by X, where the (fixed)

monomorphism of (R, S)-bimodules iX is implicitly understood. Similar

conventions and considerations are applied to the set P(SAR).

Given X ∈P (RAS) and Y ∈P (SAR), one defines

fX := mS
A ◦ (iX ⊗S A) :X ⊗S A−→A,(1)

gY := mS
A ◦ (A⊗S iY ) :A⊗S Y −→A.(2)

Using this time the multiplication mR
A, one analogously defines fY : Y ⊗R

A→A and gX :A⊗R X →A.

Recall the following two definitions which will play a central role in this

section.

Definition 1.1. A right inverse for X ∈P(RAS) consists of an element

Y ∈P(SAR) such that
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8 A. ARDIZZONI AND L. EL KAOUTIT

• there are morphisms mX =mX,Y :X ⊗S Y →R in RMR and mY =

mY,X : Y ⊗R X → S in SMS fulfilling

α ◦mX = mS
A ◦ (iX ⊗S iY ),(3)

β ◦mY = mR
A ◦ (iY ⊗R iX),(4)

• mX is an isomorphism.

We also say that X is a right invertible sub-bimodule. Left and two-sided

inverses are obviously defined.

Definition 1.2. An (R, S)-bimodule X is called right dualizable if there

exist an (S, R)-bimodule Y and morphisms

ev : Y ⊗R X → S and coev :R→X ⊗S Y,

of S-bimodules and R-bimodules respectively, such that the following

equalities hold true

rSX ◦ (X ⊗S ev) ◦ (coev ⊗R X) ◦
(
lRX
)−1

= X,(5)

lSY ◦ (ev ⊗S Y ) ◦ (Y ⊗R coev) ◦
(
rRX
)−1

= Y.(6)

We will also say that (X, Y, ev, coev) is a right dualizable datum in this

case. Notice, that the same definition was given in [27, Definition 2.1] with

different terminology, where condition (ii) in that definition always holds

true under our assumptions. If R= S, then of course we have that Y is a

(left) dual object of X in the monoidal category of bimodules RMR. In such

case, if Y exists, it is unique up to isomorphism.

The following standard diagrammatic notation will be used in the sequel.

In terms of these diagrams, equations (5) and (6) are represented as

follows (notice that several kinds of tensor products are involved)
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INVERTIBLE BIMODULES, MIYASHITA ACTION AND AZUMAYA MONOIDS 9

which we use in the following form, where, as customary, we get rid of the

unit constraints.

(7)

1.1 Right inverse versus right dualizable datum, and adjunc-

tions

The main aim of this subsection is to check that the right inverse, if

it exists, is unique up to isomorphism. To this end, we first show that

the existence of a right inverse leads in fact to a right dualizable datum.

The converse holds true under some more assumptions; see Section A.1.

Secondly we show, as it might be expected, that a dualizable datum entails

adjunctions.

Proposition 1.3. Let Y ∈P(SAR) be a right inverse of X ∈P(RAS),

as in Definition 1.1. Set

ev :=mY : Y ⊗R X → S and coev := (mX)−1 :R→X ⊗S Y.

Then

(i) (X, Y, ev, coev) is a right dualizable datum;

(ii) we have that

mS
A ◦ (iX ⊗S iY ) ◦ coev = α,(8)

mR
A ◦ (iY ⊗R iX) = β ◦ ev.(9)

Proof. (i) Assume that there is another X ′ ∈P(RAS) with right

inverse Y ′ ∈P(SAR). Then, for any pair of morphisms (f, g) ∈
HomP(RAS) (X ′, X)×HomP(mboxSAR) (Y, Y ′), we define

(10)
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10 A. ARDIZZONI AND L. EL KAOUTIT

Explicitly, φφφ and ψψψ are given by

φφφY,Y ′(f) := lSY ′ ◦
(
mY,X ⊗S Y ′

)
◦ (Y ⊗R f ⊗S Y ′) ◦

(
Y ⊗R

(
mX′,Y ′

)−1
)

◦
(
rRY
)−1

,(11)

ψψψX′,X(g) := rSX ◦ (X ⊗S mY ′,X′) ◦ (X ⊗S g ⊗R X ′)

◦(m−1
X,Y ⊗R X

′) ◦ (lRX′)
−1.(12)

Therefore, we have

Similarly, one obtains the equality iX ◦ψψψ(g) = iX′ . Now, for X =X ′, Y =

Y ′ and f = IdX , we get iY ◦φφφ(IdX) = iY which implies that φφφ(IdX) = IdY ,

since iY is a monomorphism. Taking now g = IdY , we obtain ψψψ(IdY ) = IdX .

Both equalities ψψψ(IdY ) = IdX and φφφ(IdX) = IdY form precisely equation (7),

and this finishes the proof of this item.

(ii) Equalities (8) and (9) are just (3) and (4) rewritten with respect to

ev and coev.

The following result is inspired by the equivalence between (ii) and (iii)

in [22, Theorem 2.6]; see also [27, Proposition 2.2]. For the reader’s sake we

give here a diagrammatic proof.

Proposition 1.4. Let (X, Y, ev, coev) be a right dualizable datum, as

in Definition 1.2. Then the assignments

φ : (f : V ⊗R X −→W )

7−→
(
V

(rRV )−1

// V ⊗R R
V⊗Rcoev

// V ⊗R X ⊗S Y
f⊗SY // W ⊗S Y

)
ψ : (g : V −→W ⊗S Y )

7−→
(
V ⊗R X

g⊗RX // W ⊗S Y ⊗R X
W⊗Sev

// W ⊗S S
rSW // W

)

https://doi.org/10.1017/nmj.2016.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.25


INVERTIBLE BIMODULES, MIYASHITA ACTION AND AZUMAYA MONOIDS 11

yield a natural isomorphism

Hom-S(V ⊗R X,W )∼= Hom-R(V, W ⊗S Y ).

In other words the functor (−)⊗R X :MR→MS is left adjoint to the

functor (−)⊗S Y :MS →MR. We also have that Y ⊗R (−) : RM→ SM
is a left adjoint of X ⊗S (−) : SM→ RM.

Proof. The naturality of both φ and ψ is clear. Now, for f as above we

have

If we reflect horizontally the diagrams above and we apply the substitu-

tions ψ↔ φ, f 7→ g, V ↔W, X 7→ Y , we get the diagrammatic proof for the

equality φ(ψ(g)) = g. The last adjunction is similarly proved.

As a consequence of Propositions 1.3 and 1.4, we obtain the desired

uniqueness of the right inverse, since we know that a right adjoint functor

is unique up to a natural isomorphism.

Corollary 1.5. Let X ∈P(RAS). Then a right inverse of X, if it

exists, is unique up to an isomorphism in P(SAR). More precisely, assume

that Y, Y ′ ∈P(SAR) are two right inverses of X. Then

iY,Y ′ :=φφφY,Y ′(IdX) : Y → Y ′, and iY ′,Y :=φφφY ′,Y (IdX) : Y ′→ Y

are mutual inverses in P (SAR), where φφφ is as in (11). Moreover, if α and

β are monomorphisms, we also have

mY ′,X ◦
(
iY,Y ′ ⊗R X

)
= mY,X ,(13)

mX,Y ′ ◦
(
X ⊗S iY,Y ′

)
= mX,Y .(14)

Proof. We only show the last statement. The equality (13) is shown as
follows:
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12 A. ARDIZZONI AND L. EL KAOUTIT

β ◦mY ′,X ◦ (iY,Y ′ ⊗R X)
(4)
= mR

A ◦ (iY ′ ⊗R iX) ◦ (φφφY,Y ′(IdX)⊗R X)

= mR
A ◦
(
(iY ′ ◦φφφY,Y ′(IdX))⊗R iX

)
= mR

A ◦ (iY ⊗R iX)
(4)
= β ◦mY,X .

Equality (14) follows similarly.

We finish this subsection by giving more properties of dualizable datum
which in fact lead to a characterization of right invertible sub-bimodules.

Proposition 1.6. Let (X, Y, ev, coev) be a right dualizable datum such
that X ∈P(RAS) and Y ∈P(SAR) with associated monomorphisms iX , iY
satisfying equations (8) and (9). Then the morphisms fX and gY of
equations (1) and (2) are isomorphisms with inverses

f−1
X =

(
X ⊗S mR

A

)
◦ (X ⊗S iY ⊗R A) ◦ (coev ⊗R A) ◦

(
lRA
)−1

,

g−1
Y =

(
mR
A ⊗S Y

)
◦ (A⊗R iX ⊗S Y ) ◦ (A⊗R coev) ◦

(
rRA
)−1

.

Proof. Let us prove that fX and
(
X ⊗S mR

A

)
◦ (X ⊗S iY ⊗R A) ◦

(coev ⊗R A) ◦
(
lRA
)−1

are mutual inverses (the proof for gY is analogous).
One composition can be computed by means of the following tangle
diagrams.

The other composition is computed as follows.
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Combining Proposition 1.3 with Proposition 1.6, we obtain

Corollary 1.7. Let Y ∈P (SAR) be a right inverse of X ∈P (RAS).

Then the morphisms fX :X ⊗S A→A and gY :A⊗S Y →A defined in (1)

and (2) are isomorphisms.

Remark 1.8. Corollary 1.7 says that, if X ∈P (RAS) has a right

inverse, then fX is an isomorphism. Implicitly, an analogous statement holds

true for left invertible elements in P (SAR). At this level of generality

the converse of this implication is not at all a trivial question. However,

once assumed that X belongs to a right dualizable datum (X, Y, ev, coev)

with Y ∈P(RAS) such that fX is an isomorphism and that ev, coev satisfy

equations (8) and (9), then one can construct a new submonoid R′ of A in

such a way that X ∈P (R′AS) is right invertible. The complete proof of

this fact is included in the Appendix; see Theorem A.4. On the other hand,

one can define a right invertible (R, S)-sub-bimodule as a sub-bimodule X

of A whose associated morphism fX is an isomorphism. This was in fact

the approach adopted in [8, 12, 21]. It is noteworthy to mention that these

arguments show in fact that our approach runs in a different direction.

1.2 The group of invertible sub-bimodules

Before introducing the set of two-sided invertible sub-bimodules, which

will be our main object of study in the forthcoming sections, this lemma is

needed:

Lemma 1.9. Let X, X ′ ∈P (RAS) have right inverses Y, Y ′ ∈P (SAR)

respectively, as in Definition 1.1. Then the maps φφφY,Y ′ and ψψψX′,X given by

the formulas (11), (12), yield an isomorphism

HomP(RAS)

(
X ′, X

)∼= HomP (SAR)
(
Y, Y ′

)
.

Moreover, we have

φφφX,X(IdX) = IdY , ψψψY,Y (IdY ) = IdX ,

φφφ(f) ◦φφφ(f ′) =φφφ(f ′ ◦ f), ψψψ(g) ◦ψψψ(g′) =ψψψ(g′ ◦ g),

where in the last two equations different φφφ’s and ψψψ’s are employed.

Proof. First note that the required isomorphism is obtained, using the

adjunctions of Proposition 1.4, as follows:

HomR, S

(
X ′, X

) ∼= HomR, S

(
R⊗R X ′, X

)∼= HomR, R

(
R, X ⊗S Y ′

)
∼= HomS, R

(
Y ⊗R R, Y ′

)∼= HomS, R

(
Y, Y ′

)
.
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14 A. ARDIZZONI AND L. EL KAOUTIT

By (7), it is clear that φφφX,X(IdX) = IdY and ψψψY,Y (IdY ) = IdX . The following

diagrams show that

If we reflect horizontally the diagrammatic proof above we getψψψ(g) ◦ψψψ(g′) =

ψψψ(g′ ◦ g).

Definition 1.10. Let (A, m, u) be a monoid in M and α :R→A←
S : β two morphisms of monoids. We define

InvrR, S (A) := {X ∈P (RAS) |X has a right inverse, as in Definition 1.1} .

Similarly, one can define InvlR, S(A); interchanging R by S, one defines

InvrS,R(A) and InvlS,R(A).

The following lemma establishes a functorial relation between the left-

and right-hand sides versions of the previous definition.

Lemma 1.11. Consider InvrR, S (A) and InvlS,R (A) as full subcategories

of P(RAS) and P(SAR), respectively. Then there is an isomorphism of

categories

φ : InvrR, S (A)
∼=−→ InvlS,R (A)op.

Proof. First notice that both InvrR, S (A) and InvlS,R (A) are regarded

as skeletal categories, in the sense that any two isomorphic objects are

identical [20, page 91]. Therefore, in view of Lemma 1.5, if X ∈P (RAS) has

a right inverse, then this inverse is unique and denoted by Xr. Thus to each

object X ∈ InvrR, S (A) it corresponds a unique object Xr ∈ InvlS,R (A). This

establishes a bijection at the level of objects. By Lemma 1.9 we know that

the maps φφφ of equation (11) induce isomorphisms HomInvrR, S(A) (X, U)∼=
HomInvlS,R(A) (U r, Xr), which, by the last equations of that Lemma, give the

desired contravariant category isomorphism φ.

The image of an element X ∈ InvrR, S (A) by the functor φ of Lemma

1.11 will be denoted by Xr. The set of two-sided invertible sub-bimodules

https://doi.org/10.1017/nmj.2016.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.25


INVERTIBLE BIMODULES, MIYASHITA ACTION AND AZUMAYA MONOIDS 15

is then defined in the following way:

InvR, S (A)

:=
{
X ∈ InvrR, S (A) |mXr is an isomorphism; see Definition 1.1

}
.(15)

One shows the following equivalent description of this set

InvR, S (A) = InvrR, S (A)
⋂

InvlR, S (A),

where the intersection is that of two subsets of P(RAS).

Let X ∈P (RAS) and X ′ ∈P (SAT ), where γ : T →A is another mor-

phism of monoids. The image of the morphism

mS
A ◦ (iX ⊗S iX′) :X ⊗S X ′→A,

will be denoted by (XX ′, iXX′ :XX
′→A), which will be considered as an

element in P(RAT ).

Proposition 1.12. Let α :R→A, β : S→A and γ : T →A be mor-

phisms of monoids inM. Let X ∈ InvrR, S (A) and X ′ ∈ InvrS,T (A) with right

inverses Y and Y ′, respectively. Then

(i) mS
A ◦ (iX ⊗S iX′) and mS

A ◦ (iY ′ ⊗S iY ) are monomorphisms that is

X ⊗S X ′ ∼=XX ′ and Y ′ ⊗S Y ∼= Y ′Y , as (R, T )-bimodules.

(ii) X ⊗S X ′ ∈ InvrR,T (A) and its right inverse is Y ′ ⊗S Y .

Moreover, we have a functor InvrR, S (A)× InvrS, T (A)→ InvrR, T (A).

Proof. (1) By Proposition 1.4, the functor X ⊗S (−) is a right adjoint

and hence left exact so that X ⊗S iX′ is a monomorphism. By Corollary

1.7, the morphism fX :X ⊗S A→A is an isomorphism. Thus mS
A ◦ (iX ⊗S

iX′) = fX ◦ (X ⊗S iX′) :X ⊗S X ′→A is a monomorphism. Similarly, using

the fact that the functor (−)⊗S Y is a right adjoint (Proposition 1.4) and

that gY :=mS
A ◦ (A⊗S iY ) is an isomorphism (Corollary 1.7) one gets that

mS
A ◦ (iY ′ ⊗S iY ) is a monomorphism too.

(2) Define mX⊗SX′ and mY ′⊗SY diagrammatically by setting

Now, using equation (3) for X ′ and X, one gets the same equality for

X ⊗S X ′ as follows.
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16 A. ARDIZZONI AND L. EL KAOUTIT

The same diagrammatic proof, once applied the substitutions X ↔
Y ′, Y ↔X ′ and α↔ γ, yields (4) for Y ′ ⊗S Y using the corresponding

equality for Y and Y ′. The last statement is clear.

Corollary 1.13. Assume that β : S→A is a monomorphism. Then

InvrS, S(A) is a monoid where the multiplication of X, X ′ ∈ InvrS, S(A) is

given by X ⊗S X ′ with monomorphism iX⊗SX′ :=mS
A ◦ (iX ⊗S iX′). The

neutral element is S ∈ InvrS, S(A) via β. Moreover, InvS, S(A) is the group

of units of this monoid.

Proof. Let X, X ′ ∈ InvrS, S(A). By Proposition 1.12, we have X ⊗S X ′ ∈
InvrS, S(A), with monomorphism mS

A ◦ (iX ⊗S iX′), so that ⊗S is a well-
defined multiplication for InvrS, S(A). It is clearly associative. Note that
X ⊗S S =X = S ⊗S X as sub-bimodules of A (these equalities make sense
as the definition of subobject is given up to isomorphism, cf. [20, page 122]).
Thus S is the neutral element for this operation.

Let us check the last statement. For this consider X ∈ InvrS, S(A) and Y
its right inverse (as in Definition 1.1). Then, by equation (3), we have

iX⊗SY :=mS
A ◦ (iX ⊗S iY ) = β ◦mX .

This means that X ⊗S Y = S ∈ InvrS, S(A), as mX :X ⊗S Y → S is an
isomorphism. Therefore, any element in InvrS, S(A) is already right invertible
w.r.t. to the multiplication ⊗S . Thus an element X ∈ InvrS, S(A) belongs to
the group of units if and only if it has a left ⊗S-inverse. Note that, in this
case, the left and the right inverses should coincide as we are in a monoid.
Therefore, the element X is ⊗S-invertible if and only if Y ⊗S X = S. Now,
Y ⊗S X is sub-bimodule of A viamS

A ◦ (iY ⊗S iX) = β ◦mY by equation (4).
Thus, the equality Y ⊗S X = S holds if and only if there is an isomorphism
ξ : Y ⊗S X → S of bimodules over S such that β ◦ ξ = β ◦mY . Since we are
assuming β to be a monomorphism, this equality is equivalent to say that
mY is an isomorphism. This entails that X is ⊗S- invertible if and only if
X ∈ InvS, S(A).
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The group InvS, S(A), considered in Corollary 1.13, will also be denoted
by InvS(A).

Proposition 1.14. Let X, X ′ ∈ InvR, S(A) be two-sided invertible sub-
bimodules of A with inverses Y, Y ′ ∈ InvS,R(A), respectively. Consider the
category isomorphism φ of Lemma 1.11, and assume that there is a
monomorphism i :X ↪→X ′ of bimodules in P(RAS) (i.e., satisfying iX′ ◦
i = iX).

(1) The morphism i is an isomorphism if and only if φ(i) is.
(2) Assume further that there is a monomorphism of bimodules j : Y ↪→

Y ′ in P(SAR) (i.e., satisfying iY ′ ◦ j = iY ). Then both i and j are
isomorphisms that is X =X ′ and Y = Y ′ as elements in InvR, S (A)
and InvS,R (A), respectively.

Proof. (1) is trivial.
(2) From Lemma 1.11 we know that iY ◦φ(i) = iY ′ . Thus iY ′ ◦ j ◦φ(i) =

iY ◦φ(i) = iY ′ . Since iY ′ is a monomorphism, we get j ◦φ(i) = IdY ′ .
Similarly one proves that φ(i) ◦ j = IdY . Thus j and φ(i) are isomorphisms.
By (1), the morphism i is an isomorphism too, and this finishes the proof.

§2. Miyashita action and invariant subobjects

In this section we assume that our base monoidal category (M,⊗, I, l, r)
is also bicomplete. In what follows let A, R and S be three monoids in M
and α :R→A← S : β be morphisms of monoids which are monomorphisms

in M. We denote by Z :M→ModZ(I) the functor HomM (I, −), where

ModZ(I) denotes the category of Z(I)-modules. Analogously, we denote by

ZR(−) : RMR→ModZR(R) the functor HomR, R (R, −), and similarly we

consider ZS(−).

2.1 Miyashita action: Definition

In this subsection we introduce the Miyashita action in the context of

monoidal categories. This is a map (group homomorphism) which connects

InvrS,R (A) (resp. InvS,R (A)) with the set of (iso)morphisms of Z(I)-algebras

from ZS(A) to ZR(A). The latter can be seen as the invariants (subalgebra)

of A with respect to S and R, respectively (usually they are denoted by AS

and AR respectively in the classical case).

Let M be a left S-module and let N be an A-bimodule. Consider the

action ZS(A)×HomS-(M, N)→HomS-(M, N) : (z, h) 7→ z .S h defined by

setting
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18 A. ARDIZZONI AND L. EL KAOUTIT

(16)

Similarly one defines the action Hom-R(M, N)×ZR(A)→
Hom-R(M, N) : (f, z) 7→ f /R z. When S =R= I we omit the subscripts

and write f / z and z . f .

Lemma 2.1. Let (M,⊗, I) be a monoidal category. Let (C,∆C , εC) be a

comonoid in (M,⊗, I) and let (A, mA, uA) be a monoid in (M,⊗, I). Then

(B = HomM (C, A) , mB, 1B)

is a Z-algebra where, for all f, g ∈B

f ∗ g :=mB ◦ (f ⊗ g) :=mA ◦ (f ⊗ g) ◦∆C and 1B := uA ◦ εC .

Proof. Straightforward.

Since (R,
(
lRR
)−1

, IdR) is a comonoid and
(
A, mR

A, α
)

is a monoid, both

in (RMR,⊗R, R), we have that ZR(A) is a Z-algebra by Lemma 2.1.

Furthermore, since the base category is assumed to be Penrose, we have that

R⊗ t= t⊗ R for every element t in Z(I) which in fact defines an algebra

map Z(I)→ZR(R) so that ZR(R) becomes a commutative Z(I)-algebra.

In this way, the map ZR(α) clearly induces a structure of Z(I)-algebra

on ZR(A). Explicitly, the unit α̃ : Z(I)→ZR(A) of this algebra maps an

element t ∈ Z(I) to α ◦ (R⊗ t) = α ◦ (t⊗ R) which is an element in ZR(A).

Similarly, one constructs β̃ : Z(I)→ZS(A). On the other hand, one shows

that the map

(17) ϕR : ZR(A)→Z(A), f 7→ f ◦ uR

is multiplicative and satisfies ϕR ◦ α̃= Z(u), so that it is a Z(I)-algebras

map. Moreover, by using that morphisms in ZR(A) are of R-bimodules, one

also gets that ϕR is always injective. In this way, both ZR(A) and ZS(A)

become Z(I)-subalgebras of Z(A).

Proposition 2.2. For any g ∈ ZS(A) and X ∈ InvrR, S(A) let

σS,RX (g) := σX(g) :R→A be defined by

(18) σX (g) =mS
A ◦ (iX ⊗S (g .S iY )) ◦ (mX)−1,
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where Y is a right inverse of X. Then, σX does not depend on the choice

of Y and the map

σS,R := σ : InvrR, S (A)−→HomZ(I)-alg

(
ZS(A), ZR(A)

)
,
{
X 7−→ σX

}
is well defined.

Proof. First note that the right inverse Y of X is unique up to

isomorphism as shown in Lemma 1.5. Let us check that σX (g) does not

depend on this isomorphism. Thus, given another right inverse Z of X, we

want to check that the formula (18) is the same for both Y and Z. That is,

we need to check the following equality

σX,Y (g) := mS
A ◦ (iX ⊗S (g .S iY )) ◦ (mX)−1

= mS
A ◦ (iX ⊗S (g .S iZ)) ◦ (mX)−1 := σX,Z (g).

The map σX,Y (g) can be represented by the following diagram:

Using the isomorphisms stated in Corollary 1.5, we then have

By a similar argument, one proves that the definition of this map does

not depend on the representative of the equivalence class (X, iX). In other

words if X =X ′ (i.e., there is an isomorphism f :X ′→X such that iX ◦ f =

iX′), then σX (g) = σX′ (g). On the other hand, the morphism σX (g) is a

morphism in RMR being the composition of morphisms in RMR. Therefore,

σX (g) is an element in ZR(A).
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20 A. ARDIZZONI AND L. EL KAOUTIT

We have to check that σX is a Z(I)-algebra map. To this aim, given

g, h ∈ ZS(A), we first show that σX (g) ∗ σX (h) = σX (g ∗ h). Using the

diagrammatic notation, we have

so that we get

(19) σX(g) .R iX = iX /S g.

Using this equality, we obtain
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which means that σX(g) ∗ σX(h) = σX(g ∗ h). Moreover, we have

σX(1ZS(A)) = σX(β) =mS
A ◦ (iX ⊗S (β .S iY )) ◦ coev

= mS
A ◦ (iX ⊗S iY ) ◦ coev

(8)
= α= 1ZR(A).

We still need to check that σX ◦ β̃ = α̃. To this aim, given t ∈ Z(I), we

have

(20)

and this completes the proof.

The map defined in the following proposition is an extension, to the

general framework of monoidal categories, of the so-called Miyashita action

which was originally introduced by Miyashita in [23, page 100]. Further

developments on this action appeared in various studies: Hopf–Galois

extensions, H-separable extensions, comodules over corings with grouplike

elements and so forth; see [8, 15–17, 21, 29]. Our general definition aims to

provide a common and unifying context for all these studies.

Proposition 2.3. The map

σ : InvrR,S (A)→HomZ(I)-alg (ZS(A), ZR(A))

of Proposition 2.2 induces a map

ΦS,R : InvR,S (A)→ IsoZ(I)-alg (ZS(A), ZR(A)).

In particular, when R= S we have a morphism of groups ΦR := ΦR, R.

Moreover, ΦR factors as the composition

(21) InvR (A)−→AutZR(R)-alg (ZR(A)) ↪→AutZ(I)-alg (ZR(A)).
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Proof. Consider both

σS,R : InvrR, S (A)→HomZ(I)-alg (ZS(A), ZR(A))

σR, S : InvrS,R (A)→HomZ(I)-alg (ZR(A), ZS(A)).

Take X ∈ InvR, S (A) as in (15). Since mXr is an isomorphism, we have

that Xr ∈ InvrS,R (A). Hence we can consider both σS,RX and σR, SXr . Let

us check that these maps are mutual inverses. For g ∈ ZS(A), we have(
σR, SXr ◦ σS,RX

)
(g) is equal to

(22)

Thus σR, SXr ◦ σS,RX = IdZS(A). Similarly one gets σS,RX ◦ σR, SXr = IdZR(A).

Therefore, σS,RX is an isomorphism. This proves that ΦS,R is well defined.

Now assume that R= S. By Corollary 1.13, we know that

(InvR(A),⊗R, R) is a group. Let us check that ΦR is a group morphism.

Take X, X ′ ∈ InvR (A) with two-sided inverses Y and Y ′, respectively. We

have
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where g is as above. The second equality in diagram (22) implies

that σX(σX′(g)) = σX⊗RX′(g). In other words ΦR(X ⊗R X ′) = ΦR(X) ◦
ΦR(X ′). Moreover,

ΦR(R)(g) = σR(g)
(18)
= mR

A ◦ (α⊗R (g .R α)) ◦ (rRR)−1

(∗)
= mR

A ◦ (α⊗R g) ◦ (rRR)−1 = α .R g = g

so that ΦR(R) = IdZR(A), where in (∗) we applied the definition of .R.

Let us check that ΦR factors as stated. Take p ∈ ZR(R) and set g :=

ZR(α)(p) = α ◦ p. Since we already know that σX is multiplicative, in order

to conclude that σX is ZR(R)-bilinear, it suffices to check that σX(g) = g.

As p is an endomorphism of the unit R of the monoidal category RMR,

we have R⊗R p= p⊗R R. Hence, by using the same arguments of diagram

(20), we get the desired equality.

Remark 2.4. Submonoids of A are 0-cells in a bicategory Invr(A),

where for any two 0-cells R and S the associated hom-category from R to

S is given by InvrR, S(A) with horizontal and vertical multiplications given

by the functors of Proposition 1.12. Similarly, one defines the bicategories

Invl(A) and Inv(A). Now, if we restrict to submonoids R of A for which

the functor −⊗R A reflects isomorphisms and denote this new bicategory

by Invfr(A), then any morphism in the hom-category InvfrR, S(A) is an

isomorphism. Indeed, given a morphism h :X →X ′ in InvrR, S(A), then

fX′ ◦ (h⊗R A) = fX , where f− is as in equation (1). Therefore, by Corollary

1.7, we have h⊗R A is an isomorphism and hence h is an isomorphism as

well.

In this way, the bicategory Invf(A), corresponding to Inv(A), can be

regarded as a 2-groupoid, that is, a bicategory where 1-cells and 2-cells are

invertible (i.e., each 1-cell is a member of an internal equivalence and any

2-cell is an isomorphism). However, Inv(A) viewed as a small category with

hom-sets InvR, S(A) and composition given by the tensor products ⊗R, is

clearly a groupoid.

On the other hand, there is another 2-category with 0-cells given by

Z(I)-subalgebras of Z(A), and hom-category from E and E′ given by the

set HomZ(I)-alg

(
E, E′

)
(objects are edges and arrows are squares). Clearly,

one assigns to any 1-cell R in Invr(A) a 1-cell ZR(A) in this 2-category,

by using the map ϕR of (17). However, it is not clear to us whether the

https://doi.org/10.1017/nmj.2016.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.25


24 A. ARDIZZONI AND L. EL KAOUTIT

family of maps {σS,R}S, R defined in Proposition 2.2 together with this

assignment, give rise to a family of functors and thus to a morphism of

bicategories. Nevertheless, using the maps {ΦS,R}S, R given in Proposition

2.3, one shows, as in the classical case [23, Theorem 1.3], that Φ establishes

a homomorphism of groupoids.

2.2 Invariant subobjects

Let (A, m, u) be a monoid in M and consider σ, δ : Z(A)→Z(A) two

Z(I)-linear maps. For each element t ∈ Z(A), define the following equalizer:

0 // Eq(σ(t) . A, A / δ(t))
eqσ(t), δ(t)

// A
σ(t) .A

//

A/ δ(t)

// A

Now, since M is an abelian and bicomplete category, we can take the

intersection of all those equalizes:

σJδ :=

 ⋂
t∈Z(A)

Eq(σ(t) . A, A / δ(t))

 ↪→ Eq(σ(t) . A, A / δ(t)),

for every t ∈ Z(A)(23)

with structure monomorphism denoted by

(24)

We view σJδ as an element in P(IAI) with monomorphism iσJδ = eqσ,δ as

in Section 1. The pair (σJδ, eqσ,δ) is in fact an universal object with respect

to the following equations:

(25) (A / δ(t)) ◦ eqσ,δ = (σ(t) . A) ◦ eqσ,δ, for every t ∈ Z(A).

In other words any other morphism which satisfies these equations (param-

eterized by elements in Z(A)) factors uniquely throughout the monomor-

phism eqσ,δ. For every t ∈ Z(A), equation (25) will be used in the following

form
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(26)

For simplicity we write 1J1, σJ1 and 1Jδ when one or both the involved

Z(I)-linear maps are identity.

Proposition 2.5. Let (A, m, u) be a monoid in M and let σ, δ, γ and

λ be in EndZ(I)(Z(A)). Consider the family of subobjects (xJy, eqx,y) of A,

for x, y ∈ {σ, δ, γ, λ}. Then

(i) There is a morphism

mδ
σ,γ : σJδ ⊗ δJγ −→ σJγ

such that

(27) eqσ,γ ◦mδ
σ,γ =m ◦ (eqσ,δ ⊗ eqδ,γ).

(ii) We have

(28) mγ
σ,λ ◦ (mδ

σ,γ ⊗ γJλ) =mδ
σ,λ ◦ (σJδ ⊗mγ

δ,λ).

(iii) There exists a unique morphism uσ : I→ σJσ such that eqσ,σ ◦ uσ = u.

Furthermore (σJσ, mσ, uσ) is a monoid, for every Z(I)-linear map σ,

where we set mσ :=mσ
σ,σ.

(iv) The morphisms mσ
σ,δ and mδ

σ,δ turn σJδ into a (σJσ, δJδ)-bimodule.

(v) There is a unique morphism

(29) mδ
σ,γ : (σJδ)⊗δJδ (δJγ)−→ σJγ such that mδ

σ,γ ◦ χδσ,γ =mδ
σ,γ

where χδσ,γ : σJδ ⊗ δJγ → (σJδ)⊗δJδ (δJγ) denotes the canonical mor-

phism defining the tensor product over the monoid δJδ.

Proof. (i) Fixing an element t ∈ Z(A), we have
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which shows that

(σ(t) . A) ◦m ◦ (eqσ,δ ⊗ eqδ,γ) = (A / γ(t)) ◦m ◦ (eqσ,δ ⊗ eqδ,γ).

Hence, by the universal property, the desired morphism is the one which

turns commutative the diagrams

(30)

for every t ∈ Z(A).

(ii) The equation follows from the fact that eqσ,λ is a monomorphism and

the computation:

eqσ,λ ◦mδ
σ,λ ◦ (σJδ ⊗mγ

δ,λ)
(27)
= m ◦ (eqσ,δ ⊗ eqδ,λ) ◦ (σJδ ⊗mγ

δ,λ)

(27)
= m ◦ (A⊗ m) ◦ (eqσ,δ ⊗ eqδ,γ ⊗ eqγ,λ)
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= m ◦ (m⊗ A) ◦ (eqσ,δ ⊗ eqδ,γ ⊗ eqγ,λ)

(27)
= m ◦ (eqσ,γ ⊗ eqγ,λ) ◦ (mδ

σ,γ ⊗ γJλ)

(27)
= eqσ,λ ◦m

γ
σ,λ ◦ (mδ

σ,γ ⊗ γJλ).

(iii) The associativity follows by (28). Denote mσ
σ,σ :=mσ and σJσ := J .

Now, we show that there is a morphism uσ such that the following diagrams

commute

(31)

We compute

m ◦ (A⊗ σ(t)) ◦ u = m ◦ (u⊗ A) ◦ (I⊗ σ(t)) = lA ◦ (I⊗ σ(t))

= σ(t) ◦ lI = σ(t) ◦ rI
= rA ◦ (σ(t)⊗ I) =m ◦ (A⊗ u) ◦ (σ(t)⊗ I)

= m ◦ (σ(t)⊗ A) ◦ u.

We now prove that the multiplication of J is unitary:

eqσ,σ ◦mσ ◦ (J ⊗ uσ)
(27)
= m ◦ (eqσ,σ ⊗ eqσ,σ) ◦ (J ⊗ uσ)

= m ◦ (A⊗ u) ◦ (eqσ,σ ⊗ I)

= rA ◦ (eqσ,σ ⊗ I) = eqσ,σ ◦ rJ .

Since eqσ,σ is a monomorphism we obtain mσ ◦ (J ⊗ uσ) = rJ . In a similar

manner one gets mσ ◦ (uσ ⊗ J) = lJ . We have so proved that (J, mσ, uσ) is

a monoid.

(iv) It follows by (28).

(v) From (28) one gets that mδ
σ,γ is balanced over δJδ.
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§3. The bijectivity of Miyashita action

The aim of this section is to seek for conditions under which the Miyashita

action, that is the map of Proposition 2.3, or some of its factors are bijective.

We work, as before, over a Penrose monoidal abelian, locally small and

bicomplete category (M,⊗, I, l, r), where the tensor product is right exact

on both factors.

3.1 The case when Φ is a monomorphism of groups

Take R= S = I in Proposition 2.3 and consider an invertible subobject

X ∈ InvI(A) with two-sided inverse Y . The image of any t ∈ Z(A) through

the map ΦX of equation (21) is given by

(32) ΦX(t) = m ◦ (iX ⊗ (t . iY )) ◦ coev,

where, coev =m−1
X is as in Proposition 1.3.

Lemma 3.1. Let (A, m, u) be a monoid in M and let X ∈ InvI(A) with

inverse Y . Consider the associated automorphism ΦX ∈AutZ(I)-alg(Z(A))

defined as in Proposition 2.3 with R= S = I. Then we have monomorphisms

X � �
ιX //

ΦXJ1, Y �
� ιY //

1JΦX

satisfying eqΦX ,1 ◦ ιX = iX , and eq1,ΦX ◦ ιY = iY .

Proof. By applying equation (19) to our situation we obtain

(33) ΦX(t) . iX = iX / t, for every t ∈ Z(A).

Equivalently (ΦX(t) . A) ◦ iX = (A / t) ◦ iX for every t ∈ Z(A), which by

the universal property of ΦXJ1 gives the desired monomorphism. Replacing

X by Y one gets the other monomorphism.

Notice that for any Z(I)-algebra automorphism θ of Z(A), we have that

for each s ∈ Z(A), there exists a unique t ∈ Z(A) such that θ(t) = s. Hence

(34) θJθ =
⋂

t∈Z(A)

Eq(θ(t) . A, A / θ(t)) =
⋂

s∈Z(A)

Eq(s . A, A / s) = 1J1.

This observation is implicitly used in the foregoing.

Proposition 3.2. Let (A, m, u) be a monoid inM and assume that u is

a monomorphism. Let X ∈ InvI(A) be an invertible subobject with associated

automorphism ΦX as in (32). Then ΦXJ1 is a two-sided invertible 1J1-sub-

bimodule of A, that is an element of Inv1J1(A) with inverse 1JΦX .
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Proof. Along this proof we abbreviate ΦX to φ. The morphisms m
φJ1 =

m1
φ,φ and m1Jφ =mφ

1,1 defined in Proposition 1.3 for the pair (φJ1, 1Jφ), are

given by Proposition 2.5(v), where the compatibility constrains are shown

using equations (28) and (29). Consider the morphism

ψ := φJφ ⊗ X
φJφ⊗ιX

//
φJφ ⊗ φJ1

mφφ,1
//
φJ1

where ιX was defined in Lemma 3.1. Now let us check that m
φJ1 is invertible

with inverse ν defined as the following composition of morphisms:

φJφ ∼=

φJφ⊗m−1
X//
φJφ⊗X⊗Y

ψ⊗Y
//
φJ1⊗Y

φJ1⊗ιY
//
φJ1⊗ 1Jφ

χ1
φ,φ
//
φJ1⊗1J1 1Jφ.

We have

where the last equality is given by Proposition 2.5(iii), while equality (?) is

proved as follows:

eqφ,φ ◦m1
φ,φ ◦ (ιX ⊗ ιY )

(27)
= m ◦ (eqφ,1 ⊗ eq1,φ) ◦ (ιX ⊗ ιY ) =m ◦ (iX ⊗ iY )

(1)
= u ◦mX = eqφ,φ ◦ uφ ◦ coev−1.

This proves that m1
φ,φ ◦ ν is the identity. A similar computation, which uses

composition with the epimorphism χ1
φ,φ, shows that ν ◦m1

φ,φ is the identity

too so that m1
φ,φ is invertible. Replacing φ by φ−1 will show that m

φ−1J1 is an

isomorphism which means that m1Jφ is an isomorphism, since φ−1J1 = 1Jφ.

Lemma 3.3. Let (A, m, u) be a monoid in M. Assume that the unit

u1 : I→ 1J1 is an isomorphism and consider a two-sided invertible object
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X ∈ InvI(A) with inverse Y and associated automorphism ΦX as in (32).

Then, we have X = ΦXJ1 and Y = 1JΦX .

Proof. Under the assumption made on u1, the unit u is a monomorphism

by Proposition 2.5(iii). Hence, by Proposition 3.2, we know that ΦXJ1 is

invertible with inverse 1JΦX . Therefore, we have that ΦXJ1 ⊗ 1JΦX
∼= I and

1JΦX ⊗ ΦXJ1
∼= I. Now, by Lemma 3.1, we know that X is injected in ΦXJ1

while Y is injected in 1JΦX . Summing up, we have shown that the elements

X and ΦXJ1 satisfy the assumptions of Proposition 1.14(2) so that we obtain

the equalities X = ΦXJ1 and Y = 1JΦX .

Given a monoid (A, m, u) inM, we define the set GZ(I)(Z(A)) as follows:

GZ(I)(Z(A))

:=
{
θ ∈AutZ(I)-alg(Z(A))| θJ1 is two-sided invertible subobject

}
.(35)

Here by θJ1 invertible we mean that the morphisms m1
θ,θ and mθ

1,1 given in

equation (29) are isomorphisms, which, in view of equation (34), shows that

θJ1 ∈ Inv1J1(A). In this case, the two-sided inverse of θJ1 is 1Jθ = θ−1J1.

As we will see below the set GZ(I)(Z(A)) is in fact a subgroup of the

automorphisms group AutZ(I)-alg(Z(A)).

The following is one of our main results.

Theorem 3.4. Let (M,⊗, I) be a Penrose monoidal abelian, locally

small and bicomplete category with right exact tensor products functors.

Let (A, m, u) be a monoid such that the morphism u1 : I→ 1J1 is an

isomorphism. Then the map Φ of Proposition 2.3 induces an isomorphism

of groups Φ̂ : InvI(A)→GZ(I)(Z(A)) which makes the following triangle

commutative

InvI(A)
Φ //

∼=

Φ̂

((

AutZ(I)-alg(Z(A))

GZ(I)(Z(A)),
?�

ς

OO

where ς denotes the canonical injection. Moreover, Φ̂−1(θ) = θJ1, for every

θ ∈ GZ(I)(Z(A)).
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Proof. In view of Proposition 3.2, it is clear that Φ corestricts to a map

Φ̂ such that ς ◦ Φ̂ = Φ and, by Lemma 3.3, we have that Φ̂ is injective.

Let us check that it is also surjective that is that Φ
θJ1 = θ, for every θ ∈

GZ(I)(Z(A)). Recall that, for a given t ∈ Z(A), we have

Φ
θJ1(t) = m ◦ (A⊗ m) ◦ (eqθ,1 ⊗ A⊗ eq1,θ) ◦ (θJ1 ⊗ t⊗ 1Jθ) ◦ (m1

θ,θ)
−1 ◦ uθ.

The desired equality can be checked by diagrams as follows

(36)

We have so proved that the map Φ̂ : InvI(A)→GZ(I)(Z(A)) is bijective.

As a consequence, since Φ is a group morphism, we have for free that

GZ(I)(Z(A)) is a subgroup of the automorphisms group AutZ(I)-alg(Z(A))

and that both Φ̂ and ς are group morphisms.

3.2 The case when Φ is an isomorphism of groups

Let M and N be two A-bimodules. Consider the action Z(A)×
HomM (M, N)→HomM (M, N) : (z, f) 7→ z . f , defined by (16) for S = I,
and its right-hand version f / z. These actions turns in fact the Z(I)-module

HomM (M, N) into a Z(A)-bimodule. Note that for f ∈HomM (A, A) one

easily checks that

(37) f ∈HomA-(A, A) if and only if f =A / (fu).

Here the notation fu stands for the composition. Given σ, τ : Z(A)→Z(A)

two Z(I)-linear maps, we set

MA,Z(A)(Mσ, Nτ )

:=
{
f ∈HomA- (M, N) | f ◦ (M / σ(z)) = f / τ(z), ∀z ∈ Z(A)

}
.

For every f ∈MA,Z(A)(Aσ, Aτ ), z ∈ Z(A), we have

z . f
(37)
= z . (A / (fu)) = (z . A) / (fu)

= (A / (fu)) ◦ (z . A)
(37)
= f ◦ (z . A).(38)
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Let ρ be another Z(I)-linear endomorphism of Z(A). We then compute

(ρ(t) . A) ◦ f ◦ eqρ,σ = (ρ(t) . f) ◦ eqρ,σ
(38)
= f ◦ (ρ(t) . A) ◦ eqρ,σ

(23)
= f ◦ (A / σ(t)) ◦ eqρ,σ
= (f / τ(t)) ◦ eqρ,σ = (A / τ(t)) ◦ f ◦ eqρ,σ,

for any f ∈MA,Z(A)(Aσ, Aτ ) and t ∈ Z(A). Using the universal property of

eqρ,τ , we so get a unique morphism ρf : ρJσ→ ρJτ such that eqρ,τ ◦ ρf =

f ◦ eqρ,σ which in diagrammatic form is expressed by

(39)

In this way we have defined a map

(40) MA,Z(A)(Aσ, Aτ )−→HomM (ρJσ, ρJτ ) : f 7−→ ρf.

Definition 3.5. Let M and N be two A-bimodules.

(1) For σ, τ : Z(A)→Z(A), we will write Mσ|Nτ whenever there is k > 1

and morphisms fi ∈MA,Z(A)(Mσ, Nτ ), gi ∈MA,Z(A)(Nτ , Mσ), for i=

1, . . . , k, such that
∑

i gi ◦ fi =M . We will write Mσ ∼Nτ whenever

both Mσ|Nτ and Nτ |Mσ.

(2) If there is k > 1 and morphisms fi ∈HomA,A (M, N), gi ∈
HomA,A (N, M), for i= 1, . . . , k, such that

∑
i gi ◦ fi =M , then

we will write M |N . Since our base category M is an abelian category,

this is equivalent to say that M , as an A-bimodule, is direct summand

of a finite direct sum of copies of N . We will write M ∼N whenever

both M |N and N |M . The same notation was used for bimodules over

rings by Miyashita in [23] which in fact goes back to a Hirata [13],

although with different symbols.

The possible relation between the items (1) and (2) in the previous

Definition will be explored in Proposition 3.8 below. Part of the following

Theorem can be compared with [25, Theorem 5.3].
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Theorem 3.6. Let (A, m, u) be a monoid in M. Let σ, δ, γ : Z(A)→
Z(A) be Z(I)-linear maps and assume that Aγ |Aδ. Then the morphism mδ

σ,γ

is a split epimorphism. If we further assume that A is right flat and that

uδ : I→ δJδ is an isomorphism, then mδ
σ,γ is an isomorphism.

Proof. Let gi denote the resulting maps from the assumption Aγ |Aδ.
Since each gi is left A-linear, we have

(41)
∑
i

fi / (gi ◦ u) =
∑
i

gi ◦ (fi / u) =
∑
i

gi ◦ fi =A.

We set ξδσ,γ := (
∑

i σfi ⊗ δgi) ◦ (σJγ ⊗ uδ) ◦ r−1
σJγ

, where σfi and δgj are

defined as in equation (39). By its own definition the morphism ξδσ,γ satisfies

(42)

where the summation is understood. So we compute

Since eqσ,γ is a monomorphism, we conclude that mδ
σ,γ ◦ ξδσ,γ = σJγ and

hence mδ
σ,γ is a split epimorphism. Now let us check, under the assumptions

uδ : I→ δJδ is an isomorphism and A is right flat, that mδ
σ,γ is indeed an

isomorphism. Using diagrams, with summation understood again, we have
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where in the first equality we have used simultaneously equations (42), (39)

and the fact that the unit uδ of δJδ satisfies eqδ,δ ◦ uδ = u the unit of A.

We continue then our computation

If eqσ,δ ⊗ eqδ,γ is a monomorphism, then we get ξδσ,γ ◦mδ
σ,γ = σJδ ⊗ δJγ ,

and so mδ
σ,γ is an isomorphism.

The fact that eqσ,δ ⊗ eqδ,γ is a monomorphism is proved as follows. First,

using Proposition 2.5 and that Aγ |Aδ, one shows that (γJδ, δJγ , m
γ
δ, δ, ξ

δ
γ,γ)

is a right dualizable datum between the monoids γJγ and δJδ, where ξ
δ
γ,γ =

χδγ,γ ◦ ξδγ,γ is a splitting of mδ
γ,γ . Secondly, by Proposition 1.4, we obtain

that δJγ is left flat as I∼= δJδ. In this way, we deduce that eqσ,δ ⊗ eqδ,γ =

(A⊗ eqδ,γ) ◦ (eqσ,δ ⊗ δJγ) is a monomorphism since A is right flat.

As a consequence of Theorem 3.6, we have

Corollary 3.7. Let (A, m, u) be a monoid such that A is right flat

and u1 : I→ 1J1 is an isomorphism. Take θ ∈AutZ(I)-alg(Z(A)) such that

Aθ ∼A1. Then θ ∈ GZ(I)(Z(A)) the subgroup defined in (35).

Under the assumptions of Corollary 3.7, we do not know if the invertibility

of θJ1, for some θ ∈AutZ(I)-alg(Z(A)), is a sufficient condition to have

https://doi.org/10.1017/nmj.2016.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.25


INVERTIBLE BIMODULES, MIYASHITA ACTION AND AZUMAYA MONOIDS 35

that Aθ ∼A1. This is why at this level of generality it is convenient to

distinguish between the subset of elements θ for which θJ1 is invertible

and those for which Aθ ∼A1. However, as we will see below, for Azumaya

monoids in M where Z is faithful, these two subsets coincide as subgroups

of AutZ(I)-alg(Z(A)). Thus, under these stronger assumptions one obtains

the converse of the previous corollary, as in the classical case (see e.g., [23]).

The following result collects useful properties of Definition 3.5.

Proposition 3.8. Let L, M, N be A-bimodules and let ρ, σ, τ : Z(A)→
Z(A) be Z(I)-linear maps. Then we have the following properties:

(1) HomA,A (M, N)⊆MA,Z(A)(Mσ, Nσ).

(2) M |N implies Mσ|Nσ.

(3) M ∼=N implies Mσ ∼Nσ.

(4) M |N implies M ⊗A L|N ⊗A L.

(5) MA,Z(A)(Mσ, Nτ ) ◦MA,Z(A)(Lρ, Mσ)⊆MA,Z(A)(Lρ, Nτ ), where ◦ is

the composition in AM.

(6) Lρ|Mσ and Mσ|Nτ implies Lρ|Nτ .

(7) If Mσ|Nτ , then Mσρ|Nτρ.

Proof. (1) Let f ∈HomA,A (M, N). Then f ∈HomA-(M, N) and, for

every z ∈ Z(A), we have

f ◦ (M / σ(z)) = f ◦ %N ◦ (M ⊗ σ(z)) = %M ◦ (f ⊗A) ◦ (M ⊗ σ(z)) = f / σ(z).

(2) It follows by (1).

(3) Let f :M →N be an isomorphism of A-bimodules. Set k := 1, f1 := f

and g1 := f−1. Clearly
∑k

i=1 gi ◦ fi =M so that, by (2), we get Mσ|Nσ. If

we interchange the roles of M and N we get also Nσ|Mσ.

(4) Let k > 1 and let fi ∈HomA,A (M, N), gi ∈HomA,A (N, M),

for i= 1, . . . , k, such that
∑

i gi ◦ fi =M . Then f ′i := fi ⊗A L ∈
HomA,A (M ⊗A L, N ⊗A L), g′i := gi ⊗A L ∈HomA,A (N ⊗A L, M ⊗A L).

Moreover,
∑

i g
′
i ◦ f ′i =M ⊗A L.

(5) Let f ∈MA,Z(A)(Mσ, Nτ ) and g ∈MA,Z(A)(Lρ, Mσ). Then f ◦ g ∈
HomA-(L, N). Moreover,

f ◦ g ◦ (L / ρ(z)) = f ◦ (g / σ(z)) = f ◦ (M / σ(z)) ◦ g

= (f / τ(z)) ◦ g = (f ◦ g) / τ(z).
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(6) By assumption there is k > 1 and morphisms fi ∈MA,Z(A)(Mσ, Nτ ),

gi ∈MA,Z(A)(Nτ , Mσ), for i= 1, . . . , k, such that
∑

i gi ◦ fi =M . More-

over, there is k′ > 1 and morphisms f ′i ∈MA,Z(A)(Lρ, Mσ), g′i ∈
MA,Z(A)(Mσ, Lρ), for i= 1, . . . , k′, such that

∑
i g
′
i ◦ f ′i = L. Set fi,j :=

fi ◦ f ′j and gi,j := g′i ◦ gj . Then
∑

i,j gi,j ◦ fj,i =
∑

i,j g
′
i ◦ gj ◦ fj ◦ f ′i = L and,

by (5), we have that fi,j ∈MA,Z(A)(Lρ, Nτ ) and gi,j ∈MA,Z(A)(Nτ , Lρ).

(7) It follows from the obvious inclusion MA,Z(A)(Mσ, Nτ )⊆
MA,Z(A)(Mσρ, Nτρ).

Take M, N, L to be three A-bimodules, and let σ, τ : Z(A)→Z(A) be

Z(I)-linear maps. We define

MA,Z(A)(L⊗Mσ, L⊗ Nτ ) :=

{f ∈HomA-(L⊗M, L⊗ N) | f ◦ (L⊗ (M / σ(z))) = f / τ(z), ∀z ∈ Z(A)}

where f / τ(z) = (L⊗ (N / τ(z))) ◦ f as the right A-module structure of

L⊗ N is the one coming from N . Using this set we define as in Definition

3.5, the relations L⊗Mσ|L⊗ Nτ and L⊗Mσ ∼ L⊗ Nτ .

Proposition 3.9. Let M be an A-bimodule and let α, β be two monoids

automorphisms of A. Set σ := Z(α) and τ := Z(β). Then M ⊗Aσ ∼M ⊗
Aτ .

Proof. Set k := 1, f1 :=M ⊗ βα−1 and g1 := f−1
1 . Clearly f1 ∈

MA,−(M ⊗A,M ⊗A). Moreover,

f1 ◦ ((M ⊗A) / σ(z)) = (M ⊗ β) ◦ (M ⊗ α−1) ◦ (M ⊗ (A / σ(z)))

= M ⊗ [β ◦ α−1 ◦ (A / σ(z))]

= M ⊗ [(β ◦ α−1) / (β ◦ α−1 ◦ σ(z))]

= M ⊗ [(β ◦ α−1) / (β ◦ α−1 ◦ α ◦ z)]

= M ⊗ [(β ◦ α−1) / (β ◦ z)]

= M ⊗ [(β ◦ α−1) / τ(z)]

= f1 / τ(z)

so that f1 ∈MA,Z(A)(M ⊗Aσ, M ⊗Aτ ). A similar argument shows that

g1 ∈MA,Z(A)(M ⊗Aτ , M ⊗Aσ). Since
∑

i gi ◦ fi =M ⊗A, we conclude

that M ⊗Aσ|M ⊗Aτ . If we interchange the roles of M and N and the

ones of σ and α we get also M ⊗Aτ |M ⊗Aσ.
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Theorem 3.10. Let (A, m, u) be a monoid in M and assume that A⊗
A∼A. Let α, β be two monoids automorphisms of A and set σ := Z(α) and

τ := Z(β). Then Aσ ∼Aτ .

Proof. We split the proof in three steps.

(1) Since A∼=A⊗A A, by Proposition 3.8(3), we get Aσ ∼ (A⊗A A)σ =

A⊗A Aσ.

(2) Since A∼A⊗A, in view of Proposition 3.8(4), we have A⊗A A∼
A⊗A⊗A A and hence A⊗A Aσ ∼A⊗A⊗A Aσ, by Proposition 3.8(2).

(3) Since A⊗A⊗A A∼=A⊗A, by Proposition 3.8(3), we get A⊗A⊗A
Aσ ∼A⊗Aσ.

Now, if we glue together (1), (2) and (3) using Proposition 3.8(6),

we obtain Aσ ∼A⊗Aσ. Similarly one gets Aτ ∼A⊗Aτ . The conclusion

follows by Propositions 3.9 and 3.8(6).

Corollary 3.11. Let (A, m, u) be a monoid in M with a right flat

underlying object A. Assume that A⊗A∼A and u1 : I→ 1J1 is an isomor-

phism. Let α be a monoid automorphism of A and set σ := Z(α). Then

σJ1 ∈ InvI(A) with inverse 1Jσ. Moreover, σ = ΦσJ1 ∈ GZ(I)(Z(A)), where

Φ is the morphism of groups ΦI given in Proposition 2.3. In particular we

have a group homomorphism

ω : Autalg(A)→GZ(I)(Z(A)),
{
γ 7→ Z(γ)

}
,

where Autalg(A) stands for the automorphisms group of the monoid A inside

M.

Proof. By Theorem 3.10, we have that Aσ ∼A1. Henceforth, we apply

Corollary 3.7 to obtain that σ ∈ GZ(I)(Z(A)), which means that σJ1 ∈
InvI(A) with inverse 1Jσ. By applying now Theorem 3.4, it is clear that

σ = Φ̂Φ̂−1(σ) = ΦσJ1 . The particular statement is immediate.

The following main result gives conditions under which the Miyashita

action is bijective.

Theorem 3.12. Let (M,⊗, I) be a Penrose monoidal abelian, locally

small and bicomplete category with right exact tensor products functors. Let

(A, m, u) be a monoid in M with a right flat underlying object A. Assume

that A⊗A∼A and u1 : I→ 1J1 is an isomorphism. Consider the map ω as

in Corollary 3.11 and ς, Φ as in Theorem 3.4.
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(1) If the map Ω : Autalg(A)→AutZ(I)-alg(Z(A)), γ 7→ Z(γ) is surjective,

then ς and Φ are bijective.

(2) If Ω is surjective and Z is faithful, then both Ω and ω are bijective. In

this case, we obtain a chain of isomorphisms of groups:

InvI(A)∼= AutZ(I)-alg(Z(A))∼= Autalg(A)∼= GZ(I)(Z(A)).

Proof. (1) Since Ω = ς ◦ ω is surjective, it is clear that ς is surjective,

and so bijective as it is by construction injective. Therefore, by Theorem

3.4, this implies that Φ = ς ◦ Φ̂ is bijective as well. (2) If Z is faithful, then

clearly Ω is injective, hence it is also bijective. Thus ω = ς−1 ◦ Ω is also

bijective. The stated chain of isomorphisms of groups is now immediate.

Remark 3.13. Under the assumptions made on A in Theorem 3.12, if

we further assume that Z is full and faithful, then clearly we obtain the

chain of isomorphisms stated there. As we will see below, part of those

isomorphisms are also obtained in the special case of certain Azumaya

monoids.

§4. Miyashita action: the Azumaya case

The main aim in this section is to apply the foregoing results to a certain

class of Azumaya monoids (see Definition 4.3 below) when the base category

in symmetric. The novelty here is the construction of a homomorphism of

groups Γ from InvI(A) to Autalg(A), which is shown to be bijective when

A is an Azumaya monoid (with a certain property) and Z is faithful; see

Corollary 4.9.

In all this section (M,⊗, I) is symmetric monoidal abelian, locally small

and bicomplete category with right exact tensor products functors. We

denote by τM, N :M ⊗ N →N ⊗M the natural isomorphism defining the

symmetry of M.

4.1 The map Γ

Let (A, m, u) be a monoid inM with u a monomorphism. Consider X ∈
InvI(A) with inverse Y . Define the morphism

Γ(X,Y ) :A
∼= // A⊗ X ⊗ Y

τ⊗Y
// X ⊗ A⊗ Y

iX⊗A⊗iY // A⊗ A⊗ A
m◦(A⊗m)

// A.
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An argument analogue to the one used in Proposition 2.2 for σX,Y ,

shows that this morphism does not depend on the choice of Y (nor on

a representing object of the equivalence class of (X, iX)) so that we can also

denote it by ΓX . This, in fact, defines a map to the endomorphisms ring

of A with image in the automorphisms group as the following result shows.

First we give the following diagrammatic expression of ΓX

Proposition 4.1. The map

Γ : InvI(A)−→Autalg(A),
(
X 7−→ ΓX

)
is a homomorphism of groups. In particular we have Φ = Ω ◦ Γ, where Ω

is as in Theorem 3.12 and Φ := ΦI as in Proposition 2.3.

Proof. In view of Corollary 1.13 (here the assumption u is monomor-

phism is used), it suffices to prove that we have a morphism of monoids

Γ : (InvrI (A),⊗, I)−→ (Endalg(A), ◦, IdA),
(
X 7−→ ΓX

)
.

First we have to check that this map is well defined, that is ΓX is a monoid

endomorphism of A. Let us check that ΓX is unitary

Let us check that ΓX is multiplicative. We start by computing m ◦ (ΓX ⊗
ΓX) =
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It is clear that ΓI = IdA. Let now X, X ′ ∈ InvrI (A) have right inverses Y, Y ′

respectively. Then, we compute ΓX⊗X′ =

It is now clear that, for X ∈ InvI(A) with inverse Y , one has Γ−1
X = ΓY . The

particular statement is clear, and this finishes the proof.
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4.2 Central monoid with a left internal hom functor

Let (A, m, u) be a monoid in M we denote by Ae the monoid A⊗ Ao

where Ao is the opposite monoid (i.e., A with the multiplication morphism

twisted by the symmetry τ ). Since our base category M is symmetric, we

can as in the classical case, identify the category of A-bimodules with the

category of left (or right) Ae-modules. Assume that the functor A⊗ − :

M→M has a right adjoint functor, which we denote by [A,−] :M→M.

In this case, we say that A has a left internal hom functor. Consider as in

Appendix B the functor Ae [A,−] : AeM→M which is the right adjoint of

A⊗ − :M→ AeM with the canonical natural monomorphism Ae [A,−] ↪→
[A, O(−)], where O : AeM→M is the forgetful functor. On the other hand,

notice that O is faithful and exact.

The monoid A is said to be central provided that the canonical map

I→ Ae [A, A] is an isomorphism (this is the counit at I of the previous

adjunction).

Proposition 4.2. Let (A, m, u) be a monoid in M and consider the

submonoid 1J1 of equation (23) with structure given by Proposition 2.5(iii).

Assume that A has a left internal hom functor. Then

(i) there is a commutative diagram of monoids:

Ae [A, A] �
� //

λ &&

A

1J1

� ?

OO

(ii) Assume that I∼= 1J1 via the unit given in (31) (thus u is a monomor-

phism). Then Ae [A, A]∼= I and so A is central.

(iii) If A is central and the functor Z reflects isomorphisms, then I∼= 1J1

via its unit.

(iv) When Z is faithful (i.e., I is a generator), then A is central if and

only if I∼= 1J1.

Proof. (i). By [10, Proposition 3.3.], we can identify Ae [A, A] with the

equalizer
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(43)

where ζA is the unit of the adjunction A⊗ − a [A,−]. Now, using the

universal property of 1J1 given by equation (25), one shows the existence of

the triangle. We leave to the reader to check that the stated diagram is in

fact a triangle of monoids.

(ii) It follows from the fact that the diagram in (i) commutes and that

the morphisms involved are unitary.

(iii) The definition of the functor Ae [A,−] obviously implies the isomor-

phism Z(Ae [A, A])∼= HomAe-(A, A) of Z(I)-algebras. On the other hand,

under the assumption made on the functor Z a tedious computation

gives a chase to an isomorphism Z(1J1)∼= HomAe-(A, A) of Z(I)-algebras.

Combining these two isomorphisms shows that Z(λ) is an isomorphism.

Therefore, 1J1
∼= Ae [A, A]∼= I, since A is central.

(iv) We only need to check the direct implication since the converse follows

by the second item. This implication clearly follows from part (iii), since a

faithful functor, whose domain is an abelian category, reflects isomorphisms.

4.3 The Azumaya case

The notion of Azumaya monoid in a monoidal category of modules over

a commutative ring (see [18, Théorème 5.1] for equivalent definitions), can

be extended to any closed symmetric monoidal additive category; see for

example [11, 30]. However, one can droop the additivity and the closeness

conditions on the base monoidal category, as was done in [26], and the

definition of Azumaya monoid still makes sense in this context. In our setting

M is a symmetric abelian category which is possibly not closed, so we can

follow the ideas of [26, 30].

Definition 4.3. [11, 26, 30] A monoid (A, m, u) in the monoidal cat-

egory M is called an Azumaya monoid if the functor A⊗ − :M→ AeM
establishes an equivalence of categories and the multiplication m splits as a

morphism of A-bimodules (in other words A is a separable monoid). This,

in fact, is the notion of 2-Azumaya in the sense of [26].

It is convenient to make some comments and remarks on the conditions

of the previous definition.
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Remarks 4.4. Consider an Azumaya monoid (A, m, u) in M as in

Definition 4.3.

(i) It is noteworthy to mention that one cannot expect to have for free

that A is a dualizable object in M, that is dualizable as in Definition

1.2 with the trivial structure of (I, I)-bimodule. This perhaps happens

when I is a small generator in M. However, as was shown in [30,

Proposition 1.2], A is in fact a dualizable object in a certain monoidal

category of monoids whose dual object is exactly the opposite monoid

Ao. On the other hand, one can show as follows that A forms part of a

two-sided dualizable datum in the sense of Definition 1.2 by taking

I and Ae as base monoids. Following the proof of [30, Proposition

1.2] since A can be considered either as an (I, Ae)-bimodule or as an

(Ae, I)-bimodule, A⊗ − :M→ AeM is an equivalence of categories

if and only if A⊗Ae − : AeM→M is so. In this way, by applying

twice [25, Proposition 5.1] or [30, Proposition 1.3], we obtain the

existence of two objects: [A, I] and [A, A] together with the follow-

ing natural isomorphisms HomM (A⊗ −, I)∼= HomM (−, [A, I]) and

HomM (A⊗ −, A)∼= HomM (−, [A, A]). Furthermore, there are iso-

morphisms: [A, I]⊗ A∼=Ae of Ae-bimodules, I∼=A⊗Ae [A, I] of objects

in M and Ae =A⊗ Ao ∼= [A, A] of monoids. Thus, the pair (A, [A, I]),
within these two first isomorphisms, is a two-sided dualizable datum

relating the monoids I and Ae in the sense of Definition 1.2, as claimed

above.

(ii) Since A⊗ − :M→ AeM is an equivalence of categories, it has a right

adjoint functor which, as in Appendix B, is denoted by Ae [A,−] :

AeM→M. In contrast with Proposition B.1, here we only know that

Ae [A,−] exists and there are no indications about its construction.

Indeed, at this level of generality, it is not clear whether A has a left

internal hom functor in M. Thus a very interesting class of Azumaya

monoids consists of those for which the underlying object has this

property. This is, of course, the case of the usual class of Azumaya

algebras over commutative rings.

Remark 4.5. Let (A, m, u) be a monoid in M. In Definition 4.3 we

cannot drop the separability condition in general as it happens in the

classical case. This is due to the fact that I is not always projective in M.

However, if we assume that I is projective in M and A⊗ − :M→ AeM
is an equivalence, then A must be an Azumaya monoid. Indeed, since
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Ae [A, m] : Ae [A, A
e]→ Ae [A, A]∼= I is an epimorphism being the image of

m by the equivalence Ae [A,−], then Ae [A, m] must split as I is projective.

Therefore, m itself must split in AeM, that is, A should be separable.

On the other hand, observe thatA is separable if and only if it is projective

relatively to all morphisms in AeM which split as morphisms in M; see

for example [1, Theorem 1.30 and equality (5)]. Since this does not mean

that A is projective in AeM, then I is not projective in M provided that

A⊗ − :M→ AeM is an equivalence. Hence if A is Azumaya, we cannot

conclude that I is projective in M.

Before giving more consequences of Definition 4.3, we give here conditions

under which Z(A) is an Azumaya Z(I)-algebra. Recall from [9, Proposition

1.2] that an object X in M is said to be a Künneth object if it is a direct

summand of a finite product of copies of I. In the notation of Section 3.2 this

means that X|I inM. In caseM is closed, any Künneth object is obviously

a dualizable object cf. [9].

Proposition 4.6. Let (A, m, u) be an Azumaya monoid in M with

underlying dualizable Künneth object A. Then Z(A) is an Azumaya Z(I)-
algebra in the classical sense.

Proof. It is clear that Z(A) is a finitely generated and projective Z(I)-
module. Using the characterization of Azumaya algebras (see for example

[7, 16]), we need to check that EndZ(I)(Z(A)) is isomorphic as a Z(I)-
algebra to Z(A)⊗Z(I) Z(A)o, which is proved as follows. Following the ideas

of [9, Proposition 1.2], for any object X in M, we know that Z(X)⊗Z(I)
Z(In) ∼= Z(X ⊗ In). Thus, the same isomorphism is inherited by any direct

summands of some In. Therefore, we have an isomorphism Z(X)⊗Z(I)
Z(A) ∼= Z(X ⊗ A) and by symmetry Z(A)⊗Z(I) Z(X) ∼= Z(A⊗ X), for

any object X in M. In particular, we have

Z(A)⊗Z(I) Z(A)∼= Z(A⊗ A), and Z(A)⊗Z(I) Z([A, I])∼= Z(A⊗ [A, I]).

Therefore, Z([A, I])∼= Z(A)∗ as Z(I)-modules, where Z(A)∗ is the Z(I)-
linear dual of Z(A), since [A, I] is a dual object of A in M. By Remark

4.4(i), we have a chain of isomorphisms Ae ∼= [A, A]∼=A⊗ [A, I], from which

we deduce the following isomorphisms

Z(A)⊗Z(I) Z(A)o ∼= Z(A⊗ Ao) ∼= Z([A, A]) ∼= Z(A)⊗Z(I) Z(A)∗

∼= EndZ(I)(Z(A)),

whose composition leads to the desired Z(I)-algebra isomorphism.
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In view of Remark 4.4(ii), in what follows we only consider an Azumaya

monoid (A, m, u) for which the underlying object A has a left internal hom

functor in M. This is the case, for instance, when A is a left dualizable

object in M (in the sense of Definition 1.2 with R= S = I). Obviously,

the strong assumption of M being left closed automatically guarantees the

existence of left internal hom functor for any object; however, this is not

the case of our interest.

Corollary 4.7. Let (A, m, u) be an Azumaya monoid in M. Then A

is flat, central and the unit u : I→A is a section in M.

Proof. The functor A⊗ − :M→M is clearly the composition of the

functor A⊗ − :M→ AeM with the forgetful functor O : AeM→M, so

that it is left exact. Thus A is a flat object.

We know that the unit and the counit

εM :A⊗Ae [A,M ]−→M, ζX :X −→ Ae [A, A⊗ X],

of the adjunction A⊗ − :M //
AeM : Ae [A,−]oo are natural isomor-

phisms, for every pair ofobjects (X,M) in M× AeM. Thus, ζI : I→
Ae [A, A] is an isomorphism, and so A is central. The retraction of u is

given by the following dashed arrow

Ae [A, A⊗ A]
Ae [A,m]

//
Ae [A, A]∼= I

A

ζA

OO 44

Next we apply the results of Section 3, specially Theorem 3.12, to the

case of Azumaya monoid. Most of the assumptions in that Theorem are

in fact fulfilled for an Azumaya monoid (A, m, u). Indeed, from the fact

that m splits in AeM, we have that A|(A⊗ A) as in Definition 3.5(2).

By Proposition 4.2 and Corollary 4.7, we know that u1 : I→ 1J1 is an

isomorphism and that A is flat. Henceforth, the only condition on A, which

one needs to check is (A⊗ A)|A.

However, even under the assumption that Z is faithful, one can not expect

to have for free this last condition, as was given in the classical case of

modules over a commutative ring. In our setting, it seems that this condition

https://doi.org/10.1017/nmj.2016.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.25


46 A. ARDIZZONI AND L. EL KAOUTIT

depends heavily on the fact that A and Ae should be “progenerators” in the

category of Ae-bimodules. To be more precise, as was argued in Remark

4.5, the projectivity of A in AeM is, for instance, linked to that of I in M
as the following natural isomorphism shows: HomAe-(A,−)∼= Z ◦ Ae [A,−];

see Appendix B.

Recall from Proposition 1.6 that, for any element θ ∈ GZ(I)(Z(A)) the

group defined in (35), there is, by Propositions 1.3 and 1.6, an isomorphism

of left A-modules f
θJ1 :A⊗ θJ1→A. Considering A⊗ θJ1 as left Ae-

module, we also have Ae [A, A⊗ θJ1]∼= θJ1 via the unit ζ.

For an element θ as above, we denote by θ̃ := Γ
θJ1 the image of θJ1 by the

morphism of groups Γ stated in Proposition 4.1 (recall here that i
θJ1 = eqθ,1;

see (24)). In this way, to each A-bimodule M , we associate the A-bimodule

M
θ̃

whose underlying object is M where the left action is unchanged while

the right action is twisted by θ̃. Precisely, we have ρM
θ̃

:= ρM ◦ (M ⊗ θ̃),
where ρM :M ⊗ A→M is the right structure morphism of M .

Now, given another element σ ∈ GZ(I)(Z(A)) and another A-bimodule N ,

we have two Z(I)-modules under consideration. Namely, the first one is

MA,Z(A)(Mθ, Nσ) defined in the same way as in Section 3.2, and the other

is the module of A-bimodules morphisms HomA,A

(
M
θ̃
, Nσ̃

)
.

Proposition 4.8. Let (A, m, u) be an Azumaya monoid in M. Con-

sider elements θ, σ ∈ GZ(I)(Z(A)) and their respective associated images

θ̃, σ̃ ∈Autalg(A). Assume that the functor Z is faithful. Then

(i) For every t ∈ Z(A), we have Z(θ̃)(t) = Φ
θJ1(t) = θ(t), that is, Z(θ̃) =

θ.

(ii) The homomorphism of groups ω stated in Corollary 3.11 is surjective.

(iii) There is an equality HomA,A

(
A
θ̃
, Aσ̃

)
= MA,Z(A)(Aθ, Aσ).

Proof. By Corollary 4.7, we know that A is central, hence I∼= 1J1 by

Proposition 4.2(iv).

(i) It is a direct consequence of Proposition 4.1 and Theorem 3.4 (see

equation (36)).

(ii) It follows by item (i).

(iii) The direct inclusion follows as in Proposition 3.8(1). Con-

versely, take an element f ∈MA,Z(A)(Aθ, Aσ). This element belongs to

HomA,A

(
A
θ̃
, Aσ̃

)
if and only if

(44) m ◦ (f ⊗ σ̃) = f ◦m ◦ (A⊗ θ̃).
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By the equalities m ◦ (f ⊗ σ(t)) = f ◦m ◦ (A⊗ θ(t)), t ∈ Z(A) derived

from the definition of f , we have, using part (i), that

m ◦ (f ⊗ σ̃) ◦ (A⊗ t) = f ◦m ◦ (A⊗ θ̃) ◦ (A⊗ t),

for every t ∈ Z(A). Using these equalities and the fact that I is a generator

we are able to show that m ◦ (f ⊗ σ̃) ◦ (A⊗ πA) = f ◦m ◦ (A⊗ θ̃) ◦ (A⊗
πA), where πA : I(Λ)→A is the canonical epimorphism. Now, equality (44)

follows since A⊗ πA is an epimorphism, which completes the proof.

Now, with notations as in Definition 3.5, we set

HZ(I)(Z(A)) :=
{
θ ∈AutZ(I)-alg(Z(A))|Aθ ∼A1

}
.

Using Proposition 3.8(7), we easily check that this is a subgroup of

AutZ(I)-alg(Z(A)). Now, it is clear from Corollary 3.7, that under the

assumptions of A being Azumaya and u1 : I→ 1J1 is an isomorphism, we

have an inclusion HZ(I)(Z(A))⊆ GZ(I)(Z(A)) of groups.

Corollary 4.9. Let (A, m, u) be an Azumaya monoid in M such that

A⊗ A|A. Assume that the functor Z is faithful. Then the maps ω and Γ

are bijective so that we have the following commutative diagram

Autalg(A)

ω ∼=

��

� x

Ω

**
InvI(A)

Γ

∼=

55

Φ //

∼=

Φ̂

))

AutZ(I)-alg(Z(A))

GZ(I)(Z(A)) =HZ(I)(Z(A))

& � ς

44

of homomorphisms of groups.

Proof. The map ω is bijective since by Proposition 4.8(ii) it is surjective

and it is injective as Z is faithful. We know from Proposition 4.1, that

Ω ◦ Γ = Φ. Therefore, Theorem 3.4 implies that ς ◦ ω ◦ Γ = ς ◦ Φ̂, and so

ω ◦ Γ = Φ̂ which implies that Γ is bijective as well. Lastly, the inclusion

GZ(I)(Z(A))⊆HZ(I)(Z(A)) is deduced from Proposition 4.8(i) in combina-

tion with Theorem 3.10.
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§5. Application to the category of comodules over a flat Hopf

algebroid

All Hopf algebroids which will be considered here are commutative and

flat over the base ring, for the axiomatic definitions and basic properties,

we refer the reader to [28, Appendix 1].

Let (R, H) be a commutative Hopf algebroid with base ring R and

structure maps s, t :R→H, ε :H →R, ∆ :H →H ⊗R H and S :H →H.

An H-comodule stands for right H-comodule, we denote the category of

H-comodules by ComodH . It is well-known, see for instance [5] or [14], that

any H-comodule P whose underlying R-module is finitely generated and

projective is a dualizable object in the monoidal category of comodules

with dual the R-module P ∗ = HomR (P, R). The comodule structure of P ∗

is given by

P ∗→ P ∗ ⊗R H,
{
ϕ 7−→ e∗i ⊗R t(ϕ(ei,0))S (ei,1)

}
,

where {ei, e∗i } is a dual basis for PR and %P (p) = p0 ⊗R p1 is the H-coaction

of P (the summation is understood). Notice that the converse also holds

true which means that any dualizable object in ComodH is a finitely

generated and projective R-module. This is due to the fact that the forgetful

functor ComodH →ModR is a strict monoidal functor and the unit object in

ComodH is R[1], that is R with structure of comodule given by the grouplike

element 1H , via the target map t :R→H ∼=R⊗R H.

Next we want to apply the results of Section 4.3 to the category of

comodules ComodH . Observe that this category is a symmetric monoidal

Grothendieck category with respect to the canonical flip over R, where the

tensor product is right exact on both factors. Moreover, the forgetful functor

ComodH →ModR is faithful and exact. So the category ComodH fits in the

context of that subsection.

In the previous notations, the functor Z is identified with Z(M) =

M co(H), for an H-comodule M , where

M co(H) := {m ∈M | %M (m) =m⊗R 1}

is the submodule of coinvariant elements. Therefore, the condition that R[1]

is a generator in ComodH , means that the sudmodule of coinvariant elements

M co(H) is not zero, for every right H-comodule M . For simplicity we denote

by Rco(H) := (R[1])co(H) the subalgebra of R of coinvariant elements, which

is explicitly given by Rco(H) = {r ∈R|s(r) = t(r)}.
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Lemma 5.1. Let A be an H-comodule with coaction %A :A→A⊗R H.

Then A admits a structure of monoid in ComodH if and only if %A is a

morphism of R-algebras, where H is considered as an R-algebra via its

source map s.

Proof. Straightforward.

We refer to such an object as an H-comodule R-algebra.

Corollary 5.2. Let A be an Azumaya H-comodule R-algebra.

(i) If A is finitely generated and projective R-module, then A is an

Azumaya R-algebra.

(ii) If the underlying comodule of A is a direct summand of finite products

of copies of R[1], then Aco(H) is an Azumaya Rco(H)-algebra.

Proof. (i) Since A is a dualizable H-comodule, the right adjoint of

the functor A⊗ − : ComodH → ComodH is given by the functor [A,−]∼=
−⊗R A∗ defined using the tensor product of two H-comodules. Using this

adjunction and equation (41), we can show that the underlying R-algebra of

the H-comodule algebra Ae [A, A] coincides with the centre of the underlying

R-algebra of A. Therefore, the centre of A coincides with R∼= Ae [A, A] as

A is a central H-comodule R-algebra. From this we conclude that A is a

central separable R-algebra, that is, an Azumaya R-algebra.

(ii) It follows directly from Proposition 4.6, since A is a dualizable

comodule.

Example 5.3. Assume that R[1] is a projective H-comodule and take

P an H-comodule such that PR is finitely generated and projective module.

Consider in a canonical way EndR(P )∼= [P, P ] as an H-comodule R-algebra.

Assume that the evaluation map P ⊗EndR(P ) P
∗→R[1] is an isomorphism

of H-comodules. Since R[1] is projective this isomorphism implies that P

is a progenerator in ComodH in the sense of [26, page 113] whence, by [26,

Theorem 14], EndR(P ) is an Azumaya H-comodule R-algebra.

Example 5.4. Assume that (R, H) is a split Hopf algebroid, that is

H =R⊗K B, where B is a flat commutative Hopf algebra over a ground

commutative ring K and R is a (right) B-comodule commutative K-algebra.

Let A be an Azumaya H-comodule R-algebra which finitely generated and

projective as an R-module. Then, by Corollary 5.2(i), A is an Azumaya R-

algebra. If R= K, then A is in particular an B-comodule Azumaya algebra

in the sense of [6, page 328].
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The fact that A is an H-comodule R-algebra leads to different groups

so far treated here. On the one hand, we have InvR(A) and AutR-alg(A),

where A is considered as an R-algebra that is a monoid in the category of

R-modules. On the other hand, we have InvHR (A) and AutHR-alg(A), where

A is considered as a monoid in the category of H-comodules. Obviously we

have the following inclusions of groups

InvHR (A)⊆ InvR(A), AutHR-alg(A)⊆AutR-alg(A).

By a direct application of Corollary 4.9, we obtain the following.

Corollary 5.5. Let A be an Azumaya H-comodule R-algebra such

that A⊗R A|A simultaneously in the category of H-comodules and of A-

bimodules. Assume that R[1] is a generator in ComodH . Then there is an

isomorphism of groups

InvHR (A) ∼= AutHR-alg(A).

Remark 5.6. Consider an Azumaya H-comodule R-algebra A which is

finitely generated and projective as R-module. One can expect to deduce

Corollary 5.5 directly by using Corollary 5.2(i) in conjunction with [23,

Corollary of Theorem 1.4]. This could be so simple if one succeeds to show,

for instance, that the following diagram is commutative

InvHR (A)
_�

��

ψψψ
// AutHR-alg(A)

� _

��
InvR(A)

ϕ
// AutR-alg(A)

where the map ψψψ is the isomorphism of Corollary 5.5 while ϕ is the

isomorphism of [23, page 100] which for any element X ∈ InvR(A) with

inverse Y and decomposition of unit 1R =
∑

i xiyi (xi ∈X, yi ∈ Y ), the

associated automorphism is given by ϕX(a) =
∑

i xiayi, for any a ∈A. That

is, to show that the map ψψψ is the restriction of ϕ. However this is not clear

at all. Or perhaps by showing that the map ϕX is H-colinear whenever

X belongs to the subgroup InvHR (A). This is also not clear at all. In any

case, both ways will only lead to the injectivity and one has to check the

surjectivity which is perhaps much more complicated by using elementary

methods.
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Appendix A. More results on invertible and dualizable bimodules

In all this appendix (M,⊗, I, l, r) will be a Penrose monoidal abelian,

locally small and bicomplete category, where tensor products are right exact

on both factors. Let (A, mA, uA), (R, mR, uR), (S, mS , uS) be monoids inM
with two morphisms of monoids α :R→A← S : β. In the sequel, we will

use the notation of Section 1.

A.1 From right dualizable datum to right inverse

This subsection is devoted to discuss the converse of Proposition 1.3, that

is, trying to give conditions under which a right invertible sub-bimodule can

be extracted from a right dualizable datum in the sense of Definition 1.2.

The following corollary is complementary to Proposition 1.6.

Corollary A.1. If in Proposition 1.6, we assume ev and coev are

isomorphisms, then so are the following morphisms

fY :=mR
A ◦ (iY ⊗R A) : Y ⊗R A→A,

gX :=mR
A ◦ (A⊗R iX) :A⊗R X →A.

Proof. Since (X, Y, ev, coev) is a right dualizable datum then(
Y, X, (coev)−1, (ev)−1

)
is a right dualizable datum. By Proposition 1.6,

we get that fY and gX are isomorphisms too.

Proposition A.2. Consider a right dualizable datum (X, Y, ev, coev)

which satisfies equations (8) and (9). Assume that gX is an isomorphism

and the functor A⊗R (−) : RM→ AM is faithful. Then X is a two-sided

invertible sub-bimodule.

Proof. By Proposition 1.6, gY is an isomorphism with inverse

g−1
Y =

(
mR
A ⊗S Y

)
◦ (A⊗R iX ⊗S Y ) ◦ (A⊗R coev) ◦

(
rRA
)−1

= (gX ⊗S Y ) ◦ (A⊗R coev) ◦
(
rRA
)−1

,
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Therefore, we get that

A⊗R coev =
(

(gX)−1 ⊗S Y
)
◦ g−1

Y ◦ r
R
A

is an isomorphism. Hence, since the functor A⊗R (−) is faithful, then coev

is an epimorphism as well as a monomorphism, so that it is an isomorphism.

By (5), we have

rSX ◦ (X ⊗S ev) ◦ (coev ⊗R X) ◦
(
lRX
)−1

= IdX .

Since coev is an isomorphism, we get that X ⊗S ev is an isomorphism too.

Now, from the equality

(gX ⊗S S) ◦ (A⊗R X ⊗S ev) = (A⊗S ev) ◦ (gX ⊗S Y ⊗R X)

we deduce that A⊗S ev is an isomorphism. Therefore, we conclude as above

that ev is an isomorphism.

A.2 Base change and dualizable datum

Keep the notation of Section 1, and assume that α, β are monomorphisms

in M. The main aim here is to prove that an (R, S)-bimodule X such that

X ⊗S A∼=A and which fits into a right dualizable datum admits a right

inverse if we change the ring R by a suitable extension R′ of it. First we

need to prove the following technical result.

Proposition A.3. Let (X, Y, ev, coev) be a right dualizable datum

(Definition 1.2) such that Y ∈P (SAR) and X ∈P (RAS). Assume that the

morphism fX =mS
A ◦ (iX ⊗S A) :X ⊗S A→A is an isomorphism. Define

γ :=
(
Y

(rRY )
−1

−→ Y ⊗RR
Y⊗Rα−→ Y ⊗RA

Y⊗Rf−1
X−→ Y ⊗RX⊗SA

ev⊗SA−→ S ⊗SA
lSA−→A

)
.

Then

(A1) fX ◦ (X ⊗S γ) ◦ coev = α (i.e., mS
A ◦ (iX ⊗S γ) ◦ coev = α),

(A2) mR
A ◦ (γ ⊗R iX) = β ◦ ev.

Proof. Using the diagrammatic convention of Section 1, we have
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which gives equality (A1). On the other hand, we have

Using this equality and the fact that f−1
X is right A-linear (being the

inverse of a right A-linear morphism) we compute

which gives the desired equality (A2).

Next result extends a result by Miyashita, see [23, Proposition 1.1,

implication (ii) imlies (i)].

Theorem A.4. Keep the assumptions and notations of Proposition A.3.

Let (Y ′, iY ′ : Y
′→A) := Im (γ) be the image of γ in (S, R)-bimodules, and

let (R′, α′ :R′→A) := Im(m′X) be the image of m′X in (R, R)-bimodules,

where

m′X :=
(
X⊗SY ′

X⊗SiY ′−→ X⊗SA
fX−→A

)
=
(
X⊗SY ′

iX⊗SiY ′−→ A⊗SA
mSA−→A

)
.
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Denote by pY ′ : Y → Y ′ the canonical projection so that γ = iY ′ ◦ pY ′ .
Similarly denote by mX :X ⊗S Y ′→R′ the canonical projection such that

α′ ◦mX =m′X . Then

(1) R′ is a monoid in (R, R)-bimodules such that α′ :R′→A is a morphism

of monoids therein;

(2) X ∈P(R′AS) has a right inverse given by Y ′ ∈P (SAR′).

Proof. Unfortunately it not possible to present here a smart proof

using diagrammatic notation, since we are dealing with different type of

multiplications m′X , mX , mX and it could be difficult to distinguish them

properly.

(1) Set mX := (X ⊗S pY ′) ◦ coev :R→X ⊗S Y ′ and θ :=mX ◦mX . Note

that

α′ ◦ θ = α′ ◦mX ◦mX =m′X ◦mX = fX ◦ (X ⊗S iY ′) ◦ (X ⊗S pY ′) ◦ coev

= fX ◦ (X ⊗S γ) ◦ coev
(45)
= α.

so that α′ ◦ θ = α. Hence we have a commutative diagram

R
mX //

θ

##

α

//

X ⊗S Y ′

mXyy
m′X

��

R′

α′

&&
A

So the unit of R′ is θ ◦ uR. The construction of the multiplication is more

involved. Let (Q, iQ :Q→ Y ) be the kernel of pY ′ . Tensoring by X on the

right we get the exact sequence

Q⊗R X
iQ⊗RX

// Y ⊗R X
pY ′⊗RX // Y ′ ⊗R X // 0.

We then have

β ◦ ev ◦ (iQ ⊗R X)
(46)
= mR

A ◦ (γ ⊗R iX) ◦ (iQ ⊗R X)

= mR
A ◦ (iY ′ ⊗R iX) ◦ (pY ′ ⊗R X) ◦ (iQ ⊗R X) = 0.
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Since β is a monomorphism we get ev ◦ (iQ ⊗R X) = 0 so that there is a

morphism of S-bimodules ev′ : Y ′ ⊗R X → S such that

(A3) ev′ ◦ (pY ′ ⊗R X) = ev.

Let us check that there is a morphismmR
R′ which turns the following diagram

commutative

(X ⊗S Y ′)⊗R (X ⊗S Y ′)
m′X⊗Rm

′
X //

X⊗Sev
′⊗SY

′

��

** **

A⊗R A

mR
A

��

R′ ⊗R R′

66

mR
R′

��

X ⊗S S ⊗S Y ′

rSX⊗SY
′ ∼=

��

R′

((
X ⊗S Y ′

m′X

//

44

A

On the one hand we have

m′X ◦ ((rSX ◦
(
X ⊗S ev′

)
)⊗S Y ′) ◦ (X ⊗S pY ′ ⊗R X ⊗S Y ′)

(47)
= m′X ◦ ((rSX ◦ (X ⊗S ev))⊗S Y ′).

Since X ⊗S pY ′ ⊗R X ⊗S Y ′ is an epimorphism, it suffice to check that

m′X ◦ ((rSX ◦ (X ⊗S ev))⊗S Y ′)

=mR
A ◦ (m′X ⊗R m′X) ◦

(
X ⊗S pY ′ ⊗R X ⊗S Y ′

)
,

which follows from definitions by using equation (A2). From this, one proves

that mR
A ◦ (α′ ⊗R α′) factors through a map mR

R′ (R′ is a kernel) such that

α′ ◦mR
R′ =mR

A ◦ (α′ ⊗R α′). We have

α′ ◦mR
R′ ◦

(
mR
R′ ⊗R R′

)
= mR

A ◦
(
α′ ⊗R α′

)
◦
(
mR
R′ ⊗R R′

)
= mR

A ◦
(
mR
A ⊗R A

)
◦
(
α′ ⊗R α′ ⊗R α′

)
= mR

A ◦
(
A⊗R mR

A

)
◦
(
α′ ⊗R α′ ⊗R α′

)
= α′ ◦mR

R′ ◦
(
R′ ⊗R mR

R′
)
,
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α′ ◦mR
R′ ◦

(
θ ⊗R R′

)
= mR

A ◦
(
α′ ⊗R α′

)
◦
(
θ ⊗R R′

)
= mR

A ◦ (α⊗R A) ◦
(
R⊗R α′

)
= lRA ◦

(
R⊗R α′

)
= α′ ◦ lRR′

and hence mR
R′ ◦ (θ ⊗R R′) = lRR′ . Similarly α′ ◦mR

R′ ◦ (R′ ⊗R θ) = α′ ◦ rRR′ .
Since α′ is a monomorphism we conclude that mR

R′ is associative and unitary.

(2) We have to prove that X ∈P (R′AS). First, let (K, iK) be the kernel

of m′X . By definition of mX we have the exact sequence

(A4)

and hence

K ⊗R X
iK⊗RX // X ⊗S Y ′ ⊗R X

mX⊗RX // R′ ⊗R X // 0.

Now, using the unitality of mS
A, the definitions of the morphisms involved

and equation (A2), we get

iX ◦ rSX ◦
(
X ⊗S ev′

)
◦ (X ⊗S pY ′ ⊗R X)

=mS
A ◦
(
A⊗S mR

A

)
◦ (iX ⊗S iY ′pY ′ ⊗R iX)

so that

iX ◦ rSX ◦
(
X ⊗S ev′

)
= mS

A ◦
(
A⊗S mR

A

)
◦ (iX ⊗S iY ′ ⊗R iX)

= mR
A ◦
(
mS
A ⊗R A

)
◦ (iX ⊗S iY ′ ⊗R iX)

= mR
A ◦
(
m′X ⊗R iX

)
.

Hence

(A5) iX ◦ rSX ◦
(
X ⊗S ev′

)
=mR

A ◦
(
m′X ⊗R iX

)
.

Therefore,

iX ◦ rSX ◦
(
X ⊗S ev′

)
◦ (iK ⊗R X) =mR

A ◦
(
m′X ⊗R iX

)
◦ (iK ⊗R X) = 0

and so rSX ◦ (X ⊗S ev′) ◦ (iK ⊗R X) = 0. By exactness of the last sequence

displayed above, there is a morphism µR
′

X :R′ ⊗R X →X such that µR
′

X ◦
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(mX ⊗R X) = rSX ◦ (X ⊗S ev′). Let us check it is unitary. First, we have

iX ◦ µR
′

X ◦ (mX ⊗R X) = iX ◦ rSX ◦
(
X ⊗S ev′

) (49)
= mR

A ◦
(
m′X ⊗R iX

)
= mR

A ◦
(
α′ ⊗R iX

)
◦ (mX ⊗R X).

Since mX ⊗R X is an epimorphism, we obtain

(A6) iX ◦ µR
′

X =mR
A ◦
(
α′ ⊗R iX

)
.

We get

iX ◦ µR
′

X ◦ (θ ⊗R X)
(50)
= mR

A ◦
(
α′ ⊗R iX

)
◦ (θ ⊗R X)

= mR
A ◦ (α⊗R A) ◦ (R⊗R iX)

= lRA ◦ (R⊗R iX) = iX ◦ lRX

and hence µR
′

X ◦ (θ ⊗R X) = lRX . Let us check that µR
′

X is associative:

iX ◦ µR
′

X ◦
(
R′ ⊗R µR

′
X

)
(50)
= mR

A ◦
(
α′ ⊗R iX

)
◦
(
R′ ⊗R µR

′
X

)
(50)
= mR

A ◦
(
A⊗R mR

A

)
◦
(
α′ ⊗R α′ ⊗R iX

)
= mR

A ◦
(
mR
A ⊗R A

)
◦
(
α′ ⊗R α′ ⊗R iX

)
= mR

A ◦
(
α′ ⊗R iX

)
◦
(
mR
R′ ⊗R X

)
(50)
= iX ◦ µR

′
X ◦

(
mR
R′ ⊗R X

)
so that µR

′
X ◦ (R′ ⊗R µR

′
X ) = µR

′
X ◦

(
mR
R′ ⊗R X

)
. The properties we proved

imply that (X, iX) ∈P (R′AS).

Next aim is to check that Y ′ ∈P (SAR′) and it is a right inverse of X. We

need a morphism µR
′

Y ′ : Y
′ ⊗R R′→ Y ′. Consider again the exact sequence

(A 4) and the induced one

Y ′ ⊗R K
Y ′⊗RiK // Y ′ ⊗R X ⊗S Y ′

Y ′⊗RmX // Y ′ ⊗R R′ // 0.

As before using the unitality of mS
A, the definitions of the morphisms

involved and equation (A2), we get

iY ′ ◦ lSY ◦
(
ev′ ⊗S Y ′

)
◦
(
pY ′ ⊗R X ⊗S Y ′

)
=mS

A ◦
(
mR
A ⊗S A

)
◦ (iY ′pY ′ ⊗R iX ⊗S iY ′)
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and hence

iY ′ ◦ lSY ◦
(
ev′ ⊗S Y ′

)
= mS

A ◦
(
mR
A ⊗S A

)
◦ (iY ′ ⊗R iX ⊗S iY ′)

= mR
A ◦
(
A⊗R mS

A

)
◦ (iY ′ ⊗R iX ⊗S iY ′)

= mR
A ◦
(
iY ′ ⊗R m′X

)
.

Thus we get

iY ′ ◦ lSY ◦
(
ev′ ⊗S Y ′

)
=mR

A ◦
(
iY ′ ⊗R m′X

)
.

Coming back to the exact sequence, we compute

iY ′ ◦ lSY ◦
(
ev′ ⊗S Y ′

)
◦
(
Y ′ ⊗R iK

) (51)
= mR

A ◦
(
iY ′ ⊗R m′X

)
◦
(
Y ′ ⊗R iK

)
= 0.

Therefore, there is a unique morphism µR
′

Y ′ : Y
′ ⊗R R′→ Y ′ such that µR

′
Y ′ ◦

(Y ′ ⊗R mX) = lSY ◦ (ev′ ⊗S Y ′). Using this equality we compute

iY ′ ◦ µR
′

Y ′ ◦
(
Y ′ ⊗R mX

)
= iY ′ ◦ lSY ◦

(
ev′ ⊗S Y ′

) (51)
= mR

A ◦
(
iY ′ ⊗R m′X

)
= mR

A ◦
(
iY ′ ⊗R α′

)
◦
(
Y ′ ⊗R mX

)
.

Since Y ′ ⊗R mX is an epimorphism, we obtain

(A7) iY ′ ◦ µR
′

Y ′ =mR
A ◦
(
iY ′ ⊗R α′

)
.

Using this formula, as above, one proves that µR
′

Y ′ is unitary and associative

and hence Y ′ ∈P(SAR′).

Let us check that Y ′ is a right inverse for X. Consider the coequalizer

Y ′ ⊗R R′ ⊗R X
µR
′

Y ′⊗RX //

Y ′⊗RµR
′

X

// Y ′ ⊗R X
Y ′⊗θX // Y ′ ⊗R′ X // 0.

We have

ev′ ◦
(
µR
′

Y ′ ⊗R X
)
◦
(
Y ′ ⊗R mX ⊗R X

)
= ev′ ◦

(
lSY ⊗R X

)
◦
(
ev′ ⊗S Y ′ ⊗R X

)
= ev′ ◦ lSY ′⊗RX ◦

(
ev′ ⊗S Y ′ ⊗R X

)
= lSS ◦

(
S ⊗S ev′

)
◦
(
ev′ ⊗S Y ′ ⊗R X

)
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= rSS ◦
(
ev′ ⊗S S

)
◦
(
Y ′ ⊗R X ⊗S ev′

)
= ev′ ◦ rSY ′⊗RX ◦

(
Y ′ ⊗R X ⊗S ev′

)
= ev′ ◦

(
Y ′ ⊗R rSX

)
◦
(
Y ′ ⊗R X ⊗S ev′

)
= ev′ ◦

(
Y ′ ⊗R µR

′
X

)
◦
(
Y ′ ⊗R mX ⊗R X

)
so that ev′ ◦ (µR

′
Y ′ ⊗R X) = ev′ ◦ (Y ′ ⊗R µR

′
X ) and hence there exists mY ′ :

Y ′ ⊗R′ X → S such that mY ′ ◦ (Y ′ ⊗θ X) = ev′. Therefore,

β ◦mY ′ ◦
(
Y ′ ⊗θ X

)
◦ (pY ′ ⊗R X)

= β ◦ ev′ ◦ (pY ′ ⊗R X) = β ◦ ev

(46)
= mR

A ◦ (γ ⊗R iX) =mR
A ◦ (iY ′ ⊗R iX) ◦ (pY ′ ⊗R X)

=mR′
A ◦ (A⊗θ A) ◦ (iY ′ ⊗R iX) ◦ (pY ′ ⊗R X)

=mR′
A ◦ (iY ′ ⊗R′ iX) ◦

(
Y ′ ⊗θ X

)
◦ (pY ′ ⊗R X)

and hence β ◦mY ′ =mR′
A ◦ (iY ′ ⊗R′ iX). Moreover, α′ ◦mX =m′X =mS

A ◦
(iX ⊗S iY ′).

It remains to check that mX is an isomorphism. It is an epimorphism

by construction. Since α′ ◦mX =m′X and α′ is a monomorphism by

construction, we have that mX is a monomorphism if and only if m′X is.

Now m′X = fX ◦ (X ⊗S iY ′) and fX is an isomorphism by assumption. Thus

m′X is a monomorphism if and only if X ⊗S iY ′ is a monomorphism. Since

by Proposition 1.4, we know that the functor X ⊗S (−) is a right adjoint,

hence X ⊗S iY ′ is a monomorphism. Thus mX is both an epimorphism and

a monomorphism and hence it is an isomorphism, and this completes the

proof.

Appendix B. Internals hom for modules and bimodules in

monoidal categories

In this appendix we show the main steps to construct the internal homs

functors which were implicitly used in Sections 4.2 and 4.3. To this aim,

consider a symmetric monoidal abelian bicomplete category (M,⊗, I) with

right exact tensor products. Let (A, m, u) be a monoid in M and denote

by Ae :=A⊗ Ao its enveloping monoid, where Ao is the opposite monoid.

Assume that the functor A⊗ − :M→M has a right adjoint functor [A,−] :

M→M with unit and counit

εAY :A⊗ [A, Y ]−→ Y ∈M, ζAX :M3X −→ [A, A⊗ X].
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The functor [A,−] is referred to as the left internal hom functor. It is

clear that [A⊗ · · · ⊗ A,−] also exists and so is in particular for [Ae,−].

We will use similar notation for the unit and counit of the corresponding

adjunctions. Given any two objects X, Y inM, one can define a morphism

[m, X] : [A, X]→ [A⊗ A, X] which naturally turns commutative the follow-

ing diagram:

HomM (A⊗ A⊗ X, Y )
ΦA⊗AX, Y

∼=
// HomM (X, [A⊗ A, Y ])

HomM (A⊗ X, Y )
ΨAX,Y

∼=
//

HomM(m⊗X, Y )

OO

HomM (X, [A, Y ])

HomM(X, [m,X])

OO

On the other hand, for any object X in M we can define the following

morphism:

[A, X]

ζA
e⊗A

[A,X]
**

ΩAe

A, X
// [Ae ⊗ A, Ae ⊗ X]

[
Ae ⊗ A, Ae ⊗ A⊗ [A, X]

]
.

[Ae⊗A, Ae⊗εAX ]

44

Clearly ΩAe

A,− is a natural transformation as a composition of natural

transformations.

Now, for every left Ae-module M (i.e., an A-bimodule) with action λM :

Ae ⊗M →M we can consider the morphism χA, M := [Ae ⊗ A, λM ] ◦ ΩAe

A, M ,

and so the following equalizer:

0 //
Ae [A,M ]

eq
// [A,M ]

[m,M ]
//

χA, M
// [A⊗ A,M ],

which leads to a natural monomorphism Ae [A,−] ↪→ [A, O(−)], where O :

AeM→M is the forgetful functor.

The following result whose proof is similar to that of [24, Proposition

3.10], summarize the relation between the functors constructed above.

Indeed, its shows that, if the functor A⊗ − :M→M has a right adjoint,

then so is A⊗ − :M→ AeM.
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Proposition B.1. Let (A, m, u) be a monoid in a symmetric

monoidal abelian and bicomplete category (M,⊗, I) whose tensor prod-

ucts are right exact. Assume that there is an adjunction A⊗ − a [A,−],

where A⊗ − :M // M : [A,−].oo Then there is a commutative diagram

of natural transformations:

HomM (A⊗ X, M)
ΦA

X, M

∼=
// HomM (X, [A,M ])

HomAe-(A⊗ X,M)
ΨA

X,M

∼=
//

?�

OO

HomM (X, Ae [A,M ])

� ?

OO

where the vertical arrows denote the canonical injections and X ∈M,

M ∈ AeM. That is, we have an adjunction A⊗ − a Ae [A,−], where

A⊗ − :M //
AeM : Ae [A,−].oo
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