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Abstract

In this paper, we further study Tate cohomology of modules over a commutative ring with respect to
semidualizing modules using the ideals of Sather-Wagstaff et al. [‘Tate cohomology with respect to
semidualizing modules’, J. Algebra 324 (2010), 2336–2368]. In particular, we prove a balance result for
the Tate cohomology Êxt

n
for any n ∈ Z. This result complements the work of Sather-Wagstaff et al., who

proved that the result holds for any n ≥ 1. We also discuss some vanishing properties of Tate cohomology.
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1. Introduction

Tate cohomology was initially defined for representations of finite groups. Avramov
and Martsinkovsky [1] extended the definition so that it can work well for finite
modules of finite G-dimension over a Noetherian ring. They showed that if M is a
finite R-module of finite G-dimension, then there is an exact sequence connecting the
absolute cohomology functor Ext∗R(M, −), the relative cohomology functor Ext∗

G
(M, −)

(that are defined by a proper Gorenstein projective resolution of M), and the Tate
cohomology functor Êxt

∗

R(M, −) (see [1, (7.1)]).
Balancedness of absolute cohomology ExtR is well known. Holm [5, (3.6)] gave a

balance result for the relative cohomlogy ExtG by showing that if M is an R-module
of finite Gorenstein projective dimension and N is an R-module of finite Gorenstein
injective dimension then Ext∗

G
(M, N) can also be computed using a proper Gorenstein

injective resolution of N. Iacob [6, Theorem 2] proved a balance result for Tate
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cohomology ÊxtR over Gorenstein rings. Recently, Christensen and Jorgensen [3] used
the idea of a pinched complex to prove a general balance result for Tate cohomology,
while Enochs et al. [4] gave a new way of constructing homology groups associated
with a double complex, and with this result gave a new and elementary proof of
balancedness of Tate cohomology.

Let X denote a subcategory of an abelian category A and G(X) denote the
subcategory of A with objects of the form M � Ker(δX

−1) for some totally X-acyclic
complex X (see Section 2.3). Sather-Wagstaff et al. [9] constructed a theory of Tate
cohomology in abelian categories. They proved the following balance result (see [9,
(6.1)]).

T. LetW andV be subcategories ofA. Assume thatW⊥W andV⊥V and
G(W) ⊥V andW⊥G(V). Assume thatW is closed under kernels of epimorphisms
and direct summands, and that V is closed under cokernels of monomorphisms
and direct summands. Assume also that Ext≥1

WA
(resŴ,V) = 0 = Ext≥1

AV
(W, coresV̂).

Then, for all M ∈ resĜ(W), all N ∈ coresĜ(V) and all n ≥ 1,

Êxt
n
WA(M, N) � Êxt

n
AV(M, N).

We notice that when W is the subcategory of projective R-modules and V is the
subcategory of injective R-modules, then the above theorem gives a balance result for
Tate cohomology Êxt

n
R for n ≥ 1 over any associative ring R.

In this paper, we further study balancedness of Tate cohomology in abelian
categories. We show that the result of Sather-Wagstaffet al. [9, (6.1)] is true for
any n ∈ Z (see Corollary 3.10). More generally, we prove the following result (see
Theorem 3.9).

T A. Let X,Y,W and V be subcategories of A. Assume that X and Y are
exact, and X is closed under kernels of epimorphisms andY is closed under cokernels
of monomorphisms. Assume thatW is both an injective cogenerator and a projective
generator forX, andV is both an injective cogenerator and a projective generator for
Y. Assume also thatW andV are closed under direct summands and satisfyW⊥Y,
X ⊥V and Ext≥1

WA
(resŴ,V) = 0 = Ext≥1

AV
(W, coresV̂). Then, for all M ∈ resX̂ and

N ∈ coresŶ, and all n ∈ Z,

Êxt
n
WA(M, N) � Êxt

n
AV(M, N).

As an application of Theorem A, we get the next balance result for Tate cohomology
of modules with respect to semidualizing modules (see Corollary 3.12). This result
was proved for each n ≥ 1 in [9, Theorem D].

T B. Let R be a commutative ring, and let B and C be semidualizing R-modules
such that B ∈ GPC(R). Set B† = HomR(B,C). Let M and N be R-modules such that
G(PB)-pdR(M) <∞ and G(IB†)-idR(N) <∞. Then, for each n ∈ Z,

Êxt
n
PBM

(M, N) � Êxt
n
MIB†

(M, N).
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Furthermore, under the hypothesis of Theorem B, we get that M has a proper

PB-resolution W
' // M and a proper G(PB)-resolution X

' // M by Lemma 2.6.

Set idM : W // X to be a lifting of the identity idM : M // M . Dually, one

can construct idN . Then the next result provides a new method to compute Tate
cohomology of modules with respect to semidualizing modules (see Corollary 3.16).

T C. Let R be a commutative ring, and let B and C be semidualizing R-modules
such that B ∈ GPC(R). Set B† = HomR(B,C). Let M and N be R-modules such that
G(PB)-pdR(M) <∞ and G(IB†)-idR(N) <∞. Then, for each n ≥ 1,

Êxt
n
PBM

(M, N) � Êxt
n
MIB†

(M, N)

� H−n−1(HomR(Cone(idM), N))

� H−n(HomR(M, Cone(idN))).

As we will see, the vanishing properties of Tate cohomology play an important
role in the proof of Theorem A. We prove the next vanishing result that encompasses
the results of Sather-Wagstaff et al. [9, (5.2), (5.6) and (5.7)] (see Theorem 3.5 and
Corollary 3.6).

T D. Let X andW be subcategories of A. Assume that X is exact and closed
under kernels of epimorphisms, and that W is both an injective cogenerator and a
projective generator for X and closed under direct summands. If M ∈ resX̂, then the
following statements are equivalent.

(1) M ∈ resŴ.
(2) Êxt

n
WA(−, M) = 0 on resX̂ for each n ∈ Z.

(3) Êxt
n
WA(M, −) = 0 for each n ∈ Z.

(4) Êxt
n
WA(−, M) = 0 on resX̂ for some n ∈ Z.

(5) Êxt
n
WA(M, −) = 0 for some n ∈ Z.

(6) Êxt
0
WA(M, M) = 0.

(7) The transformation ϑi
XWA

(−, M) : Exti
XA

(−, M) // Exti
WA

(−, M) is an

isomorphism on resX̂ for each i ∈ Z.

(8) The transformation ϑi
XWA

(M, −) : Exti
XA

(M, −) // Exti
WA

(M, −) is an iso-
morphism for each i ∈ Z.

(9) The transformation ϑi
XWA

(−, M) : Exti
XA

(−, M) // Exti
WA

(−, M) is an

isomorphism on resX̂ for each 1 ≤ i ≤ 2.

(10) The transformation ϑi
XWA

(M, −) : Exti
XA

(M, −) // Exti
WA

(M, −) is an iso-

morphism either for two successive values of i with 1 ≤ i < d or for a single
value of i with i ≥ d, where d = X-pd(M) <∞.

The dual result is given in Theorem 3.7 and Corollary 3.8.
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2. Preliminaries

We begin with some notation and terminology for use throughout this paper.

2.1. Throughout this work,A always denotes an abelian category, and given a ring R,
M denotes the category of left R-modules. We use the term ‘subcategory’ for a ‘full
additive subcategory’ that is closed under isomorphisms. A subcategory X of A is
exact if it is closed under direct summands and extensions.

We fix subcategories X,Y,W and V of A such that W⊆X and V ⊆Y. Write
X ⊥Y if Ext≥1

A
(X, Y) = 0, and X ⊥1 Y if Ext1A(X, Y) = 0 for any X ∈ X and any Y ∈ Y.

For an object M ofA, write M ⊥1 Y (respectively, X ⊥1 M) if Ext1A(M, Y) = 0 for any
Y ∈ Y (respectively, if Ext1A(X, M) = 0 for any X ∈ X). We say thatW is a generator
for X if, for any X ∈ X, there is an exact sequence 0 // X′ // W // X // 0 such
that W ∈W and X′ ∈ X. The subcategoryW is a projective generator for X ifW is
a generator for X andW⊥X. Dually, one can give the concepts of cogenerators and
injective cogenerators.

2.2. A complex · · · // X1
δX

1 // X0
δX

0 // X−1
// · · · of objects of A will be

denoted by (X, δX) or simply X. We frequently (and without warning) identify objects
of A with complexes concentrated in degree zero. A complex X is bounded above if
Xn = 0 for n� 0, and it is bounded below if Xn = 0 for n� 0. A complex X is bounded
if it is both bounded above and bounded below. The nth homology of X is defined as
KerδX

n /Imδ
X
n+1 and it is denoted by Hn(X). For any m ∈ Z, ΣmX denotes the complex

with the degree-n term (ΣmX)n = Xn−m and whose boundary operators are (−1)mδX
n−m.

We set ΣM = Σ1M. The soft truncations of X at n are the complexes

X⊂n ≡ 0 // Coker(δX
n+1)

δX
n // Xn−1

δX
n−1 // Xn−2

// · · ·

and

X⊃n ≡ · · · // Xn+2
δX

n+2 // Xn+1
δX

n+1 // Ker(δX
n ) // 0 .

If X and Y are both complexes, then by a morphism α : X // Y we
mean a sequence αn : Xn

// Yn such that αn−1δ
X
n = δY

nαn for each n ∈ Z. A
quasiisomorphism, indicated by the symbol ‘'’, is a morphism of complexes that
induces an isomorphism in homology. The mapping cone Cone(α) of α is defined as

Cone(α)n = Yn ⊕ Xn−1 with nth boundary operator δCone(α)
n =

(δY
n αn−1

0 −δX
n−1

)
. It is well known

that a morphism α is a quasiisomorphism if and only if its mapping cone Cone(α) is
exact. The Hom-complex HomA(X, Y) denotes the complex of abelian groups with the
degree-n term HomA(X, Y)n =

∏
t∈Z HomA(Xt, Yn+t) and whose nth boundary operator

is given by { ft} 7→ {δY
t+n ft − (−1)n ft−1δ

X
t } . One can check that a morphism from X to Y

is an element of Ker(δHomA(X,Y)
0 ). A complex T is HomA(X, −)-exact if HomA(M, T )

is exact for each object M ∈ X. The term HomA(−, X)-exact is defined dually.
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2.3. An exact complex of objects in X is totally X-acyclic if it is HomA(X, −)-exact
and HomA(−, X)-exact. Let G(X) denote the subcategory of A with objects of the
form M � Ker(δX

−1) for some totally X-acyclic complex X.

R 2.4. If W⊥W, then, by [7, Theorem B and Corollary 4.7], W is both an
injective cogenerator and a projective generator for G(W), and G(W) is an exact
subcategory of A, and it is closed under kernels of epimorphisms (or cokernels of
monomorphisms) ifW is.

One can find the following definitions in [9].

2.5. Let M be an object of A. An X-resolution of M is a complex X of objects in X
such that X−n = 0 = Hn(X) for all n > 0 and H0(X) � M. The associated exact sequence

X+ ≡ · · · // X1
// X0

// M // 0

is the augmented X-resolution of M associated to X. Sometimes we call the

quasiisomorphism X
' // M an X-resolution of M. A bounded strictWX-resolution

X is a bounded X-resolution such that Xi ∈W for each i ≥ 1. An X-resolution X
is proper if X+ is HomA(X, −)-exact, and we let resX̃ denote the subcategory of
objects ofA admitting a proper X-resolution. The X-projective dimension of M is the
quantity

X-pd(M) = inf{sup{n ≥ 0 | Xn , 0} | X is an X-resolution of M}.

We let resX̂ denote the subcategory of objects ofA of finite X-projective dimension.
We define (proper) Y-coresolutions and Y-injective dimension, Y-id(M), of M

dually. We let coresỸ and coresŶ denote the subcategories of objects of A admitting
a properY-coresolution and objects ofA of finiteY-injective dimension, respectively.
Similarly, a bounded strictYV-coresolution Y of M is a boundedY-coresolution such
that Yi ∈ V for i ≤ −1.

By [8, (3.3) and (3.4)], we have the following result.

L 2.6. Assume that X and Y are closed under extensions. Assume that W is
both an injective cogenerator and a projective generator for X, and that V is both
an injective cogenerator and a projective generator for Y. Then resX̂ ⊆ resW̃ ∩ resX̃
and coresŶ ⊆ coresṼ ∩ coresỸ.

2.7. Let M and N be objects ofA. If M admits a proper X-resolution X
' // M , then

the nth relative cohomology group Extn
XA

(M, N) is

Extn
XA

(M, N) = H−n(HomA(X, N)).
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If N admits a proper Y-coresolution, the nth relative cohomology group Extn
AY

(M, N)
is defined dually.

Assume that M admits a properW-resolution W
γ // M and a properX-resolution

X
γ′ // M . Let idM : W // X be a lifting of the identity idM : M // M , then idM

is a quasiisomorphism such that γ = γ′ ◦ idM . We set

ϑn
XWA

(M, −) = H−n(HomA(idM , −)) : Extn
XA

(M, −) // Extn
WA

(M, −).

When N admits a properV-coresolution and a proper Y-coresolution, the map

ϑn
AYV

(−, N) : Extn
AY

(−, N) // Extn
AV

(−, N)

is defined dually.

2.8. Let M and N be objects of A. A Tate W-resolution of M is a diagram

T
α // W

γ // M of morphisms of complexes, where T is a totally W-acyclic
complex, γ is a properW-resolution of M, and αn is an isomorphism for n� 0. We
let resW denote the subcategory of objects of A admitting a Tate W-resolution. A
TateV-coresolution of N is defined dually, and we let coresV denote the subcategory
of objects of A admitting a Tate V-coresolution. Then resW and coresV are
subcategories of A, and G(W) ⊆ resW⊆ resW̃ and G(V) ⊆ coresV ⊆ coresṼ. If
W⊥W, then resŴ ⊆ resW and coresŴ ⊆ coresW (see [9, (3.2)]).

If M admits a TateW-resolution T // W // M , define the nth Tate cohomology

group Êxt
n
WA(M, N) as

Êxt
n
WA(M, N) = H−n(HomA(T, N))

for each n ∈ Z. It follows from [9, (3.8)] that this definition is independent (up to
isomorphism) of the choice of Tate W-resolution. Dually, if N admits a Tate V-
coresolution N // V // S , define the nth Tate cohomology group Êxt

n
AV(M, N) as

Êxt
n
AV(M, N) = H−n(HomA(M, S ))

for each n ∈ Z. This definition is also independent (up to isomorphism) of the choice
of TateV-coresolution by [9, (3.8)].

3. Tate cohomology in Abelian categories

We begin with the following lemmas that are tools for the proof of Theorem 3.5.

L 3.1 [9, (4.5)]. Assume thatW⊥W and V⊥V. Let M and N be objects of
A, then the following statements hold.
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(1) If M ∈ resŴ, then Êxt
n
WA(−, M) = 0 on resW and Êxt

n
WA(M, −) = 0 for all

n ∈ Z.
(2) If N ∈ coresV̂, then Êxt

n
AV(N, −) = 0 on coresV and Êxt

n
AV(−, N) = 0 for all

n ∈ Z.

L 3.2. Assume that W is closed under direct summands and W⊥W, and let
M ∈ resW. If Êxt

0
WA(M, M) = 0 or Êxt

0
AW(M, M) = 0, then M ∈ resŴ.

P. We prove the case when Êxt
0
WA(M, M) = 0; the proof of the other case is dual.

Since M ∈ resW, without loss of generality, we may assume that there is a Tate W-

resolution T
α // W

γ // M of M such that αn is an isomorphism for each n ≥ t, where
t ≥ 1. Let Mi = Im(δW

i ) for i ≥ 1, then Mi ∈ resW. Note that the exact sequence

· · · // Wt
// · · · // W0

γ // M // 0

is HomA(W, −)-exact and Wi ∈W for i ≥ 0, so

Êxt
j
WA(A, Wi) = 0 = Êxt

j
WA(Wi, B)

for any j ∈ Z, any i ≥ 0, any object B ofA and any A ∈ resW by Lemma 3.1. Thus, by
[9, (4.6) and (4.7)],

Êxt
0
WA(Mt, Mt) � Êxt

t
WA(M, Mt) � Êxt

0
WA(M, M) = 0.

Note that Mt ∈ G(W), so that Mt ∈W by [9, (5.1)], and hence M ∈ resŴ. �

L 3.3. Assume that X and Y are exact, W is a generator for X and V is a
cogenerator for Y. Consider the exact sequence

0 // M′ // M // M′′ // 0

of objects ofA, then the following statements hold.

(1) If M′′, M ∈ X and W⊥1 M′, then M′ ∈ X; if W is closed under direct
summands, M′, M ∈ X and M′′ ⊥1 X, then M′′ ∈W.

(2) If M′, M ∈ Y and M′′ ⊥1 V, then M′′ ∈ Y; if V is closed under direct
summands, M′′, M ∈ Y and Y ⊥1 M′, then M′ ∈ V.

P. We prove part (1); the proof of part (2) is dual. Since M′′ ∈ X, there is an exact
sequence

0 // X // W // M′′ // 0
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with W ∈W and X ∈ X. Consider the following pullback diagram.

0

��

0

��
M′

��

M′

��
0 // X // D

��

//
p

M

��

// 0

0 // X // W

��

// M′′

��

// 0

0 0

Since M, X ∈ X, the exactness of the middle row, with the fact that X is closed under
extensions, implies that D ∈ X. Note that Ext1A(W, M′) = 0 since W ∈W, so the
middle column is split, and hence M′ ∈ X.

For the other part, since M ∈ X, there is an exact sequence

0 // X // W // M // 0

with W ∈W and X ∈ X. Consider the following pullback diagram.

0

��

0

��
0 // X // D

��

//
p

M′

��

// 0

0 // X // W

��

// M

��

// 0

M′′

��

M′′

��
0 0

Since M′, X ∈ X, the exactness of the top row and the fact that X is closed under
extensions imply that D ∈ X, and hence Ext1A(M′′, D) = 0. Thus the middle column is
split, and so M′′ ∈W since W ∈W. �

L 3.4. Assume that X is exact and W is a projective generator for X. Let

M ∈ resX̂withX-pd(M) = t <∞. If M ∈ resW̃ with W
' // M a properW-resolution

of M, then Kt = Im( Wt
// Wt−1 ) ∈ X with W−1 = M.
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P. If t = 0, then K0 = M ∈ X. Let t > 0, and let

0 // Xt
// · · · // X0

// M // 0

be an augmentedX-resolution of M, then it is HomA(W, −)-exact sinceW⊥X. Thus
we get the following commutative diagram.

0 // Kt

��

// Wt−1

��

// · · · // W0

��

// M

idM

��

// 0

0 // Xt
// Xt−1

// · · · // X0
// M // 0

Since each row is exact and HomA(W, −)-exact, we get that the mapping cone

0 // Kt
// Xt ⊕Wt−1

// · · · // X1 ⊕W0
// X0 ⊕ M // M // 0

is exact and HomA(W, −)-exact. Thus the sequence

0 // Kt
// Xt ⊕Wt−1

// · · · // X1 ⊕W0
// X0

// 0

is exact and HomA(W, −)-exact. Now, repeated application of Lemma 3.3 yields
Kt ∈ X. �

The next result encompasses [9, (5.2)]. Notice that, even when X is exact and
closed under kernels of epimorphisms, and W is both an injective cogenerator and
a projective generator for X and closed under direct summands, one may have
X  G(W) (see [9, (3.12)]).

T 3.5. Assume that X is exact and closed under kernels of epimorphisms, and
thatW is both an injective cogenerator and a projective generator for X and closed
under direct summands. Let M ∈ resX̂. Then the following statements are equivalent:

(1) M ∈ resŴ;
(2) Êxt

n
WA(−, M) = 0 on resX̂ for each n ∈ Z;

(2′) Êxt
n
WA(M, −) = 0 for each n ∈ Z;

(3) Êxt
n
WA(−, M) = 0 on resX̂ for some n ∈ Z;

(3′) Êxt
n
WA(M, −) = 0 for some n ∈ Z;

(4) Êxt
0
WA(M, M) = 0.

P. (1)⇒ (2) follows from Lemma 3.1 and [9, (3.4)].
(2)⇒ (3) is trivial.
(3)⇒ (4). Assume that Êxt

n
WA(−, M) = 0 on resX̂ for some n ∈ Z. If n = 0, then

the condition (4) holds immediately.
Let n < 0, and let n = −d with d > 0. Since M ∈ resX̂, we get M ∈ resW̃ by [8,

(3.4)]. Let W
' // M be a properW-resolution of M, and let Mi ∈ Im( Wi

// Wi−1 )
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for i ≥ 1, then Mi ∈ resX̂ by Lemmas 3.3(1) and 3.4. Note that, for any t ∈ Z and any
i ≥ 0, Êxt

t
WA(Wi, M) = 0 by Lemma 3.1, so

Êxt
0
WA(M, M) � Êxt

−d
WA(Md, M) = 0

by [9, (4.6)] since Md ∈ resX̂.
Let n > 0. By [8, (3.3)], there is an exact sequence

0 // M // W−1
// M−1

// 0 (∗)

with W−1 ∈ resŴ and M−1 ∈ X. SinceW⊥ resX̂, the sequence (∗) is HomA(W, −)-
exact. Note thatW is an injective cogenerator for X, so there is an exact sequence

0 // M−1
// W−2

// W−3
// · · · (∗∗)

with Wi ∈W for i ≤ −2, such that M−i = Im( W−i
// W−i−1 ) ∈ X for i ≥ 2. Obviously,

the sequence (∗∗) is HomA(W, −)-exact sinceW⊥X. Then

Êxt
0
WA(M, M) � Êxt

n
WA(M−n, M) = 0

by [9, (4.6)], since M−n ∈ resX̂ and Êxt
t
WA(Wi, M) = 0 for any t ∈ Z and any i ≤ −1 by

Lemma 3.1.
(4)⇒ (1) holds by Lemma 3.2 and [9, (3.4)].
Similarly, we can prove (1)⇒ (2′)⇒ (3′)⇒ (4). �

The next corollary encompasses [9, (5.6) and (5.7)] by noting that ifW is closed
under kernels of epimorphisms and W⊥W then resĜ(W) = resW (see [9, (3.6)]).
The equivalence of (1), (2′) and (3′) of the following result was proved in [9, (5.6)] by
using [9, (5.2)]. However, we see that [9, (5.2)] is in the special case when X = G(W).
Now we can prove it using Theorem 3.5.

C 3.6. Assume thatX is exact and closed under kernels of epimorphisms, and
thatW is both an injective cogenerator and a projective generator for X and closed
under direct summands. Let M ∈ resX̂ with X-pd(M) = d <∞. Then the following
statements are equivalent:

(1) M ∈ resŴ;

(2) The transformation ϑi
XWA

(−, M) : Exti
XA

(−, M) // Exti
WA

(−, M) is an

isomorphism on resX̂ for each i ∈ Z;

(2′) The transformation ϑi
XWA

(M, −) : Exti
XA

(M, −) // Exti
WA

(M, −) is an iso-

morphism for each i ∈ Z;

(3) The transformation ϑi
XWA

(−, M) : Exti
XA

(−, M) // Exti
WA

(−, M) is an

isomorphism on resX̂ for each 1 ≤ i ≤ 2;
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(3′) The transformation ϑi
XWA

(M, −) : Exti
XA

(M, −) // Exti
WA

(M, −) is an iso-

morphism either for two successive values of i with 1 ≤ i < d or for a single
value of i with i ≥ d;

P. (1)⇔ (2′)⇔ (3′) can be proved as in the proof of [9, (5.6)] using Theorem 3.5.
(1)⇒ (2) follows from [8, (4.10)] since resX̂ ⊆ resW̃ ∩ resX̃ by Lemma 2.6.
(2)⇒ (3) is trivial.
(3)⇒ (1). Let N ∈ resX̂, and let X-pd(N) = t <∞. If t = 0, then N ∈ X, and so

Ext1
XA

(N, M) = 0. Thus

Ext1
WA

(N, M) � Ext1XA(N, M) = 0.

This implies that Êxt
1
WA(N, M) = 0 by [9, (4.10)]. Let t = 1. Since ϑ1

XWA
(N, M) is an

isomorphism, we get Êxt
1
WA(N, M) = 0 by [9, (4.10)]. Let t ≥ 2. Since ϑ1

XWA
(N, M)

and ϑ2
XWA

(N, M) are isomorphisms, we get that Êxt
1
WA(N, M) = 0 by [9, (4.10)].

Therefore, Êxt
1
WA(−, M) = 0 on resX̂, and so M ∈ resŴ by Theorem 3.5. �

The proofs of the next two results are dual to the previous two.

T 3.7. Assume that Y is exact and closed under cokernels of monomorphisms,
and that V is both an injective cogenerator and a projective generator for Y and
closed under direct summands. Let N ∈ coresŶ. Then the following statements are
equivalent:

(1) N ∈ coresV̂;
(2) Êxt

n
AV(N, −) = 0 on coresŶ for each n ∈ Z;

(2′) Êxt
n
AV(−, N) = 0 for each n ∈ Z;

(3) Êxt
n
AV(N, −) = 0 on coresŶ for some n ∈ Z;

(3′) Êxt
n
AV(−, N) = 0 for some n ∈ Z;

(4) Êxt
0
AV(N, N) = 0.

C 3.8. Assume that Y is exact and closed under cokernels of monomor-
phisms, and that V is both an injective cogenerator and a projective generator for
Y and closed under direct summands. Let N ∈ coresŶ with Y-id(N) = d <∞. Then
the following statements are equivalent.

(1) N ∈ coresV̂.

(2) The transformation ϑi
AVY

(N, −) : Exti
AY

(N, −) // Exti
AV

(N, −) is an isomor-

phism on coresŶ for each i ∈ Z.

(2′) The transformation ϑi
AVY

(−, N) : Exti
AY

(−, N) // Exti
AV

(−, N) is an isomor-

phism for each i ∈ Z.

(3) The transformation ϑi
AVY

(N, −) : Exti
AY

(N, −) // Exti
AV

(N, −) is an isomor-

phism on coresŶ for each 1 ≤ i ≤ 2.
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(3′) The transformation ϑi
AVY

(−, N) : Exti
AY

(−, N) // Exti
AV

(−, N) is an isomor-

phism either for two successive values of i with 1 ≤ i < d or for a single value of
i with i ≥ d.

The next theorem is the main result of this paper, which was proved by Sather-
Wagastaff et al. in the special case when X = G(W), Y = G(V) and n ≥ 1 (see [9,
(6.1)]).

T 3.9. Assume that X and Y are exact, and X is closed under kernels of
epimorphisms and Y is closed under cokernels of monomorphisms. Assume that
W is both an injective cogenerator and a projective generator for X and V is
both an injective cogenerator and a projective generator for Y. Assume also that
W and V are closed under direct summands and satisfy W⊥Y, X ⊥V and
Ext≥1

WA
(resŴ,V) = 0 = Ext≥1

AV
(W, coresV̂). Then, for all M ∈ resX̂ and N ∈ coresŶ,

and all n ∈ Z,
Êxt

n
WA(M, N) � Êxt

n
AV(M, N).

P. We first prove the case when n ≥ 1 using a method similar to that of [9, (6.1)].
We give the proof here for the sake of completeness.

Note that M ∈ resX̂, so there is a Tate W-resolution T
α // W // M of M such

that each Coker(δT
i ) is in X and each αi is a split surjection for i ∈ Z by [9, (3.4)]. Thus

there exists a degree-wise split exact sequence

0 // Σ−1X // T̃ // W // 0

of complexes by [9, (3.10)], where T̃ = T⊃−1 is exact with T̃−1 ∈ X, and X is a bounded
strictWX-resolution of M. Then, for n ≥ 1,

Êxt
n
WA(M, N) = H−n(HomA(T, N)) = H−n(HomA(T̃ , N)).

Similarly, let N // V
β // S be a Tate V-resolution of N such that each Ker(δS

i )
is in Y and each βi is a split injection for i ∈ Z. Then there exists a degree-wise split
exact sequence

0 // V // S̃ // ΣY // 0

of complexes by [9, (3.11)], where S̃ = S ⊂1 is exact with S̃ 1 ∈ Y, and Y is a bounded
strict YV-coresolution of N. Thus, for n ≥ 1,

Êxt
n
AV(M, N) = H−n(HomA(M, S )) = H−n(HomA(M, S̃ )).

In the following, we show that Hi(HomA(T̃ , N)) � Hi(HomA(M, S̃ )) for any i ∈ Z.
Note that S̃ is an exact bounded above complex of objects in Y, so HomA(Wi, S̃ )

is exact for each i sinceW⊥Y, and hence HomA(W, S̃ ) is exact by [2, (2.4)]. Now
consider the exact sequence

0 // HomA(W, S̃ ) // HomA(T̃ , S̃ ) // HomA(Σ−1X, S̃ ) // 0,
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then we get that HomA(T̃ , S̃ ) // HomA(Σ−1X, S̃ ) is a quasiisomorphism. On the
other hand, notice that X is a bounded strict WX-resolution of M, so X is a proper
X-resolution of M. Thus the morphism

HomA(M, S̃ ) // HomA(X, S̃ )

is a quasiisomorphism by [8, (6.6)]. Therefore, for any i ∈ Z,

Hi(HomA(M, S̃ )) � Hi(HomA(X, S̃ ))

� Hi+1(HomA(Σ−1X, S̃ ))

� Hi+1(HomA(T̃ , S̃ )).

Similarly, we get that Hi(HomA(T̃ , N)) � Hi+1(HomA(T̃ , S̃ )) for any i ∈ Z. This
implies that Hi(HomA(T̃ , N)) � Hi(HomA(M, S̃ )) for any i ∈ Z. Thus, for n ≥ 1,

Êxt
n
WA(M, N) � Êxt

n
AV(M, N). (\)

Now let n = −d with d ≥ 0, and we will prove that Êxt
n
WA(M, N) � Êxt

n
AV(M, N).

Since M ∈ resX̂, there is an exact sequence

0 // M // W−1
// M−1

// 0 (¶)

with W−1 ∈ resŴ and M−1 ∈ X by [8, (3.3)]. Note thatW⊥X, thenW⊥ resX̂, and
so the sequence (¶) is HomA(W, −)-exact. SinceW is an injective cogenerator for X,
we get an exact sequence

0 // M−1
// W−2

// W−3
// · · · (¶¶)

with each Wi ∈W for i ≤ −2, such that M−i = Im( W−i
// W−i−1 ) ∈ X for i ≥ 2. Thus

the sequence (¶¶) is HomA(W, −)-exact. Notice that Êxt
j
WA(W−s, A) = 0 for any

object A ofA, any s ≥ 1 and any j ∈ Z by Lemma 3.1, and hence

Êxt
i
WA(M, A) � Êxt

i+k
WA(M−k, A) (§)

for any k ≥ 1 and i ∈ Z by [9, (4.7)].
On the other hand, by [8, (3.3)], there is an exact sequence

0 // N1
// V1

// N // 0 (†)

with V1 ∈ coresV̂ and N1 ∈ Y. Note that Y ⊥V, then coresŶ ⊥ V, and so the
sequence (†) is HomA(−,V)-exact. Since V is a projective generator for Y, we get
an exact sequence

· · · // V3
// V2

// N1
// 0 (‡)
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with each Vi ∈ V for i ≥ 2 such that Ni = Im( Vi+1
// Vi ) ∈ Y for i ≥ 2. Thus the

sequence (‡) is HomA(−,V)-exact. Notice that Êxt
j
AV(B, Vs) = 0 for any object B of

A, any s ≥ 1 and any j ∈ Z by Lemma 3.1, and therefore

Êxt
i
AV(B, N) � Êxt

i+k
AV(B, Nk) (§§)

for any k ≥ 1 and i ∈ Z by [9, (4.7)].
Now we get the following isomorphisms:

Êxt
−d
WA(M, N) � Êxt

1
WA(M−d−1, N)

� Êxt
1
AV(M−d−1, N)

� Êxt
d+2
AV(M−d−1, Nd+1)

� Êxt
d+2
WA(M−d−1, Nd+1)

� Êxt
1
WA(M, Nd+1)

� Êxt
1
AV(M, Nd+1)

� Êxt
−d
AV(M, N),

where the first and the fifth isomorphisms follow from (§), the third and the seventh
hold by (§§), and the remaining ones follow from (\) since d ≥ 0. Thus we get that
Êxt

n
WA(M, N) � Êxt

n
AV(M, N) for n ≤ 0.

Therefore, we have Êxt
n
WA(M, N) � Êxt

n
AV(M, N) for all M ∈ resX̂ and N ∈

coresŶ, and all n ∈ Z. �

C 3.10. Assume thatW⊥W,V⊥V,G(W) ⊥V andW⊥G(V). Assume
that W is closed under kernels of epimorphisms and direct summands and that V
is closed under cokernels of monomorphisms and direct summands. Assume also
that Ext≥1

WA
(resŴ,V) = 0 = Ext≥1

AV
(W, coresV̂). Then, for all M ∈ resĜ(W), all

N ∈ coresĜ(V) and all n ∈ Z,

Êxt
n
WA(M, N) � Êxt

n
AV(M, N).

P. Immediately by Theorem 3.9 and Remark 2.4. �

We write P and I for the subcategories of projective left R-modules and injective
left R-modules, respectively. One can check easily thatW = P andV = I satisfy the
hypotheses of Corollary 3.10, thus we have the next corollary that can be found in [3,
Theorem 5.4] and [4, Corollary 3.4].

C 3.11. Let M and N be left R-modules such that

G(P)-pdR(M) <∞ and G(I)-idR(N) <∞.
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Then, for each n ∈ Z,

Êxt
n
R(M, N) = Êxt

n
PM(M, N) � Êxt

n
MI(M, N).

Let R be a commutative ring. An R-module C is called semidualizing if C
admits a degree-wise finite projective resolution, Ext≥1

R (C,C) = 0 and the natural
homothety map R // HomR(C,C) is an isomorphism. Examples include the rank-
one free R-modules and a dualizing (canonical) R-module (when one exists). We
let PC (respectively, IC) denote the subcategory of R-modules C ⊗R P (respectively,
HomR(C, I)) with P (respectively, I) projective (respectively, injective). Modules in
PC and IC are called C-projective and C-injective, respectively. A complete PPC-
resolution is an exact and HomR(−, PC(R))-exact complex X of R-modules with Xi

projective for i ≥ 0 and X j C-projective for j < 0. An R-module M is GC-projective
if there exists a complete PPC-resolution X such that M � Ker(δX

−1). We let GPC(R)
denote the subcategory of GC-projective R-modules.

Let B and C be semidualizing R-modules such that B ∈ GPC(R). Set B† =

HomR(B,C), then B† is a semidualizing R-module. NowW = PB(R) andV = IB†(R)
satisfy the hypotheses of Corollary 3.10 by the proof of [9, (6.2)]. Thus we have the
next result that was proved by Sather-Wagstaff et al. for n ≥ 1 (see [9, Theorem D]).

C 3.12. Let R be a commutative ring, and let B and C be semidualizing R-
modules such that B ∈ GPC(R). Set B† = HomR(B,C). Let M and N be R-modules
such that

G(PB)-pdR(M) <∞ and G(IB†)-idR(N) <∞.

Then, for each n ∈ Z,

Êxt
n
PBM

(M, N) � Êxt
n
MIB†

(M, N).

In the following, we let X,Y,W and V denote subcategories ofM (the category
of left R-modules).

Assume that X is closed under extensions, andW is both an injective cogenerator
and a projective generator for X. Let M ∈ resX̂. Then M has a proper X-resolution

X
' // M and a properW-resolution W

' // M by Lemma 2.6. Set idM : W // X a
lifting of the identity idM : M // M . Then we have the following result that provides
a new method to compute Tate cohomology.

P 3.13. Assume that X is exact and closed under kernels of epimorphisms,
andW is both an injective cogenerator and a projective generator for X and closed
under direct summands. Let M ∈ resX̂. Then

Êxt
n
WM(M, N) � H−n−1(HomR(Cone(idM), N))

for any left R-module N and any n ≥ 1.
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P. By [9, (3.4)], there is a Tate W-resolution T
α // W

η // M of M such that
Coker(δT

1 ) ∈ X and αn are split surjections for all n ∈ Z. Using [9, (3.10)] we get a
degree-wise split exact sequence

0 // Σ−1X
λ // T̃

α // W // 0 (‖)

of complexes with T̃ exact, where X
' // M is a bounded strictWX-resolution of M

and W
' // M is a properW-resolution of M. Since X ⊥W, we get that X

' // M
is a proper X-resolution of M. By the proof of [9, (3.10)], we can rewrite the sequence
(‖) as follows.

0

��

0

��

0

��

0

��

0

��
Σ−1X ≡ · · ·

λ
��

// Ker(α1)

��

// Ker(α0)

��

// Coker(δT
1 )

=
��

// 0

��

// · · ·

T̃ ≡ · · ·
α

��

// T1

α1

��

δT
1 // T0

α0

��

π // Coker(δT
1 )

��

// 0

��

// · · ·

W ≡ · · ·

��

// W1

��

δW
1 // W0

��

// 0

��

// 0

��

// · · ·

0 0 0 0 0

Since the sequence (‖) is degree-wise split, there is α′i : Wi
// Ti for i ≥ 0 such that

αiα
′
i = idWi . Thus we get the following commutative diagram

W+ ≡ · · ·

τ+

��

// W2

τ2

��

// W1

τ1

��

// W0

τ0
��

η // M

idM

��

// 0

X+ ≡ · · · // Ker(α1) // Ker(α0) // Coker(δT
1 )

f // M // 0

with the first row an augmented proper W-resolution of M and the second row an
augmented proper X-resolution of M, where τ0 = πα′0 and τi = (−1)i(δT

i α
′
i − α

′
i−1δ

W
i )

for i ≥ 1, and f (x + ImδT
1 ) = ηα0(x) for any x ∈ T0. Now one can check that T̃ �

Σ−1Cone(τ). Thus, for n ≥ 1,

Êxt
n
WM(M, N) = H−n(HomR(T, N))

� H−n(HomR(T̃ , N))

� H−n(HomR(Σ−1Cone(τ), N))

� H−n−1(HomR(Cone(τ), N))

� H−n−1(HomR(Cone(idM), N)),
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where the second isomorphism holds since T̃ = T⊃−1, and the last isomorphism follows
from the fact that Cone(idM) and Cone(τ) are homotopy equivalent [6, page 392]. �

The next result is proved dually by noting that if Y is closed under extensions and
V is both an injective cogenerator and a projective generator for Y, then coresŶ ⊆
coresṼ ∩ coresỸ by Lemma 2.6.

P 3.14. Assume that Y is exact and closed under cokernels of
monomorphisms, and V is both an injective cogenerator and a projective generator

for Y and closed under direct summands. Let N ∈ coresŶ, and let N
' // Y be a

proper Y-coresolution and N
' // V a proper V-coresolution of N, and let idN :

Y // V be a lifting of the identity idN : N // N . Then

Êxt
n
MV(M, N) � H−n(HomR(M, Cone(idN)))

for any left R-module M and any n ≥ 1.

The next corollary is immediate by Theorem 3.9 and Propositions 3.13 and 3.14.

C 3.15. Assume that X and Y are exact, X is closed under kernels of
epimorphisms and Y is closed under cokernels of monomorphisms. Assume that
W is both an injective cogenerator and a projective generator for X, and V is
both an injective cogenerator and a projective generator for Y. Assume also that
W and V are closed under direct summands and satisfy W⊥Y, X ⊥V and
Ext≥1

WA
(resŴ,V) = 0 = Ext≥1

AV
(W, coresV̂). Then, for all M ∈ resX̂ and N ∈ coresŶ,

and all n ≥ 1,

Êxt
n
WA(M, N) � Êxt

n
AV(M, N)

� H−n−1(HomR(Cone(idM), N))

� H−n(HomR(M, Cone(idN))).

Let R be a commutative ring, and let B and C be semidualizing R-modules such
that B ∈ GPC(R). Set B† = HomR(B,C). Let M and N be R-modules such that
G(PB)-pdR(M) <∞ and G(IB†)-idR(N) <∞. Then M has a proper G(PB)-resolution

X
' // M and a proper PB-resolution W

' // M by Lemma 2.6. Set idM : W // X
a lifting of the identity idM : M // M . Dually, one can construct idN . Then we have
the next result by Corollary 3.15.

C 3.16. Let R be a commutative ring, and let B and C be semidualizing R-
modules such that B ∈ GPC(R). Set B† = HomR(B,C). Let M and N be R-modules
such that

G(PB)-pdR(M) <∞ and G(IB†)-idR(N) <∞.
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Then, for each n ≥ 1,

Êxt
n
PBM

(M, N) � Êxt
n
MIB†

(M, N)

� H−n−1(HomR(Cone(idM), N))

� H−n(HomR(M, Cone(idN))).
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