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APPROXIMATION BY UNIMODULAR FUNCTIONS: 
CORRIGENDUM 

STEPHEN FISHER 

Professor J. Detraz has pointed out to me that the proof of part (b) of 
[1, Theorem 1] is incorrect. The proof will be complete, however, once the 
following proposition is proved. 

PROPOSITION. Let K be a compact subset of the unit circle T of zero Lebesgue 
measure, and let X be a real measure on K. If 

for every 6 with eie (2 K, then X = 0. 

Proof. Let 

v(r,6) = I Pr(6 - t)d\(t) 

be the harmonic extension of X to the unit disc U; here, Pr(9) is the Poisson 
kernel for reie. v may be continued harmonically across every point of T not 
in K and v vanishes on T — K. If w(r, 6) is the harmonic conjugate of v on 
U, then w is harmonic across T — K and the assumption (*) is that w S 0 
on T - K. 

The analytic function —w + iv is in the Hardy class Hv for 0 < p < 1 
and has positive boundary values a.e. dd on T by assumption. Hence, it is a 
constant (see [2]). Thus X must be zero. 

Acknowledgment. I would like to thank Professor H. S. Shapiro for pointing 
out this proof to me which is much simpler than my original proof of this 
proposition. 
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