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The semilattice J, the inverse semigroups N(EX) and the mappings <f> determine N to within
isomorphism.

Conversely, any semilattice of inverse semigroups has a structure determined in the above
manner.

The set of all sets of semilattices J of inverse semigroups N(Ea) and the corresponding
mappings <j> associated as above with N forms a set of complete invariants for N.
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The closed graph theorem is one of the deeper results in the theory of Banach spaces and
one of the richest in its applications to functional analysis. This note contains an extension
of the theorem to certain classes of topological vector spaces. For the most part, we use the
terminology and notation of N. Bourbaki [1], contracting " locally convex topological vector
space over the real or complex field " to " convex space "; here we confine ourselves to convex
spaces.

Suppose that E is a separated (i.e. Hausdorff) convex space and that its dual E' has the
weak topology a (E't E). Then E is called fully complete if a vector subspace M' of E' is closed
whenever M'r\ U° is closed for every neighbourhood U of the origin in E. A fully complete
space is complete ; a closed vector subspace of a fully complete space is fully complete and so
also is a quotient by a closed vector subspace (H. S. Collins [2]). Any Frechet space is fully
complete (J. Dieudonne and L. Schwartz [3], Theoreme 5, Corollaire). There are other fully
complete spaces ; for example the algebraic dual E* of any vector space E is fully complete
under the topology a(E*, E) (Collins, [2], Corollary 17.2). It is not difficult to show that the
dual E' of a Frechet space E is fully complete under any topology between the topology of
compact convergence and the Mackey topology T (E', E); in particular the strong dual of a
reflexive Fre'chet space is fully complete.
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Fully complete spaces have also been studied by V. Ptak [5] in connection with the open
mapping theorem (homomorphism theorem). He calls a linear mapping t of a convex space
E onto a convex space F almost open if, for each neighbourhood U of the origin in E, t(U)
is a neighbourhood of the origin in F. Then Ptak's main result ([5], Theorem 4.5) is that every
continuous almost open mapping is open if and only if E is fully complete, so that, in par-
ticular, a continuous linear mapping of a fully complete space onto a convex Baire space is
open.

The following lemma is implicit in the proof of Ptak's theorem but we reproduce the
relevant details so that the results here are self-contained.

LEMMA 1. Let F be fully complete under the topology £, and let TJ be a coarser topology under
which F is a separated convex space. If, tinder the topology £, F has a base of neighbourhoods
of the origin whose -q-closures are neighbourhoods under TJ, then £ and TJ are identical.

Proof. Let F' be the dual of F under f. The dual M' of F under TJ is a vector subspace
of F', dense in F' under a(F', F). If U is any f-closed absolutely convex (i.e. convex and
circled) neighbourhood of the origin in F under £, the Tj-closure U of U is an Tj-neighbourhood,
so that U and U have the same polar U°r^M' in M'. Hence U°r^M' is a[M\ i^-compact
and so o(F', .F)-closed. Since F is fully complete under f, this implies that M' is a(W, F)-
closed. Thus M' =F'. I t follows that U, being absolutely convex, has the same closure in
f and TJ, and so U = U. Thus £ is identical with TJ.

THEOEEM 1 (Closed graph theorem). Suppose that t is a linear mapping of the barrelled
space E into the fully complete space F and that the graph of t in E xF is closed. Then t is
continuous.

Proof. Since t (E) is fully complete and the graph of t is closed in E x t (E), it is sufficient
to prove the theorem when t (E) is dense in F.

Let 1) be a base of closed absolutely convex neighbourhoods of the origin in F under the
given topology £. We begin by defining another topology TJ on F, taking as a base of neigh-
bourhoods of the origin the sets

[FT) VeV.
Each F is clearly absolutely convex and since

V =Vrst(E)£^(F))^ V,

each F is also absorbent. Thus the sets F form a base V of neighbourhoods of the origin in
a topology TJ on F coarser than £.

To show that F is separated under TJ we use the fact that the graph 0 of t is closed. For

suppose that y e V for all V e V, and let (U, V) be a neighbourhood of the origin in E x F.

Then y e \V, so that y + \V meets ( ( j " 1 ^ ) ) - There is therefore a point x1 e t^HV) with
t(x1) e y + \V. Hence xx e t-x(\V) + U, and so there is a point x2 e U with x1-x2e <
Then

and so (a;2, t(x2)) e Gr^ (U,y+ V). Thus (0, y)eG = G, and this implies that y =0.

Next we use the fact that E is barrelled to prove that, for each V e V, V is contained in

the closure of V under TJ. Let ye V ; then, for each W e V, y + \W meets <(t~x(F)), so that
there is a point a;1e<-1(F) with t(x1) ey + ̂ W. Now t~x(\W) is a barrel, and therefore a
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neighbourhood of the origin in E, so that x1et-1{V)+tr1(\W). Thus there is a point
x2 e tr1 (V) with xx - x 2 e t~x(\W) and then

Thus y+W meets V, and hence y belongs to the ^-closure of V.
The conditions of Lemma 1 are now all satisfied, and it follows that f and rj are identical.

Therefore, for each V e V, V = V and t'1 (V) Q t-1 (V) = t'1 (V). But t'1 (V) is a neighbourhood
of the origin in E, so that t is continuous, and the theorem is proved.

Suppose that (Ea) is a family of convex spaces, and that, for each a, there is linear map-
ping ua of Ea into a vector space E, with E = U ua(Ea). Then there is a finest convex space

topology on E in which each ua is continuous, and E with this topology is called the inductive
limit of the family (Ea) by the linear mappings (uj. (See, e.g., A. Grothendieck [4], Intro-
duction, IV.) If t is a linear mapping of E into another convex space F, then t is continuous
if and only if each mapping toua of Ea into F is continuous.

The next theorem extends the result of Grothendieck ([4] Introduction, Theoreme B).
First we need a lemma (cf. [1], Chapitre III, §1, Proposition 1).

LEMMA 2. If E is a convex space and H a non-meagre vector subspace of E then, under the
induced topology, H is barrelled.

Proof. Let B be a barrel in H. Then HQ U nB, so that B is a neighbourhood of the
_ n=l

origin in E. Hence Br\H is a neighbourhood of the origin in the induced topology on H. But
B=Br\H, since B is closed in H, and so H is barrelled.

THEOREM 2. Suppose that E is an inductive limit of convex Baire spaces and that F is a
separated inductive limit of a sequence of fully complete spaces. If t is a linear mapping of E
into F and if the graph of t in E xF is closed, then t is continuous.

Proof. Suppose first that E is a convex Baire space and that F is the inductive limit of
the sequence (Fn) of fully complete spaces by the linear mappings (vn). Then

E=t-i(F)=t-4 U vn(Fn))= U t-*(vn(Fn)),
\r.»l / n=l _

so that there is some n for which H =t~1(vn(Fn)) is non-meagre and H = E. For this n write
K = FJv~1{0), and let w be the (1-1) linear mapping of K into F associated with vn.

Then, since the graph G of t is closed, the graph L of the mapping w1 otoiH into K is
also closed. For L is the inverse image of G by the continuous mapping (x, y) -*• {x, w(y))
of HxK into ExF.

Since H is barrelled by Lemma 2 and K, the quotient of a fully complete space by a
closed vector subspace, is fully complete, w-1 o t is continuous on H by Theorem 1. Now K
is complete and H dense in E, so that w1 o t has a continuous linear extension s mapping E
into K. On H, w o « = t; we show now that this holds on E.

Suppose not ; then, for some xx e E, (xv w(s(x1))) 4 G. Since G is closed, there is a
neighbourhood (U, V) of the origin in E x F with (xx + U, w(s(x1)) + V) not meeting G. Since
wo 8 is continuous, there is a neighbourhood UXQ U of the origin in E with w(s(Ux))Q V.
Also H is dense in E, and so there is a point x2 e Hrs (xx + Ux). Then

(xit t (x2)) = (x2, w (s (x2))) e (xx + U,w(s (xx)) + V),
and this last set does not meet G. This is a contradiction, so that wos=tonE, and therefore
t is continuous.
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Now consider the general case in which E is the inductive limit of the Baire spaces Ea by
the linear mappings ua. If tu =t o ua, the graph of ta is the inverse image of the graph of t by
the continuous mapping (x, y)-*-(ua(x), y) of Ex xF into E xF. Thus the graph of ta is
closed, and so, by what has just been proved, tx is continuous. Hence t is continuous, and this
completes the proof of the theorem.

As in Grothendieck's Theoreme B, it is clear that replacing the topology of F by a coarser
topology does not affect the validity of the results in Theorems 1 and 2.

THEOREM 3 (Open mapping theorem). Suppose that E and F are separated, that either
(i) E is fully complete and F barrelled, or

(ii) E is an inductive limit of a sequence of fully complete spaces and F is an inductive limit
of convex Baire spaces,

and that t is a continuous linear mapping of E onto F. Then T is open.
Proof. Since t is continuous, t-1(0) is closed. Let H = E/t~1(0). In case (i), H is fully

complete. In case (ii), if E is the inductive limit of the sequence (En) of fully complete spaces
by the linear mappings (wn), then H is an inductive limit of the sequence of fully complete
spaces #n=#n/M-i(«-i(0)).

Then we can write t = so<j>, where <j> is the canonical mapping of E onto H and s is a (1-1)
continuous linear mapping of H onto F. The graph of s'1, which is the same as the graph of s,
is therefore closed in F x H, and so, by Theorem 1 or 2, s"1 is continuous. Hence t is open.

Finally we observe that it follows from the open mapping theorem that fully complete
spaces enjoy another property of complete metric spaces :

COROLLAEY. / / E is fully complete, or the inductive limit of a sequence of fully complete
spaces, and if t is a continuous linear mapping of E into any separated convex space F, then
either t(E) is meagre in F or t(E) =F.

Proof. Suppose first that E is fully complete. If t(E) is non-meagre in F, then, by
Lemma 2, t(E) is barrelled, and so t is open, by Theorem 3. Hence t(E) is isomorphic with
the fully complete space E/t^iO) and so is fully complete. But t(E)=F so that t(E) =F.

If E is the inductive limit of the sequence (En) by the mappings (un), then

t(E) = Ut(un(En)).
n=l

Hence if t(E) is non-meagre .in F, there is some n with t(un(En)) non-meagre in F. By the
same argument as before, applied to the mapping toun,t(un(En))=F, and so t(E)=F.
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