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Abstract. The mean value inequality is characteristic for upper semi-continuous
functions to be subharmonic. Quasinearly subharmonic functions generalise subharmonic
functions. We find the necessary and sufficient conditions under which subsets of balls are
big enough for the characterisation of non-negative, quasinearly subharmonic functions
by mean value inequalities. Similar result is obtained also for generalised mean value
inequalities where, instead of balls, we consider arbitrary bounded sets, which have non-
void interiors and instead of the volume of ball some functions depending on the radius of
this ball.

1991 Mathematics Subject Classification. Primary 31B05, 31C05; Secondary 31C45.

1. Subharmonic functions and generalisations. Some definitions and results.

1.1. Notation. Our notation is rather standard, see for example [11, 16–18] and the
references therein. If E ⊂ �n and x ∈ �n, then we write δE(x) := inf{ | x − y | : y ∈ Ec },
where Ec = �n \ E. The Lebesgue measure in �n is denoted by mn. We write Bn(x, r) for
the open ball in �n with centre x and radius r. Recall that mn(Bn(x, r)) = νnrn, where νn :=
mn(Bn(0, 1)). We denote by Int D, D and ∂D the interior, the closure and the boundary of
a set D ⊆ �n, that is Bn(x, r), is the closed ball with centre x and radius r. Note also that
our constants C and K are non-negative, mostly ≥ 1, and may vary from line to line.

1.2. Subharmonic functions and generalisations. Let � be an open set in �n, n ≥
2. Let u : � → [−∞,+∞) be Lebesgue measurable. We adopt the following definitions:

(i) u is subharmonic if u is upper semi-continuous and if

u(x) ≤ 1
νnrn

∫
Bn(x,r)

u(y) dmn(y) (1)

for all balls Bn(x, r) ⊂ �. A subharmonic function may be ≡ −∞ on any component
of � (see [8, p. 9] and [1, p. 60]).
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(ii) u is nearly subharmonic if u+ ∈ L1
loc(�) and inequality (1) holds for all balls

Bn(x, r) ⊂ �. Observe that this definition is slightly more general than the usual one,
compare [17, p. 51] with the standard definition [8, p. 14].

(iii) Let K ≥ 1. Then, u is K-quasinearly subharmonic if u+ ∈ L1
loc(�) and inequality

uM(x) ≤ K
νnrn

∫
Bn(x,r)

uM(y) dmn(y)

holds for all M ≥ 0 and for all balls Bn(x, r) ⊂ �. Here, uM := max{ u,−M } + M.
The function u is quasinearly subharmonic if u is K-quasinearly subharmonic for
some K ≥ 1. For the definition and properties of quasinearly subharmonic functions,
see for example [5, 9–11, 12–18] and the references therein. We write QNS(�) for
the set of all non-negative quasinearly subharmonic functions on the open set � ⊆ �n.

PROPOSITION 1.3. (cf. [17], Proposition 2.1, pp. 54–55). The following statements
hold:
(i) A subharmonic function is nearly subharmonic but not conversely.

(ii) A function is nearly subharmonic if and only if it is 1-quasinearly subharmonic.
(iii) A nearly subharmonic function is quasinearly subharmonic but not conversely.
(iv) If u : � → [0,+∞) is Lebesgue measurable, then u is K-quasinearly subharmonic if

and only if u ∈ L1
loc(�) and

u(x) ≤ K
mn(Bn(x, r))

∫
Bn(x,r)

u(y) dmn(y) (2)

for all closed balls Bn(x, r) ⊂ �.

Note that if u is K-quasinearly subharmonic and non-negative in �, then (2) holds also for
every open ball Bn(x, r) ⊆ �.

Let A be a subset of the open half-line (0,∞) such that 0 is a limit point of A and let
u : � → [−∞,+∞) be an upper semi-continuous function on an open set � ⊆ �n. The
classical Blascke–Privalov theorem, see for example [2, Chapter II, Section 2], implies that
u is subharmonic if inequality (1) holds whenever r ∈ A and Bn(x, r) ⊂ �. Moreover, the
simple examples show that if non-negative u ∈ L1

loc(�), then the fulfilment of (2) for all
(x, r) ∈ � × A with Bn(x, r) ⊂ � does not, generally, imply u ∈ QNS(�). A legitimate
question to raise in this point is in finding the sets A ⊆ (0,∞) for which every non-
negative u ∈ L1

loc(�) is quasinearly subharmonic if (2) holds for (x, r) ∈ � × A whenever
Bn(x, r) ⊂ �.

DEFINITION 1.4. Let � be an open set in �n. A set A ⊆ (0,∞) is favourable for �

(favourable for the characterisation of non-negative, quasinearly subharmonic functions in
�) if for every non-negative u ∈ L1

loc(�) the following conditions are equivalent:
(i) u ∈ QNS(�).

(ii) There is K = K(u, A,�) ≥ 1 such that for all x ∈ � the inequality

u(x) ≤ K
νnrn

∫
Bn(x,r)

u(y) dmn(y) (3)

holds whenever r ∈ A and Bn(x, r) ⊂ �.
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We can characterise the favourable subsets of (0,∞) by the following way.

THEOREM 1.5. The following three statements are equivalent for every A ⊆ (0,∞):
(i) A is favourable for all open sets � ⊆ �n.

(ii) The characteristic function

χ�(x) =
{

1 if x ∈ �

0 if x ∈ � \ �

is quasinearly subharmonic for all open sets � ⊆ �n and all Lebesgue measurable
sets � ⊆ � if and only if there is a constant K = K(�,�, n) such that the inequality

mn(Bn(x, r)) ≤ Kmn(� ∩ Bn(x, r)) (4)

holds for (x, r) ∈ � × A whenever Bn(x, r) ⊂ �.
(iii) There exists C = C(A) > 1 such that[ x

C
, x

]
∩ A �= ∅

for every x ∈ (0,∞).

We shall prove the equivalence (i) ≡ (iii) in Theorem 2.5 below. Observe also that
the implication (i) ⇒(ii) is trivial and that (ii) ⇒(iii) follows directly from the proof of
Theorem 2.5. The quasidisks give the important example of the sets � such that (4) holds in
a bounded domain � ⊆ �2 whenever B2(x, r) ⊂ �. It is a particular case of the Gehring–
Martio result that proves (4) for the so-called quasiextremal distance domains in �n, n ≥ 2
(see [7, Lemma 2.13]).

The following result closely connected with Theorem 1.5, follows from Theorem 2.14
formulated in the second section of the paper.

THEOREM 1.6. Let f be a positive function on (0,∞). The following three statements
are equivalent.

(i) For all open sets � ⊆ �n, Lebesgue measurable functions u : � → [0,∞) are
quasinearly subharmonic if and only if there are constants K = K(u,�, n) ≥ 1 such
that

u(x) ≤ K
(f (r))n

∫
Bn(x,r)

u(y) dmn(y)

for all closed balls Bn(x, r) ⊂ �.
(ii) For all open sets � ⊆ �n and all Lebesgue measurable sets � ⊆ �, the characteristic

functions χ� are quasinearly subharmonic if and only if there are constants K =
K(�,�, n) such that the inequality

(f (r))n ≤ Kmn(Bn(x, r) ∩ �)

holds for all closed balls Bn(x, r) ⊂ � with x ∈ �.
(iii) There are a set A ⊆ (0,∞) and a constant c > 1 such that:

(iii1) The inequality f (r) ≤ cr holds for all r ∈ (0,∞);
(iii2) ln A is an ε-net in � for some ε > 0;
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(iii3) The inequality

1
c

r ≤ f (r)

holds for all r ∈ A.

Note that condition (iii) of Theorem 1.5 holds if and only if the set ln(A) := {ln x :
x ∈ A} is an ε-net in � for some ε > 0. A characterisation in terms of porosity for the sets
A, which are favourable for bounded open sets � ⊆ �n, is proved in Theorem 2.12 below.

2. Generalised mean value inequalities. Inequality (2), characteristic for
quasinearly subharmonic functions, can be generalised by some distinct ways. Our first
theorem characterises non-negative quasinearly subharmonic functions via mean values
over some sets more general than just balls.

2.1. Similarities of the Euclidean space. Let � and D be subsets of �n with marked
points p� ∈ � and pD ∈ D. In what follows, we always suppose that Int D �= ∅ and pD ∈
Int D. Denote by Sim(pD, p�), the set of all similarities h : �n → �n such that h(pD) = p�

and h(D) ⊆ �. Recall that h is a similarity if there is a positive number k = k(h), the
similarity constant of h, such that

|h(x) − h(y)| = k|x − y|
for all x, y ∈ �n. The group of all similarities of the Euclidean space �n is sometimes
denoted as SM(�n), see for example [4, 5.1.14], and we also adopt this designation.
Observe that each similarity h ∈ SM(�n) can be written in the form

h(x) = k(h)Tx + a, x ∈ �n,

where k(h) > 0, and T : �n → �n is an orthogonal linear mapping and a ∈ �n.

THEOREM 2.2. Let � be an open set in �n, n ≥ 2, let D be a bounded, Lebesgue
measurable set with the marked point pD ∈ Int D and let u : � → [0,∞) be a function
from L1

loc(�). Then, u is quasinearly subharmonic if and only if there is C ≥ 1 such that

u(x�) ≤ C
mn(h(D))

∫
h(D)

u(y) dmn(y) (5)

for every point x� and all h ∈ Sim(pD, x�). If u is K-quasinearly subharmonic, then C =
C(D, pD, K, n) and, conversely, if (5) holds, then u is K-quasinearly subharmonic with
K = K(D, pD, C, n).

Proof. Write

RD := sup
y∈D

|pD − y|, and rD := δInt(D)(pD). (6)

Suppose that u is quasinearly subharmonic, that is there is K ≥ 1 such that (2) holds
for all Bn(x, r) ⊆ �. Let x� be an arbitrary point of � and let h ∈ Sim(pD, x�). The last
membership relation implies the inclusions

Bn(x�, k(h)rD) ⊆ � and h(D) ⊆ Bn(x�, k(h)RD),
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where k(h) is the similarity constant of h. Consequently, we obtain

1
mn(h(D))

∫
h(D)

u(y) dmn(y) ≥ 1
νn(k(h)RD)n

∫
h(D)

u(y) dmn(y)

≥
( rD

RD

)n 1
νn(k(h)rD)n

∫
Bn(x�,k(h)rD)

u(y) dmn(y) ≥
( rD

RD

)n u(x�)
K

.

Thus, if f is K-quasinearly subharmonic, then (5) holds with

C = K(RD)n

(rD)n
.

Conversely, suppose that (5) holds with some C ≥ 1 for all x� and all h ∈
Sim(pD, x�). Let Bn(x�, r0) ⊆ �. Let h be an arbitrary similarity with k(h) = r0

RD
and with

h(pD) = x�. Then, we have h ∈ Sim(pD, x�) and Bn(x�, k(h)rD) ⊆ h(D) ⊆ Bn(x�, r0).
Consequently,

C
mn(Bn(x�, r0))

∫
Bn(x�,r0)

u(y) dmn(y) ≥ Cmn(h(D))
mn(Bn(x�, r0))mn(h(D))

∫
h(D)

u(y) dmn(y)

≥ u(x�)
mn(h(D))

mn(Bn(x�, r0))
.

Since

mn(Bn(x�, r0))
mn(h(D))

= νn(r0)n

mn(h(D))
= νn(k(h))n(RD)n

(k(h))nmn(D)
= νnRn

D

mn(D)
,

inequality (1) holds with

K = C
νnRn

D

mn(D)
.

�
REMARK 2.2.1. The standard notion of quasinearly subharmonicity is defined by the

condition (5), where D = Bn(0, 1), pD = 0 and the considered similarities h are of the form
h(x) = r0x + x�. The point of Theorem 2.2 is that the definition and its consequences are,
however, much more general: instead of just D = Bn(0, 1) and pD = 0, one may consider
arbitrary bounded sets D with non-void interior Int D and an arbitrary pD ∈ Int D

REMARK 2.2.2. Inequality (5) remains valid for each non-negative quasinearly
subharmonic function if we use bi-Lipschitz mappings h instead of similarities, but in
this more general case the constant in (5) depends on the Lipschitz constant of h (see
Lemma 2.1 in [6]).

Inequality (5) remains also valid for unbounded sets D if mn(D) < ∞.

PROPOSITION 2.3. Let � be an open set in �n, n ≥ 2, D a Lebesgue measurable
set with mn(D) < ∞, pD a point of Int(D) and let u : � → [0,∞) be a K-quasinearly
subharmonic function. Then, there is a constant C = C(D, pD, K, n) such that (5) holds
for all x� ∈ � and h ∈ Sim(pD, x�).
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Proof. If D is bounded, then this proposition follows from Theorem 2.2. Suppose D is
an unbounded. Let t > 1 be a constant. It is easy to show that there is a ball Bn(pD, rt) with
a sufficiently large radius rt such that

tmn(D ∩ Bn(pD, rt)) ≥ mn(D). (7)

Write

Dt := D ∩ Bn(pD, rt) and pDt := pD.

Note that Dt satisfies all conditions of Theorem 2.2 and that pDt ∈ Int(Dt). Consequently,
there is K ≥ 1 such that the inequality

u(x�) ≤ K
mn(h(Dt))

∫
h(Dt)

u(y) dmn(y)

holds for all x� and h ∈ Sim(pDt , x�). If h ∈ Sim(pD, x�), then we have h ∈ Sim(pDt , x�)
and h(Dt) ⊆ h(D). Since

mn(Dt)
mn(D)

= mn(h(Dt))
mn(h(D))

for all h ∈ SM(�n), (7) implies the inequality

1
mn(h(Dt))

∫
h(Dt)

u(y) dmn(y) ≤ t
mn(h(D))

∫
h(D)

u(y) dmn(y).

Thus, (5) holds for all h ∈ Sim(pD, x�) with C = tK . �
REMARK 2.3.1. If Sim(pD, x�) = ∅ for all x�, then Proposition 2.3 is vacuously true.

Let ϕ : SM(�n) → (0,∞) be a function such that the equality

ϕ(h) = ϕ(is ◦ h)

holds for all h ∈ SM(�n) and for all isometries is : �n → �n. Then, we have ϕ(h1) =
ϕ(h2) whenever k(h1) = k(h2), that is there is a function f : (0,∞) → (0,∞) such that the
equality

ϕ(h) = f (k(h)) (8)

is fulfilled for all h ∈ SM(�n) with k(h) equals the similarity constant of h. For instance,
if D is a bounded non-void subset of �n, we can put ϕ(h) = diam(h(D)). Other examples
can be found in the final section of the paper.

Let D be a measurable subset of �n with a marked point pD ∈ Int D. For every open
set � ⊆ �n, define a subset Q(f, D,�) ⊆ L1

loc(�) by the rule:
u ∈ Q(f, D,�) if and only if u ≥ 0 and u ∈ L1

loc(�) and there is K = K(u) ≥ 1 such
that the inequality

u(x�) ≤ K
(f (k(h)))n

∫
h(D)

u(y) dmn(y) (9)

holds for every x� ∈ � and all h ∈ Sim(pD, x�).
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It is clear that QNS(�) = Q(f, D,�) if D satisfies the conditions of Theorem 2.2 and
f (k(h)) = k(h)(mn(D))

1
n .

PROPOSITION 2.4. Let D be a bounded, Lebesgue measurable subset of �n with
a marked point pD ∈ Int D and let ϕ : SM(�n) → (0,∞), f : (0,∞) → (0,∞) be
functions such that (8) holds for all h ∈ SM(�n). Then, the inclusion

QNS(�) ⊆ Q(f, D,�) (10)

is valid for all open sets � ⊆ �n if and only if there is c ≥ 1 such that the inequality

f (k) ≤ ck (11)

holds for all k ∈ (0,∞).

Proof. Suppose that inclusion (10) holds for all open sets � ⊆ �n. Let � be an open
half-space of �n. Then, for every k0 ∈ (0,∞), there is a similarity h0 with the similarity
constant k(h0) = k0 such that h0(D) ⊆ �. The constant function u1, u1(x) ≡ 1 for x ∈ �,
belongs to QNS(�). Hence, by (10), u1 ∈ Q(f, D,�) and it follows from (9) that

1 = u1(h0(pD)) ≤ K
(f (k0))n

∫
h0(D)

u1(x) dmn(x) = Kmn(h0(D))
(f (k0))n

= K(k0)nmn(D)
(f (k0))n

.

Consequently (10) implies (11) for all k ∈ (0,∞) with

c = (K(u1)mn(D))
1
n ∨ 1.

Conversely suppose that (11) holds for all k ∈ (0,∞). Then, using Theorem 2.2, we
obtain the following inequalities for every open set � ⊆ �n, every u ∈ QNS(�), every
x� ∈ � and every h ∈ Sim(pD, x�):

u(x�) ≤ C(u)
mn(h(D))

∫
h(D)

u(x) dmn(x) = C(u)(f (k(h)))n

(k(h))nmn(D)(f (k(h)))n

∫
h(D)

u(x) dmn(x)

≤ C(u)cn

mn(D)(f (k(h)))n

∫
h(D)

u(x) dmn(x).

Hence (9) holds with

K = C(u)cn

mn(D)
∨ 1.

Thus, (10) is valid for all open sets � ⊆ �n. �
Before passing to the equality

Q(f, D,�) = QNS(�)

we consider one relevant question.

THEOREM 2.5. Let A be a subset of (0,∞). Then, A is favourable for all open sets
� ⊆ �n if and only if the following statement holds.
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(s) There exists C = C(A) > 1 such that[ x
C

, x
]

∩ A �= ∅ (12)

for every x ∈ (0,∞).

The following lemma will be used in the proof of Theorem 2.5.

LEMMA 2.6. Let A ⊆ (0,∞). Statement (s) of Theorem 2.5 does not hold with this
A, if and only if there are disjoint open intervals (am, bm), am < bm, m = 1, 2, . . . , in
(0,∞) \ A such that

lim
m→∞

am

bm
= 0 (13)

and either

lim
m→∞ am = lim

m→∞ bm = 0 (14)

or

lim
m→∞ am = lim

m→∞ bm = ∞. (15)

Proof. If statement (s) holds, then using (12), we obtain that

a
b

≥ 1
C(A)

for every open interval (a, b) in (0,∞) \ A. This inequality contradicts (13).
Conversely, suppose that statement (s) of Theorem 2.5 does not hold and that 0 and ∞

are limit points of A. Then, for every natural i ≥ 2, there is x ∈ (0,∞) such that(x
i
, x

)
∩ A = ∅.

Let Ā be the closure of A in (0,∞). Write (ai, bi) for the connected component of (0,∞) \
Ā which contains ( x

i , x). Since both 0 and ∞ are the limit points of A we have

0 < ai < bi < ∞.

Passing to convergent, in [0,∞], subsequences {aim}m∈� and {bim}m∈�, it is easy to see that
limits limm→∞ aim and limm→∞ bim are 0 or ∞ and that the equalities

lim
m→∞ aim = 0 and lim

m→∞ bim = ∞

cannot be true simultaneously. Renaming am := aim and bm := bim , we obtain the desirable
sequence of intervals in (0,∞) \ A.

If at least one of the points 0 and ∞ is not a limit point of A, then there is ε > 0 such
that

A ⊂ (0, ε] or A ⊂ [ε,∞).
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Each of these inclusions implies evidently the existence of desired intervals in
(0,∞) \ Ā. �

Proof of Theorem 2.5. We shall first prove that A is favourable for all open sets � ⊆ �n

if statement (s) holds.
Suppose that (s) is true. Let � be an open set in �n and let u ∈ L1

loc(�) be a non-
negative function, which satisfies condition (ii) of Definition 1.4. It is enough to show that
u ∈ QNS(�). To prove this, consider an arbitrary Bn(x�, r0) ⊆ �. By statement (s), there
is r1 ∈ A such that

r0

C
≤ r1 ≤ r0,

where the constant C = C(A) > 1. Using this double inequality and condition (ii) of
Definition 1.4, we obtain

u(x�) ≤ K
νn(r1)n

∫
Bn(x�,r1)

u(y) dmn(y) ≤ KCn

νn(r0)n

∫
Bn(x�,r0)

u(y) dmn(y).

Statement (iv) of Proposition 1.3 implies that u ∈ QNS(�).
Conversely, suppose that A is favourable for every open set � ⊆ �n. We must show

that (s) holds. If (s) does not hold then, by Lemma 2.6 there is a sequence of disjoint open
intervals in (0,∞) satisfying (13) and (14) or (13) and (15). Suppose that (13) and (14)
hold. Then, for every integer N0 > 2, there is a sequence of open intervals (am, bm) such
that

0 < bm+1 < am < 2am <
1

N0
bm < bm (16)

and

(am, bm) ∩ A = ∅ (17)

for m = 1, 2, . . . and

lim
m→∞

bm

am
= ∞. (18)

Moreover, passing, if necessary, to a subsequence we may assume that

∞∑
m=1

bm < ∞. (19)

For the sake of simplicity, we shall describe our constructions only on the plane but in such
a way that a generalisation to the dimensions n ≥ 3 is a trivial matter.

Define the points zm ∈ �, m = 1, 2, . . . , as

zm :=
{

0 if m = 1

2
∑m−1

i=1 bi if m ≥ 2

and write

R1 := {z ∈ � : 0 < Re(z) < 2b1, |Im(z)| < a2}
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......z1

R1 b3

N0

b2

N0

b1

N0

z2 z3

R2 R3

Figure 1. Domain � is an infinite sequence of balls B2(zm, bm
N0

) united by the thin
rectangles Rm.

and

Rm :=
{

z ∈ � : 2
m−1∑
i=1

bi < Re(z) < 2
m∑

i=1

bi, |Im(z)| < am+1

}

for m ≥ 2. Using (16), we see that B2(zm, bm) are open, pairwise disjoint balls and that Rm

are open, pairwise disjoint rectangles. The desired domain � is, by definition, the union

∞⋃
m=1

(
B2

(
zm,

bm

N0

)
∪ Rm

)
,

(see Figure 1). Let us define now a function u as the characteristic function of the set

X :=
∞⋃

m=1

B2(zm, am), (20)

that is

u(z) :=
{

1 if z ∈ X
0 if z ∈ � \ X.

(21)

It is clear that u ≥ 0 and that u ∈ L1(�). Moreover, since

1

m2
(
B2

(
zm, bm

2N0

)) ∫
B2(zm, bm

2N0
)
u(z) dm2(z) = 4N2

0 (am)2

(bm)2
, (22)

statement (iv) of Proposition 1.3 and limit relation (18) imply u �∈ QNS(�). It remains to
show that there is K such that (3) holds whenever r ∈ A and B2(x, r) ⊆ �. If x ∈ � \ X ,
then (3) is trivial and we must consider only x ∈ X . The last membership relation implies
that there exists m = mx such that

x ∈ B2(zm, am). (23)

Let us consider all r ∈ A such that

B2(x, r) ⊆ �. (24)

From (17) follows that either r ≥ bmx or r ≤ amx . If r ≥ bmx , then we have

B2(x, r) ⊇ B2

(
zmx ,

bmx

N0

)
. (25)
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Indeed, the triangle inequality and (16) imply

|y − x| ≤ |x − zmx | + |zmx − y| ≤ amx + bmx

N0
<

3
4

bmx < r

for all y ∈ B2(zmx ,
bmx
N0

). Inclusion (25) and definition of � show that B2(x, r) �⊆ � if r ≥
bmx . Consequently, if (24) holds, then

r ≤ amx . (26)

Using the last inequality, (23) and (16) we obtain

B2(x, r) ⊆ B2
(

zm,
bm

N0

)
, m = mx,

for these x and r. Hence, the equality

1
m2(B2(x, r))

∫
B2(x,r)

u(y) dm2(y) = m2(B2(zm, am) ∩ B2(x, r))
m2(B2(x, r))

(27)

holds for such x and r. Write

C = inf
m2(B2(zm, am) ∩ B2(x, r))

m2(B2(x, r))
, (28)

where the infimum is taken over the set of all balls B2(x, r) with x ∈ B2(zm, am) and with
r ≤ am. If r is fixed and x1, x2 ∈ B2(zm, am), then the inequality |x1 − zm| ≥ |x2 − zm|
implies

m2(B2(zm, am) ∩ B2(x1, r)) ≤ m2(B2(zm, am) ∩ B2(x2, r)),

(see Figure 2). Thus, we have

C = inf
r≤am

m2(B2(zm, am) ∩ B2(zm + am, r))
m2(B2(zm + am, r))

.

The right-hand side of the last formula is invariant under the similarities. Consequently,
using the similarity

� � z �−→ 1
r

(z − zm) ∈ �,

we see that

C = inf
r≤am

m2
(
B2

(
0, am

r

) ∩ B2
( am

r , 1
))

m2
(
B2

( am
r , 1

)) = inf
r≥1

m2(B2(0, r) ∩ B2(r, 1))
m2(B2(r, 1))

= 1
π

inf
r≥1

m2(B2(0, r) ∩ B2(r, 1)) = 1
π

m2(B2(−1, 1) ∩ B2(0, 1)) = 2
3

−
√

3
2π

. (29)

The last equality, (26) and (28) imply that

1( 2
3 −

√
3

2π

)
m2(B2(x, r))

∫
B2(x,r)

u3(y) dm2(y) ≥ u3(x),

https://doi.org/10.1017/S0017089512000602 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000602


360 OLEKSIY DOVGOSHEY AND JUHANI RIIHENTAUS

.
B1

B2

B3

B

Figure 2. The centre of the fixed small ball B lies on the boundary spheres of the large
balls Bn. The volume of the intersection B ∩ Bn grows together with the radius of the

ball Bn.

whenever r ∈ A and B2(x, r) ⊆ �.
Thus, the theorem is proved in the case, where limit relations (13) and (14) hold.

Similar constructions can be realised if (13) and (15) hold and we omit them here. �

Statement (s) of Theorem 2.5 has a useful reformulation. For A ⊆ (0,∞) define

ln(A) := {ln x : x ∈ A}

with ln(∅) := ∅. Then, ln(A) is a subset of �. Recall that a set X ⊆ � is an ε-net in �,

ε > 0, if

� =
⋃
x∈X

B1(x, ε).

PROPOSITION 2.7. Let A be a subset of (0,∞). Then, statement (s) in Theorem 2.5 is
valid with this A if and only if there is ε > 0 such that ln(A) is an ε-net in �.

Proof. If (s) holds, then ln(A) is an ε-net with ε = ln C, where C is the constant
in (12). If (s) does not hold, then Lemma 2.6 implies that ln A is not an ε-net for any
ε > 0. �

Using this proposition and analysing the first part of the proof of Theorem 2.5, we
obtain the following.

PROPOSITION 2.8. Let A be a subset of (0,∞). The following three statements are
equivalent.

(i) A is favourable for all domains of �n.
(ii) A is favourable for all open sets of �n.

(iii) There is ε > 0 such that ln(A) is an ε-net in �.

The condition for the set A ⊆ (0,∞), to be favourable for all bounded domains � can
be presented in terms of porosity of A, so recall a definition.
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DEFINITION 2.9. Let A ⊆ (0,∞). The right-hand porosity of A at zero is the quantity

p0(A) := lim sup
h→0+

l(h, A)
h

,

where l(h, A) is the length of the longest interval in [0, h] \ A, h > 0.

REMARK 2.9.1. It is easy to see that 0 ≤ p0(A) ≤ 1 for each A ⊆ �. A variety of
computations directly related to the notion of porosity can be found in [19, pp. 183–212].

DEFINITION 2.10. Let A ⊆ (0,∞). The right porosity index of A at 0, i0(A), is
defined to be the supremum of all real numbers r for which there is a sequence of open
intervals {(an, bn)}n∈�, an < bn, such that limn→∞ an = limn→∞ bn = 0 and (an, bn) ⊂
(0,∞) \ A and

r <
bn − an

an

for each n ∈ �.

If no such numbers r exist, then following the usual conversion we define i0(A) := 0.
The following lemma is a particular case of Lemma A2.13 from [19, p. 185].

LEMMA 2.11. The equality

i0(A) = p0(A)
1 − p0(A)

holds for each A ⊆ (0,∞).

THEOREM 2.12. Let A be a subset of (0,∞). Then, A is favourable for all bounded
domains � ⊆ �n if and only if p0(A) < 1.

Proof. It follows from Lemma 2.11 that p0(A) = 1 if and only if i0(A) = ∞. Using
the definition of porosity index i0(A), we can prove that the equality i0(A) = ∞ implies
the existence of disjoint intervals (an, bn) ⊂ (0,∞) \ A, n = 1, 2, . . . , such that equations
(13) and (14) hold. It was shown in the proof of Theorem 2.5 that if (13) and (14) hold,
then there are a domain � ⊆ �n and a non-negative u ∈ L1

loc(�) \ QNS(�) such that (3)
holds whenever r ∈ A and Bn(x, r) ⊆ �. It remains to observe that inequality (19) implies
diam(�) < ∞. Thus, if A is favourable for all bounded domains � ⊆ �n, then p0(A) < 1.

Now note that if p0(A) < 1, then the set (−∞, R) ∩ ln(A) is an ε-net, ε = ε(R), in
(−∞, R) for each R ∈ �. Hence, reasoning as in the first part of the proof of Theorem 2.5,
we can prove the implication

(p0(A) < 1) ⇒ (A is favourable for every bounded domain � ⊆ �n).

�
REMARK 2.12.1. As in Proposition 2.8, it is easy to prove that A is favourable for all

bounded domains of �n if and only if A is favourable for all bounded open subsets of �n.
Theorem 2.12 remains valid even for unbounded domains and open sets � ⊆ �n if

sup
x∈�

(δ�(x)) < ∞.
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REMARK 2.12.2. In complete analogy with Definition 2.10, we may define the
quantity i∞(A), the left porosity index of A at +∞, after which Proposition 2.8 can be
reformulated as:

Let A ⊂ (0,∞). The following statements are equivalent:

(i) A is favourable for all domains � ⊆ �n;
(ii) The indexes i0(A) and i∞(A) are less than infinity,

i0(A) ∨ i∞(A) < ∞;

(iii) There is ε > 0 such that ln(A) is an ε-net in �1.

Theorem 2.5, Proposition 2.7 and Theorem 2.12 imply the following.

COROLLARY 2.13. Let A be a subset of (0,∞) and let α, β be positive constants.
Then, the set A is favourable for all domains � ⊆ �n (for all bounded domains � ⊆ �n)
if and only if the set

αAβ := {αxβ : x ∈ A}

has the same property.

Proof. One just directly observe that if condition (s) holds for the set A with a constant
C, then condition (s) holds for the set αAβ with the constant C′ ≥ Cβ . �

Now, we are ready to characterise the function f : (0,∞) → (0,∞) for which the
equality

Q(f, D,�) = QNS(�) (30)

is fulfilled for all open sets � ⊆ �n.

THEOREM 2.14. Let D be a bounded, Lebesgue measurable subset of �n with
a marked point pD ∈ Int D and let ϕ : SM(�n) → (0,∞), f : (0,∞) → (0,∞) be
functions such that (8) holds for all h ∈ SM(�n). Then, equality (30) holds for all open
sets � ⊆ �n if and only if there are A ⊆ (0,∞) and c > 1 such that:

(i) the inequality f (k) ≤ ck holds for all k ∈ (0,∞),
(ii) ln(A) is an ε-net in � for some ε > 0,

(iii) the inequality

1
c

k ≤ f (k) (31)

holds for all k ∈ A.

Proof. Let � be an open set in �n, A ⊆ (0,∞) and c > 1. Assume that ln(A) is an
ε-net in � for some ε > 0 and that (31) holds with this c for all k ∈ A. Then, using (9) and
(31), we obtain

u(x�) ≤ cnK(u)
(k(h))n

∫
h(D)

u(y) dmn(y) (32)
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for every u ∈ Q(f, D,�) and every x� whenever h ∈ Sim(pD, x�) and k(h) ∈ A. As in the
proof of Theorem 2.2 write

RD = sup
y∈D

|pD − y|.

Let Bn(x�, r0) be a ball such that r0 = RDk0, with k0 ∈ A and Bn(x�, r0) ⊂ �. Then,
each similarity h such that k(h) = k0 and h(pD) = x� belongs to Sim(pD, x�) and satisfies
h(D) ⊆ Bn(x�, r0). Consequently, (32) implies

u(x�) ≤ cnK(u)(RD)nνn

(k0RD)nνn

∫
Bn(x�,r0)

u(y) dmn(y) = cnK(u)νn(RD)n

mn(Bn(x�, r0))

∫
Bn(x�,r0)

u(y) dmn(y)

for every u ∈ Q(f, D,�) and every Bn(x�, r0) ⊆ � whenever r0 ∈ RDA. Corollary 2.13
implies that the set RDA is favourable for �. Hence, Q(f, D,�) ⊆ QNS(�). Taking into
account Proposition 2.4, we see that conditions (i)–(iii) of the present theorem imply
equality (30) for all open sets � ⊆ �n.

Conversely, suppose that (30) holds for all open sets � ⊆ �n but for every t > 0 the
set ln At, where

At :=
{

k ∈ (0,∞) : f (k) ≥ 1
t

k
}

, (33)

is not an ε-net for any ε > 0. It is clear that At1 ⊆ At2 if t1 ≥ t2. Applying Proposition 2.7
and Lemma 2.6 to the sets A2, A3, . . . , we obtain a sequence {am}∞m=2 of positive numbers
am such that Am ∩ (am, mam) = ∅ for each m ≥ 2, that is

f (k) <
1
m

k, (34)

if am < k < mam, and that

(am1 , m1am1 ) ∩ (am2 , m2am2 ) = ∅, (35)

whenever m1 �= m2. Passing, if necessary, to a subsequence we may assume that {am}∞m=2
and {mam}∞m=2 are monotone and convergent in [0,∞] sequences. This assumption and
(35) imply either the equalities

lim
m→∞ am = lim

m→∞ mam = 0 (36)

or the equalities

lim
m→∞ am = lim

m→∞ mam = ∞.

As in the proof of Theorem 2.5, we consider only the case when (36) holds and the
dimension n = 2. We shall construct a domain � ⊆ �2 and a non-negative u ∈ L1

loc(�)
such that

u ∈ Q(f, D,�) \ QNS(�).

To this end note that (30) implies (10), so using Proposition 2.4 we can find c ≥ 1 such that

f (k) ≤ ck (37)
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for every k ∈ (0,∞). Let us define a function f1 : (0,∞) → (0,∞) by the rule

f1(k) :=
{

k
m if am < k < mam, m = 2, 3, . . .

ck if k ∈ (0,∞) \ ⋃∞
m=2(am, mam)

, (38)

where c ≥ 1 is the constant from inequality (37). Inequalities (34) and (37) imply f (k) ≤
f1(k) for all k ∈ (0,∞). Hence, from the definition of the set Q(f, D,�) follows the
inclusion

Q(f, D,�) ⊇ Q(f1, D,�).

Thus, it is sufficient to find a domain � ⊆ �2 and a non-negative u ∈ L1
loc(�) such that

u ∈ Q(f1, D,�) \ QNS(�).

Let us define

� :=
∞⋃

m=N0+1

(
B2

(
zm,

mam

N0

)
∪ Rm

)
, u(x) :=

{
1 if x ∈ X

0 if x ∈ � \ X
,

where

X :=
∞⋃

m=N0+1

B2(zm, am), zm := 2
m−1∑
i=1

iai,

Rm :=
{

z ∈ � : 2
m−1∑
n=1

nan < Re (z) < 2
m∑

n=1

nan, |Im(z)| < am+1

}
.

The parameter N0 is free here and we will specify this parameter later. It is relevant to
remark that the domain � is obtained from the domain depicted on Figure 1, by deleting

of the balls B2(z1,
b1
N0

), B2(z2,
b2
N0

), . . . , B2(zN0 ,
bN0
N0

) and the rectangles R1, . . . , RN0 and
putting bm := mam in the rest of balls and rectangles. As in the proof of Theorem 2.5, we
have u �∈ QNS(�). It still remains to prove that u ∈ Q(f1, D,�). The last relation holds if
and only if there exists K(u) ≥ 1 such that

(f1(k(h)))2 ≤ K(u)
∫

h(D)
u(y) dm2(y) (39)

for all h ∈ Sim(pD, x�) with x� ∈ X .
Let x� ∈ X . It follows from the definitions of � and X that there is m ≥ N0 + 1 for

which

x� ∈ B2(zm, am).

We claim that the inequality

k(h)rD ≤ 2mam

N0
, (40)

holds for every h ∈ Sim(pD, x�) with rD = δInt(D)(pD).
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Let us prove it. Since h ∈ Sim(pD, x�), we have

h(B2(pD, rD)) ⊆ �.

The last inclusion implies

∂� ∩ h(B2(pD, rD)) = ∅,

because � ∩ ∂� = ∅ for the open sets. The intersection

∂B2
(

zm,
mam

N0

)
∩ ∂� =

{
z ∈ � : |z − zm| = mam

N0

}
∩ ∂�

is not empty (see Figure 1). Consequently, there is ξ ∈ ∂B2(zm, mam
N0

) \ h(B2(pD, rD)).
Hence,

|x� − ξ | ≥ k(h)rD.

Using the triangle inequality, we obtain

|x� − ξ | ≤ |x� − zm| + |zm − ξ | = |x� − zm| + mam

N0
.

Consequently,

k(h)rD ≤ |x� − zm| + mam

N0
.

Since x� ∈ B2(zm, am), we have |x� − zm| ≤ am. It follows directly from the definition of
� that m ≥ N0. Hence,

k(h)rD ≤ am + mam

N0
≤ 2mam

N0
.

Inequality (40) follows.
Since h(D) ⊇ h(B2(pD, rD)), the inequality

(f1(k(h)))2 ≤ K(u)
∫

B2(x�,k(h)rD)
u(y) dm2(y) (41)

implies (39), so it is sufficient to prove (41). The following two cases are possible: k(h) ∈
(0, am] and k(h) ∈ (am,∞). Before analysing these cases note that f1(k) ≤ ck for every
k ∈ (0,∞) because 1

m ≤ 1
2 and c ≥ 1 in definition (38). Hence, in the first case, we can

replace (41) by

c2 ≤ K(u)
(k(h))2

∫
B2(x�,k(h)rD)

u(y) dm2(y). (42)

It is clear that

K(u)
(k(h))2

∫
B2(x�,k(h)rD)

u(y) dm2(y) ≥ K(u)π (rD ∧ 1)2

π (k(h)(rD ∧ 1))2

∫
B2(x�,k(h)(rD∧1))

u(y) dm2(y). (43)
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Since k(h) ∈ (0, am], we see that

k(h)(rD ∧ 1) ≤ am.

Hence, as it was shown in the proof of Theorem 2.5, in the case under consideration we
have

1
π (k(h)(rD ∧ 1))2

∫
B2(x�,k(h)(rD)∧1)

u(y) dm2(y) ≥ 2
3

−
√

3
2π

.

The last estimation and (43) show that (42) holds if

c2 = K(u)π (rD ∧ 1)2

(
2
3

−
√

3
2π

)
.

Consider now the case k(h) ∈ (am,∞). Inequality (40) shows that

k(h) ≤ 2mam

N0rD
.

Let us specify N0 as the smallest positive integer N satisfying the inequality 2
NrD

> 1.
Then, we obtain the double inequality

am < k(h) < mam.

This inequality and (38) show that

f1(k(h)) = k
m

≤ am.

Consequently, we can prove (41) as in the case k(h) ∈ (0, am]. �
Let us consider now some examples of functions ϕ and f for which equality (8) holds.

EXAMPLE 2.15. Let ψ be a positive bounded periodic function on �. Write

μ(x) := 1
2

(
x + 1

x

)

for x > 0 and define

f (k) := kψ(μ(k)). (44)

Using some routine estimations, we see that conditions (i)–(iii) from Theorem 2.14 are
satisfied by the function f if we take

A = μ−1
{

x ∈ (0,∞) : ψ(x) ≥ 1
2

M
}

, c = M ∨ 2
M

,

where

M = sup
y∈�

ψ(y).
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An important special case of the preceding example is the constant function ψ . Then,
f is linear on (0,∞) and conditions (i)–(iii) from Theorem 2.14 are evidently hold. In this
simplest case, the function ϕ : SM(�n) → (0,∞) connected with f can be obtained in
distinct ways depending on the geometrical properties of the set D.

In all following examples, D is a bounded Lebesgue measurable subset of �n with
Int D �= ∅ and h ∈ SM(�n).

EXAMPLE 2.16. Let d-dimensional Hausdorff measure Hd , n − 1 ≤ d ≤ n, of the
boundary ∂D be finite and non-zero, 0 < Hd(∂D) < ∞. Write

ϕ(h) = (Hd(∂(h(D))))
1
d .

EXAMPLE 2.17. Let D be a set with the finite Caccoppoli–de Gorgi perimeter P, see
for instance [3, Chapter 3, Section 3]. Write

ϕ(h) = (P(h(D)))
1

n−1 .

EXAMPLE 2.18. Let D ⊆ �2 be a simply connected domain with the rectifiable
boundary ∂D, 0 < H1(∂D) < ∞. Suppose that the domain D is not a disk. Write

ϕ(h) = ((H1(h(∂D)))2 − 4πm2(h(D)))
1
2 .

In this case, the inequality ϕ(h) > 0 follows from the Classical Isoperimetric Inequality,
see for instance [3, Chapter 1, Section 1].

This list of examples can be simply extended by involving the analytic capacity, the
transfinite diameter, the Menger curvature etc. for the definition of the function ϕ. The
homogeneity under dilatations x �−→ αx, x ∈ �n, α > 0, the invariance under isometries,
finiteness and positiveness are sufficient for this purpose.
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