APPROXIMATION BY UNIMODULAR FUNCTIONS: CORRIGENDUM

STEPHEN FISHER

Professor J. Detraz has pointed out to me that the proof of part (b) of [1, Theorem 1] is incorrect. The proof will be complete, however, once the following proposition is proved.

PROPOSITION. Let K be a compact subset of the unit circle T of zero Lebesgue measure, and let λ be a real measure on K. If

(*)
$$\int_{\kappa} \frac{\sin(\theta - t)}{1 - \cos(\theta - t)} d\lambda(t) \leq 0$$

for every θ with $e^{i\theta} \notin K$, then $\lambda = 0$.

Proof. Let

$$v(r,\theta) = \int_{K} P_r(\theta-t)d\lambda(t)$$

be the harmonic extension of λ to the unit disc U; here, $P_r(\theta)$ is the Poisson kernel for $re^{i\theta}$. v may be continued harmonically across every point of T not in K and v vanishes on T - K. If $w(r, \theta)$ is the harmonic conjugate of v on U, then w is harmonic across T - K and the assumption (*) is that $w \leq 0$ on T - K.

The analytic function -w + iv is in the Hardy class H^p for 0 $and has positive boundary values a.e. <math>d\theta$ on T by assumption. Hence, it is a constant (see [2]). Thus λ must be zero.

Acknowledgment. I would like to thank Professor H. S. Shapiro for pointing out this proof to me which is much simpler than my original proof of this proposition.

References

Stephen Fisher, Approximation by unimodular functions, Can. J. Math. 23 (1971), 257-269.
J. Newirth and D. J. Newman, Positive H^{1/2} functions are constants, Proc. Amer. Math. Soc. 18 (1967), 958.

Northwestern University, Evanston, Illinois

Received June 23, 1971.

1093