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Heights and quantitative arithmetic on
stacky curves
Brett Nasserden and Stanley Yao Xiao
Abstract. In this paper, we investigate the theory of heights in a family of stacky curves following
recent work of Ellenberg, Satriano, and Zureick-Brown. We first give an elementary construction of
a height which is seen to be dual to theirs. We count rational points having bounded ESZ-B height on
a particular stacky curve, answering a question of Ellenberg, Satriano, and Zureick-Brown. We also
show that when the Euler characteristic of stacky curves is non-positive, the ESZ-B height coming
from the anti-canonical divisor class fails to have the Northcott property. We prove that a stacky
version of a conjecture of Vojta is equivalent to the abc-conjecture.

1 Introduction

Two of the outstanding conjectures in number theory are the so-called Batyrev–
Manin conjecture [9] for the density of rational points on open subschemes of Fano
varieties with respect to a Weil height, and Malle’s conjecture [14] on the number of
number fields having bounded discriminant, fixed degree, and fixed Galois group.
Both conjectures assert, roughly, that the number of objects to be counted with an
appropriate height at most X satisfy an asymptotic formula of the form

C ⋅ Xα(log X)β ,

where C , α, β are nonnegative numbers with C , α > 0, and that C , α, β can be
computed explicitly within their respective geometric and arithmetic frameworks.

In a recent article, J. Ellenberg, M. Satriano, and D. Zureick-Brown extend
the theory of heights to algebraic stacks. They formulate bold conjectures that encom-
passes both the Batyrev–Manin and Malle conjectures as special cases [6, Main
Conjecture]. While the Manin and Malle conjectures are well studied, comparatively
little is known about the behavior of rational points on algebraic stacks.

In this article, we study heights on stacky curves, analogues of smooth projective
algebraic curves defined over Q. The height functions we develop on stacky curves are
completely explicit and can be understood in an elementary manner. Further, we will
see that natural questions involving stacky curves lead to an equivalent formulation
of the abc-conjecture.

The Stacky Batyrev–Manin-Malle Conjecture is still open for smooth one-
dimensional algebraic stacks. In this article, we focus on stacky curves whose coarse
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2 B. Nasserden and S. Y. Xiao

moduli space is P1. A key example is P1 endowed with three stacky points of degree
1
2 and the height given by the anti-canonical bundle. This algebraic stack may be
thought of as the usual projective line, except the points 0, 1,∞ have been replaced
with “stacky” points that have degree 1

2 rather the 1. Alternatively, one may consider
the M-curve as described by Darmon, here the points 0, 1,∞ have multiplicity 2. The
key observation is that a point of multiplicity m has degree 1

m .
In the case of P1 with three half points, rational points on this stack can be thought

of as rational points on P1. The anti-canonical height function can now be explicitly
written after normalization as

H(a ∶ b) = sqf(∣a∣) sqf(∣b∣) sqf(∣a + b∣)max{∣a, ∣b∣}.(1.1)

Put N(T) = {(a ∶ b) ∈ P1(Q)∶H(a ∶ b) ≤ T}. Then we have the following theorem.

Theorem 1.1 There are positive numbers c1 , c2 , c3 such that

c1T
1
2 log(T)3 < N(T) < c2T

1
2 log(T)3

for all T > c3.

The above estimate proves the stacky Batyrev–Manin conjecture for the anti-
canonical height on P1 with three half points.

We note that P. Le Boudec has independently proved this statement in a private
communication.

Let X be a proper smooth stacky curve defined over Q that has coarse space P1.
The rational points of this stack are the rational points of P1. As in the classical case,
there is a canonical line bundle KX onX. The theory described in [6] provides a height
function for every line bundle on X. Therefore, as in the case of algebraic curves, we
may consider the anti-canonical height H−KX

. This anti-canonical height is analogous
to the anti-canonical height on a Fano variety in the usual Batyrev–Manin conjecture.
A natural question is when does the anti-canonical height of X satisfy the Northcott
property. It turns out that the stacky Euler characteristic answers this question. The
Euler characteristic of X is defined as

χ(X) = deg(−KX).(1.2)

If X is P1 with stacky points p1 , ..., pn with deg p i = 1
m i

, then one has the formula

χ(X) = 2 −
n
∑
i=1
(1 − 1

m i
) .(1.3)

The ESZ-B height associated with −KX is then given by the explicit formula

H−KX
(x , y) = max{∣x∣, ∣y∣}χ(X)

r
∏
i=1

ϕm i (�i(x , y))
1

mi .(1.4)

The functions ϕm i (�i(x , y)) are generalizations of the functions sqf(∣x∣), sqf(∣y∣),
and sqf(∣x + y∣) that appear in equation (1.1) (see Section 3 for the precise definitions
of the functions �i and ϕm i ). We obtain a similar explicit description for any line
bundle on X in terms of the functions ϕm i and �i in Theorem 3.16. For the anti-
canonical height, we obtain the following.
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Heights and quantitative arithmetic on stacky curves 3

Theorem 1.2 Let X be a proper smooth stacky curve defined over Q that has coarse
space P1 or is isomorphic to a smooth projective curve. Then the anti-canonical height
H−KX

has the Northcott property if and only if χ(X) > 0.

The above result tells us that the ESZ-B heights when applied to the tangent bundle
recovers the behavior of the Weil heights when applied to the tangent bundle, provid-
ing additional evidence that the ESZ-B theory of heights is the correct generalization of
the classical theory. In particular, Theorem 1.2 demonstrates that the stacky Batyrev–
Manin conjecture of [6] is a direct generalization of the classical Batyrev–Manin
conjecture for Fano varieties.

Ellenberg, Satriano, and Zureick-Brown have proposed a generalized Vojta’s
conjecture applicable to the case of algebraic stacks [6, Conjecture 4.23]. In the case
of stacky curves, the stacky Vojta conjecture is directly related to when does H−KX

to
have the Northcott property.

In [6, Section 4.7], it is speculated that [6, Conjecture 4.23] for stacky curves should
follow from some version of the abc-conjecture. In the case of algebraic curves, Vojta’s
conjecture is known to be equivalent to the abc-conjecture. We show that, much like
the case of algebraic curves, the stacky analogue of Vojta’s conjecture in the curve case
is equivalent to the abc-conjecture. We formulate this as follows:

Theorem 1.3 Let X be a proper smooth stacky curve defined over Q that has coarse
space P1 or is isomorphic to a smooth projective curve. Further, suppose that X has
negative Euler characteristic. Then the following statements are equivalent:

(1) The abc-conjecture holds; and
(2) For all X satisfying the hypotheses of the theorem and for all δ > 0, the function

H−KX
⋅ Hδ has Northcott’s property, where H([x , y]) = max{∣x∣, ∣y∣} is the usual

height function on P1(Q).

Theorem 1.3 shows that Conjecture 4.23 in [6] is equivalent to the abc-conjecture,
answering a question of Ellenberg, Satriano, and Zureick-Brown. Their conjectures
are motivated by the work of P. Vojita, see [21]

In [6], the authors wonder if the stacky Vojta conjecture might be more “in reach”
for algebraic stacks obtained by rooting along a divisor D on a scheme X. The proof of
Theorem 1.3 shows that if there is some m ≥ 4 such that item (2) in Theorem 1.3 holds
for Xm = X(P1 ∶ ((0, 1,∞) ∶ (m, m, m)), then a weak variant of the abc-conjecture
can be derived. Specifically, there exists a positive number cm ≥ 1 such that for any
co-prime a, b, c ∈ Z with a + b = c and ε > 0 that

max{∣a∣, ∣b∣, ∣c∣} ≪ε ,m rad(abc)cm+ε .

In particular, any progress on the stacky Vojta conjecture for curves would lead to
substantial progress on the abc-conjecture.

2 A further elaboration of our ideas

In this section, we motivate and describe our main results in more detail, as well as
describe our grounds-up height construction.

https://doi.org/10.4153/S0008414X24000075 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000075


4 B. Nasserden and S. Y. Xiao

2.1 An elementary height machine on stacky curves

We define our algebraic stacks in terms of a base variety along with some extra data
which are enough to uniquely construct an algebraic stack. A stacky curve defined
over a number field K is determined by the following data: A smooth variety X defined
over K, and a finite number of stacky points P1 , . . . , Pr along with integer multiplicities
mPi = m i > 1 attached to each point Pi . We use the notation

X = (X ∶ (P1 , m1), . . . , (Pr , mr))

to denote the stacky curve with multiplicities mPi = m i at the points Pi . We will write
X(X ∶ (a, m)) as an abbreviation. We identify the rational points of the stack X with
those of the coarse space, which is just the variety X. That is, we require

X(K) = X(K).(2.1)

In [6], some care is taken to work with the locus of stacky points on an algebraic
stack. In particular, one must contend with the accumulation of infinitely new stacky
points. We ignore such difficulties since they are not important in our context.

To obtain an E-S-ZB height on a stacky curve X(X ∶ (a, m)), we must choose a
vector bundle on X(X ∶ (a, m)). We will be primarily interested in the stacky curves
X(P1

Q ∶ (a1 , m1), . . . , (ar , mr)) and the vector bundle being a line bundle. Unless
otherwise mentioned, stacky curve X will now be of this form. Associated with each
stacky point, a i is a line bundle La i and it suffices to consider line bundles of the form

L = L ⊗
s
∏
i=1

L⊗c i
a i

,

where L is a divisor on P1 and 0 ≤ c i ≤ m i − 1. To associate a height on such a divisor,
we associate a height to each L⊗c i

a i
and extend linearly. Motivated by [6], we develop

the following construction. For each stacky point a i = [α i ∶ β i] with α i , β i coprime
integers, we associate to it the linear form �i(x , y) = α i y − β i x. For each m i , define
ϕm i (n) is defined to be the smallest positive integer such that nϕm i (n) is a perfect
m i -th power. The height function associated with L⊗c i

a i
is then

H
L
⊗ci
ai
(x , y) = ϕm i (�i(x , y)c i )

1
mi .

The linear form �i takes into account the point a i and ϕm i accounts for the multiplicity
of a i , while the power c i accounts for the multiple of La i . The introduction of the
functions ϕm i is due to [6] and working with these functions is a key feature of
stacky curves with coarse space P1. We define a height function for any divisor L =
L ⊗∏s

i=1 L
⊗c i
a i

on X as

HL(x , y) = max{∣x∣, ∣y∣}deg L ⋅
r
∏
i=1

ϕm i (�(x , y)c i )
1

mi(2.2)

whenever x , y are coprime integers. The Euler characteristic of the stacky curve is
defined to be the degree of the anti-canonical divisor. If we wish to emphasize in
our situation that χ(X) only depends on the vector of multiplicities m and that the
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anti-canonical height only depends on (a, m), we write

2 −
n
∑
i=1
(1 − 1

m i
) = χ(X(P1

Q , (a1 , m1), . . . , (ar , mr))) = δ(m)(2.3)

and

max{∣x∣, ∣y∣}δ(m)
r
∏
i=1

ϕm i (�i(x , y))
1

mi = H−KX
([x ∶ y]) =H(a,m)(x , y).(2.4)

2.2 Properties of the anti-canonical E-S-ZB height H−KX

The Northcott property of the naive height onP1 implies that the ESZ-B anti-canonical
height H−KX

has the Northcott property whenever χ(X) = δ(m) > 0. On the other
hand, if χ(X) ≤ 0, then it is not at all obvious whether H−KX

should have the
Northcott property. The following question is fundamental: Let L be a line bundle on
X(X ∶ (a, m)) and let HL be the associated ESZ-B height. When does HL have the
Northcott property? We will tackle this question when L = −KX and X = P1 leaving
the general case for future study.

Theorem 2.1 Let {a1 , . . . , an} ⊂ P1
Q and m = (m1 , . . . , mn) be a vector of multiplici-

ties. Then whenever

χ(X(P1 ∶ (a, m)) ≤ 0,

the anti-canonical height H−KX
given by (2.2) on the curve X(P1 ∶

(a1 , m1), . . . , (an , mn)) fails to have the Northcott property.

If we assume that the ESZ-B theory should behave roughly like its classical
counterpart, we can argue the converse: When χ(X) ≤ 0, one should have that H−KX

should fail to have the Northcott property. In particular, Theorem 2.1 shows that our
arithmetic and geometric intuition prove to be correct when X has coarse space P1.
This answers a question posed by Ellenberg.

The proof of Theorem 2.1 uses the following theorem about elliptic curves.

Theorem 2.2 Let F ∈ Z[x , y] be a non-singular binary quartic form. Then there exists
square-free d ∈ Z such that the curve

dz2 = F(u, v)

has a rational point and such that its Jacobian has positive rank as an elliptic curve
defined over Q.

The proof of Theorem 2.2 is provided to us by Shnidman in [15], and we graciously
acknowledge his assistance.

Combining these results gives the following uniform statement.

Corollary 2.3 Let X be a smooth proper stacky curve defined over Q such that X has
coarse space P1

Q or X is a projective algebraic curve. Let HX be the height associated
with the anti-canonical divisor −KX. Then χ(X) > 0 if and only if HX has the strong
Northcott property.

https://doi.org/10.4153/S0008414X24000075 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000075


6 B. Nasserden and S. Y. Xiao

Proof If X is an algebraic stack and not an algebraic curve, then it is of the form
X = X(P1

Q; (a, m)) and (2.1) gives the desired result. On the other hand, if X is a
smooth projective and geometrically integral curve, then χ(X) ≤ 0 implies that −HC
does not have the Northcott property. ∎

In cases where we can prove that the Northcott property fails, we expect, accord-
ing to [6], that there should be a stacky Vojta conjecture. In particular, we would
like to know whether the anti-canonical height H(a,m) can be modified to recover
the Northcott property. Difficulties arise because the ESZ-B height machine is not
functorial in the usual sense; in the setting of algebraic varieties, one can work with
a linear spaces of divisors and then apply the height machine which by functoriality
will respect the linear structure. Such methods are not immediately available to us.
Instead, we will apply the height machine, and then apply linear operations. We ask
that for X = X(P1 ∶ (a, m)) with χ(X) ≤ 0, what can be said about the quantity

inf{t ∈ R≥0∶H t
P1 H−KX

has the Northcott property}.

Clearly, if we change the exponent in the classical part of the height so that it is positive,
then we will recover the Northcott property. In fact, we expect that something far less
drastic suffices.

For a real number δ and the curve X(P1 ∶ (a, m)), define the height

Hδ
(a,m)(x , y) =

n
∏
i=1

ϕm i (�i(x , y))1/m i max{∣x∣, ∣y∣}δ .(2.5)

We then see that H(a,m) =H
χ(X)
(a,m). Next, put

γ(X) = inf{δ ∈ R ∶Hδ
(a,m) has the Northcott property on X}.(2.6)

In fact, γ(X) depends only on m, so we may also write it as γ(m). We make the
following conjecture.

Conjecture 2.4 (Northcott conjecture for stacky curves with coarse space P1) For all
X = X(P1 ∶ (a, m)), we have γ(X) = min{χ(X), 0}.

Conjecture 2.4 is in fact a version of Vojta’s conjecture for stacky curves, and
agrees with a conjecture of Ellenberg, Satriano, and Zureick-Brown in [6]. Toward
this conjecture, we have the following.

Theorem 2.5 We have γ(X) = 0 if χ(X) ≥ 0. Moreover, the height H0
(a,m) has the

Northcott property if and only if χ(X) < 0.

Combined with Theorem 2.1, the conjecture predicts that the set of δ ∈ R such that
Hδ

a,m has the Northcott property is an interval of the form (χ(X),∞)when χ(X) < 0
and (0,∞) when χ(X) ≥ 0. Therefore, while Theorem 2.1 tells us we cannot count
points with Ha,m, Conjecture 2.4 predicts that we can count points using Hχ(X)+ε

a,m for
any ε > 0.

Next, we prove that Conjecture 2.4 is a consequence of the abc-conjecture.
However, it seems that we are very far from being able to prove such a result as strong
as Conjecture 2.4 unconditionally.
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Theorem 2.6 Suppose that the abc-conjecture holds. Then, for any δ > δ(m), the
function Hδ

(a,m)(x , y) on X(P1 ∶ (a, m)) has Northcott’s property.

In fact, Conjecture 2.4 is equivalent to the abc-conjecture (see Theorem 1.3). The
proof of the converse is quite different and so we give it in a separate subsection.

2.3 Quantitative arithmetic on stacky curves

In the positive Euler characteristic case, we consider a particular family of stacky
curves, which includes an important example suggested by J. Ellenberg1 and show that
our theory of heights matches [6] in this instance. Finally, we verify a specific instance
of the main conjecture in [6] given by Ellenberg, Satriano, and Zureick-Brown2 using
analytical methods. We remark that P. Le Boudec had obtained the same result as us
in independent work (private communication).

We study the expression (2.3) a bit more carefully. It is easy to deduce that δ(m) ≥ 0
if and only if n ≤ 4, and δ(m) > 0 only if n ≤ 3. We will not consider the case n ≤ 2 in
this paper.

If we assume m1 ≤ m2 ≤ m3, then the only cases when we have positive Euler
characteristic are when m1 = m2 = 2, m1 = 2, m2 = m3 = 3 or m1 = 2, m2 = 3, m3 = 4.
In each of these three cases, the Northcott property for H(a,m) holds trivially.

We now focus on the simplest cases, where m1 = m2 = 2 and m3 = m, m ≥ 2. Using
that PGL2 acts 3-transitively on P1, we reduce to the case {a1 , a2 , a3} = {0,−1,∞}.
For [x , y] ∈ P1, we may then set

x = x1x2
2 , y = y1 y2

2

with x1 , y1 square-free, and

x + y = z1z2
2 ⋅ ⋅ ⋅ zm−1

m−1zm
m ,

with z1 , . . . , zm−1 square-free. In this notation, the E-S-ZB height is given by

Hm(x , y) = ∣x1∣1/2∣y1∣1/2∣zm−1
1 ⋅ ⋅ ⋅ zm−1∣1/m max{∣x1x2

2 ∣, ∣y1 y2
2 ∣}1/m .(2.7)

We normalize the height so that the exponent of the “classical part” is equal to one, to
obtain the normalized height

Hm(x , y) = ∣x1∣m/2∣y1∣m/2∣zm−1
1 ⋅ ⋅ ⋅ zm−1∣max{∣x1x2

2 ∣, ∣y1 y2
2 ∣}.(2.8)

We now put

Nm(T) = #{(x1 , x2), (y1 , y2), (z1 , . . . , zm) ∶ gcd(x1 y1 , x2 y2)
= 1, x1 , y1 , z1 , . . . , zm−1 square-free and pairwise co-prime,(2.9)

x1x2
2 + y1 y2

2 = z1z2
2 ⋅ ⋅ ⋅ zm−1

m−1zm
m , ∣x1∣m/2∣y1∣m/2∣zm−1

1 ⋅ ⋅ ⋅ zm−1∣max{∣x1x2
2 ∣, ∣y1 y2

2 ∣} ≤ T}.

We prove the following theorem, which gives a crude upper bound for Nm(T).

1“What’s up in arithmetic statistics?” Number Theory Web Seminar, July 23, 2020.
2“What’s up in arithmetic statistics?” Number Theory Web Seminar, July 23, 2020.
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8 B. Nasserden and S. Y. Xiao

Theorem 2.7 Let X = X(P1 ∶ (0, 2), (∞, 2), (−1, m)), and let Hm be the height
function on X defined by (2.8). Then, for any ε > 0, we have

T 1/m ≪ Nm(T) ≪ε T2/m+ε .

When m = 2, the upper bound of Theorem 2.7 is essentially the trivial bound, but
it is nontrivial as soon as m > 2. In general, we expect the exponent in Theorem 2.7 to
be equal to the lower bound. Indeed, this can be verified when m = 2. Even more, we
can give an exact order of magnitude for N2(T)
Theorem 2.8 There exist positive numbers c1 , c2 , c3 such that

c1T 1/2(log T)3 < N2(T) < c2T 1/2(log T)3

for all T > c3.

In particular, we confirm the stacky Batyrev–Manin conjecture [6, Main Con-
jecture] for X(P1

Q , (a, 2), (b, 2), (c, 2)). For this stacky curve, [6, Main Conjecture]
predicts that N2(T) = Oε (T 1/2+ε).3 Our theorem gives an exact order of magnitude
for N2(T). We remark, once again, that P. Le Boudec had obtained the same result.
Further, our counting arguments are similar to those obtained by Le Boudec in [13]
which studies the equation (7.4).

The other cases with positive Euler characteristic do not yield to the simple analytic
counting arguments used to prove Theorem 2.8, though in principle counting rational
points by height is a well-posed problem. We plan on returning to this issue in the
future.

We illustrate how the stacky curve height machine (equation (2.2)) allows one
to detect integral points on stacky curves. In this case, the standard height is given
by Hs(a, b) = max{∣a∣, ∣b∣} and the stacky height is given by (2.7). They are equal
precisely when

∣ sqf(a) sqf(b) sqf(a + b)∣ = 1,

or in the notation of (7.4), that ∣x1∣ = ∣x2∣ = ∣x3∣ = 1. (7.4) then turns into

±y2
1 ± y2

2 = ±y2
3 ,

and up to rearranging we are essentially counting points on the conic

y2
1 + y2

2 = y2
3 .(2.10)

Therefore, if we denote by N(T) the number of integral points (in the sense of
Definition 3.19) on P1

2,2,2, then:

Corollary 2.9 There exist positive numbers c1 , c2 , c3 such that for all T > c3 we have

c1T 1/2 < N(T) < c2T 1/2 .

The proof is elementary, since the curve can be explicitly parametrized by

y1 = u2 − v2 , y2 = 2uv , y3 = u2 + v2 .

3“What’s up in arithmetic statistics?” Number Theory Web Seminar, July 23, 2020.
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The condition max{∣y1∣, ∣y2} ≤ T 1/2 is subsumed by u2 + v2 ≤ 4T 1/2 say, so the
number of possible u, v’s is ≍ T 1/2 as desired.

Theorem 2.8 and Corollary 2.9 imply that asymptotically 0% of the rational
points on X(P1 ∶ (0, 2), , (−1, 2), (∞, 2))(Q) are integral, in the sense of Darmon
(Definition 3.19).

To close off this subsection, we note that in [2], Bhargava and Poonen study
situations where the rational and integral points of a stacky curve satisfy the Hasse
Principle. Motivated by this work, we prove that the integral points on X(P1 ∶
(a1 , 2), . . . , (an , 2)) satisfy Hasse’s principle.

Theorem 2.10 Let

X = X(P1
Q ∶ ([a1 ∶ −b1], 2), ([a2 ∶ −b2], 2), ([a3 ,−b3] ∶ 2)).

Then X has integral points if and only if the ternary quadratic form

Qa(u, v , w) = det
⎛
⎜
⎝

u2 v2 w2

a1 a2 a3
b1 b2 b3

⎞
⎟
⎠

defines a conic with a rational point.

Notation

We denote by dk(n) for the number of ways of writing n as a product of k (not
necessarily distinct) positive integers, and write d(n) = d2(n) for the usual divisor
function. We will also use the big-O notation as well as Landau’s notation. In particular,
we will denote in the subscripts any dependencies; if there are no subscripts, then the
implied constants are absolute.

3 (Stacky) Heights on stacky curves

In this section, we give an alternative construction of the height functions constructed
in [6] in a special case: We construct the ESZ-B heights associated with line bundles
on stacky curves with coarse space P1

Q. We use [20] as our main reference, though we
made substantial use of [16].

Definition 3.1 (Definition 5.2.1 in [20]) A stacky curve X over a field k of character-
istic 0 is a smooth proper geometrically connected Deligne–Mumford stack over k of
dimension 1 that contains an open dense subscheme.

A stacky curve can be thought of a smooth projective curve, along with a finite
choice of points with integer multiplicities.

Theorem 3.2 (Classification of nice stacky curves: Lemma 5.3.10 in [20]) Let X be a
stacky curve over k. Then the isomorphism class of X is determined by the coarse moduli
space X of X and the orders of the stabilizer groups of points of X.

Before continuing, let us fix some notation. We letX = (X ∶ (P1 , m1), . . . , (Pr , mr))
be the stacky curve with coarse space X and a μm i stabilizer at Pi . In light of
Theorem 3.2, this determines a unique stacky curve.
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3.1 Construction of heights

We will give an alternative construction of heights on a stacky curve associated
with line bundles. Our construction only depends on the coarse space, and the
multiplicities of points. The ideas exposited in this section can be viewed as a “bottom
up” construction, similar to the work of Geraschenko and Satriano in [10]. We then
show that our height construction corresponds to the heights associated with line
bundles in [6] when the coarse space is P1

Q. As in the classical setting, we will work
with height functions up to some bounded function. Line bundles on a stacky curve
can be described as follows.

Lemma 3.3 ([7, Section 1.3]) Let X = X(X ∶ (P1 , ⋅ ⋅ ⋅ , Pr), (m1 , ⋅ ⋅ ⋅ , mr)). Let OX(P)
be the line bundle associated with the divisor P on X. Then there are line bundles LPi on
X such that

L⊗m i
Pi

≅ π∗XOX(P),(3.1)

where πX∶X→ X is the coarse space map. Moreover, we have that any line bundle L on
X can be uniquely written as

L ≅ π∗XM ⊗
r
∏
i=1

L⊗d i
Pi

,(3.2)

where 0 ≤ d i < m i and M is a line bundle on X.

We will use the definition of the degree of a line bundle on a stacky curve.

Definition 3.4 Let X = X(X ∶ (P1 , . . . , Pr), (m1 , . . . , mr))) and L = π∗XD ⊗
∏r

i=1 L
⊗d i
Pi

. Then we define

deg
X
L = degX D +

r
∑
i=1

d i

m i
.

In [6], the height is broken down into two parts: a so-called stable part and a local
part. We now define the stable part in our setting.

Definition 3.5 Let X = X(X ∶ (P1 , . . . , Pr), (m1 , . . . , mr))), and let L be a line bun-
dle on X with

L ≅ π∗XM ⊗
r
∏
i=1

L⊗d i
Pi

,

where 0 ≤ d i < m i and M is a line bundle on X with πX being the coarse space map.
We define the stable height associated with L as

Hst
L = HM ⋅

r
∏
i=1

H
di
mi
Pi

.

Later in Proposition 4.3, we show that this definition matches the one given in [6].
The stable height should be thought of as the part of the height consisting of classical
height functions.

We will use the notions introduced in Section 3 to define our heights. We further
choose a finite set of primes S of OK containing all the primes of bad reduction and all
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infinite places of K. We further choose a smooth and proper model X of X over OK ,S .
Let P, Q be distinct points in X(K) and place ν a place in K with ν ∉ S. Take pν ⊂ OK
to be the prime ideal associated with ν.

Definition 3.6 (Darmon [4]) We define the intersection multiplicity of P and Q at ν
as follows:

(P ⋅ Q)ν ∶= max{m ∶ the images of P, Q in X(OK ,S/pm
ν ) are equal.},

where the maximum over the empty set is defined to be 0.

We now package all the intersection multiplicities together while taking into
account the arithmetic of the field extension K ∣ Q. We shall use the following notation
for the remainder of this section.

Notation 3.7 Fix a stacky curve X = (X ∶ (P1 , m1), . . . , (Pr , mr)) defined over a
number field K. Choose a finite set of primes S of OK containing all the primes of
bad reduction and all infinite places of K. We further choose a smooth and proper
model X of X over OK ,S . We define the following quantities.
(1) Given a prime pν ⊆ OK , we let fν = [OK/pν ∶Z/(pν ∩Z)].
(2) Fix P ∈ X(K),t ∈ X(K)/{P} and ν ∉ S, now put (t ⋅ P)p = ∑ν∉S ,ν∣p fν ⋅ (t ⋅ P)ν .
(3) We set

λS ,X ,ν(P, t) = λν(P, t) = N(pν)(t⋅P)ν

and

λS ,X(P, t) = λ(P, t) =∏
ν∉S

λν(P, t) =∏
p

p(t⋅P)p .

The integer λ(P, t) is an exponential version of the familiar looking intersection
product

∑
ν∉S
(t ⋅ P)ν log(p) = ∑

p

⎛
⎝ ∑

ν∉S ,ν∣p
fν ⋅ (t ⋅ P)ν log(p)

⎞
⎠
= ∑

p
(t ⋅ P)p log(p).

We will also require the following basic functions.

Definition 3.8 For each integer m ≥ 1, we let [0], . . . , [m − 1] be a set of representa-
tives of the equivalence classes of Z/mZ. Define

Nm ,can([r]) = r(3.3)

for 0 ≤ r < m and

Nm ,d([r]) = Nm ,can([−rd])(3.4)

for any d ∈ Z. With this notation, Nm ,− = Nm ,1.

These functions are used to make the following definition of the height function
associated with Ld i

Pi
.

Definition 3.9 The stacky height function associated with Ld i
Pi

is a function

H
L

di
Pi

∶X(K)/Pi → Z≥0
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12 B. Nasserden and S. Y. Xiao

defined by

H
L

di
Pi

(t) =
⎛
⎝∏p

pNmi ,di ((t⋅Pi)p)⎞
⎠

1
mi

,(3.5)

where Nm i ,d i ∶Z≥0 → Z≥0 is the function defined by equation (3.4).

Putting this all together, we obtain the following.

Definition 3.10 (Definition of heights) Let L be the line bundle L ≅ π∗XM ⊗
∏r

i=1 L
⊗d i
Pi

on X. The stacky height associated with L is defined to be

HL(t) = Hst
L ⋅

r
∏
i=1

H
X,L⊗di

Pi

.

Unwinding the definitions, we obtain

HL(t) = Hst
L ⋅

r
∏
i=1

H
X,L⊗di

Pi

(3.6)

= HM ⋅
r
∏
i=1

⎛
⎝

Hd i
Pi
⋅∏

p
pNmi ,di ((t⋅Pi)p)⎞

⎠

1
mi

(3.7)

= HM ⋅
r
∏
i=1

⎛
⎝

Hd i
Pi
⋅∏

p
p−d i(t⋅Pi)p mod m i

⎞
⎠

1
mi

.(3.8)

This decomposition allows us to define what we call the classical and stacky part of a
height function.

Definition 3.11 We call

Hst
L = HM ⋅

r
∏
i=1

H
di
mi
Pi

the classical part of the height HL and

HL,stacky =
r
∏
i=1

H
X,L⊗di

Pi

the stacky part of the height HL.

We will primarily work explicitly with stacky heights on P1, the formulas in that
case are as follows.

Corollary 3.12 Use the notation of Notation 3.7. The canonical height function may be
computed as

HKX
= Hdeg KX

P1

r
∏
i=1

⎛
⎝∏p

p(t⋅Pi)p mod m i
⎞
⎠

1
mi

.

https://doi.org/10.4153/S0008414X24000075 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000075


Heights and quantitative arithmetic on stacky curves 13

The anti-canonical height function may be computed as

H−KX
= H− deg KX

P1

r
∏
i=1

⎛
⎝∏p

p−(t⋅Pi)p mod m i
⎞
⎠

1
mi

.

Proof This follows directly from the definition, Corollary 4.4, and the fact that KX

corresponds to the line bundle

π∗XOP1(KP1) ⊗
r
∏
i=1

L⊗m i−1
Pi

. ∎

We now introduce two multiplicative functions ϕm and rm that depend on an
integer m ≥ 1. The functions ϕm and rm are dual to one another in a certain sense.
This duality is key to understanding the nonlinear aspects of heights on stacky curves.

Let x be a positive integer with prime factorization x = ∏p pordp(x). We will work
with the following functions.
(1) Using the division algorithm, we define integers qp,m(x), rp,m(x) by the equation

ordp(x) = qp,m(x)m + rp,m(x) where 0 ≤ rp,m(x) < m.
(2) qm(x) = ∏p pqp,m(x) and rm(x) = ∏p prm , p(x).
(3) Set ϕm(x) to be the least positive integer such that xϕm(x) is an mth power.
(4) We define the m-radical of x to be the product of all prime divisors of x whose

order is not a factor of m. In other words,

radm(x) = ∏
p s.t. ordp(x)≠0 mod m

p.

The rm is related to Nm ,can and ϕm is related to Nm ,− because of the following.

Proposition 3.13 Let x ∈ Z≥0. Then we have

rm(x) =∏
p

prp,m(x) =∏
p

pNm ,can(ordp(x)) ,

ϕm(x) = ∏
p s.t. ordp(x)≠0 mod m

pm−rp,m(x) = ∏
p∣radm(x)

pm−rp,m(x) =∏
p

pN−,m(ordp(x)) .

In particular, we have

HX,L−1
Pi
(t) = rm i (λ(Pi , t))

1
mi ,

H
X,P ,L⊗di

Pi

(t) = ϕm(λ(Pi , t)d i )
1

mi .

From the above formulas, we obtain the following.

Proposition 3.14 Fix and integer m > 1 and let x ∈ Z. Then:
(1) Both rm and ϕm are multiplicative functions.
(2) ϕm(x)rm(x) = radm(x)m .
(3) ϕm(x) = 1 ⇐⇒ rm(x) = 1.
(4) If m = 2, then rm(x) = ϕm(x).
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With these definitions in hand, we relate our height functions on the stacky curve
X to a function from the functions ϕmP(λ(P, t))

1
mP , and the classical Weil heights on

the coarse space X.

Corollary 3.15 Use the notation of Notation 3.7. Consider the line bundle

L ≅ π∗XM ⊗
r
∏
i=1

L⊗d i
Pi

with 0 ≤ d i ≤ m i − 1. Then

HL = HM ⋅
r
∏
i=1

H
di
mi
Pi
⋅

r
∏
i=1

ϕm i (λ(Pi , t)d i )
1

mi .(3.9)

In particular, when X = P1, we have

HKX
(t) = H−χ(X)

P1 (t) ⋅
r
∏
i=1

rm i (λ(Pi , t))
1

mi ,(3.10)

H−KX
(t) = H χ(X)

P1 (t) ⋅
r
∏
i=1

ϕm i (λ(Pi , t))
1

mi ,(3.11)

where χ(X) = −deg KX is the Euler characteristic of X.
One interesting feature of the heights given by (3.10) is that they differentiate

between rational and integral points on stacky curves. The connection to [6] and our
heights is the following, which is proved in 4.1.

Theorem 3.16 Fix a stacky curve X = (P1
Q ∶ (P1 , m1), . . . , (Pr , mr)). Choose S to be

the set of all finite primes of Z, and let P1
Z be the canonical model of P1

Q over Z. Let L be
a line bundle on X. Let HESZ-B

L be the height constructed in [6] associated with L. Then
there is some constant C > 0 with

C−1 ⋅ HESZ-B
L ≤ HL ≤ C ⋅ HESZ-B

L .(3.12)

That is to say, up to a constant, the stacky heights from Definition 3.10 agree with
the ESZ-B heights in [6] when the coarse space is P1

Q.
We now explain how the functions ϕm and rm can be used to understand the

difference between HL and HL⊗n .

Proposition 3.17 Let m ∈ Z≥1 and choose an integer d ≥ 0.

ϕm(x−d mod m) = rm(xd mod m).

Proof Since ϕm is multiplicative, it suffices to prove the statement for x = pa where p
is some prime. Note that ϕm((pa)n = pm−na mod m). Therefore, ϕm((pa)−d mod m) =
pm+d a mod m . On the other hand, rm((pa)d mod m = pd a mod m = pm+d a mod m as
needed. ∎

The theory of heights is different from the classical theory of heights, as HL−1 ≠
1

HL
+ O(1) and HL⊗n ≠ (HL)n + O(1). The functions ϕm and rm can be used to

compute these quantities.
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Theorem 3.18 (Duality theorem) Let X = X(X ∶ (P1 , m1), . . . , (Pr , mr)) be a stacky
curve, and let

L ≅ π∗XM ⊗
r
∏
i=1

L⊗d i
Pi

with 0 ≤ d i ≤ m i − 1. Fix an integer n ≠ 0 and write n i = nd i mod m i .

(1) Then we always have

HL⊗n = (Hst
L)n ⋅

r
∏
i=1

ϕm i (λ(Pi , t)n i )
1

mi

= (Hst
L)n ⋅

r
∏
i=1

ϕm i (λ(Pi , t)nd i mod m i )
1

mi .

(2) If n > 0, then

HL⊗−n = (Hst
L)−n ⋅

r
∏
i=1

rm i (λ(Pi , t)nd i mod m i )
1

mi .

In particular,

HL−1 = (Hst
L)−1 ⋅

r
∏
i=1

rm i (λ(Pi , t)d i )
1

mi .

Proof Write nd i = m i q i + r i with 0 ≤ r i < m i . Note that L⊗m i
Pi

= π∗XOX(Pi). So we
have that

L⊗n = π∗X(M⊗n) ⋅
r
∏
i=1

π∗X(OX(q i Pi)) ⋅
r
∏
i=1

L⊗r i
Pi

.(3.13)

Therefore, we have

Hst
L⊗n = Hn

m ⋅
r
∏
i=1

Hq i
Pi
⋅∏H

ri
mi
Pi

= Hn
m ⋅

r
∏
i=1

H
mi qi+ri

mi
Pi

= Hn
m ⋅

r
∏
i=1

H
ndi
mi

Pi
= (HM ⋅

r
∏
i=1

H
di
mi
Pi
)

n

= (Hst
L)n .

Now we have that

HL⊗n = Hst
L⊗n

r
∏
i=1

ϕm i (λ(Pi , t)r i )
1

mi

= Hst
L⊗n

r
∏
i=1

ϕm i (λ(Pi , t)nd i mod m i )
1

mi

by the definition of the r i . Now let n > 0. By Proposition 3.17, we have
ϕm(λ(Pi , t)−dn mod m) = rm(λ(Pi , t)nd i mod m i ) giving the desired conclusion of
(2). ∎
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3.2 Integral points on stacky curves

Here, we show that the height functions defined in Definition 3.10) can be used to
obtain information about integral points on X. Fix a stacky curve X = X(X ∶ (p, m)).

Let HX,Pi be the height function associated with the line bundle LPi and put
DX = ∏r

i=1 LPi . Recall that we have HX,Pi (t) = ϕm i (λ(Pi , t))1/m i . We will work with
the height

HDX
(t) =

r
∏
i=1

ϕm i (λ(Pi , t))1/m i .

This is the stacky part of the anti-canonical height. We will prove that the set of integral
points is contained in the set of points where HDX

(t) = 1. When we take K = Q, we see
that this condition is sufficient. In other words, the S-integral points are those where
the stacky part of the height is trivial. Following Darmon [4], we have the following
notion of integral points on an stacky curve.

Definition 3.19 (Darmon) Let X = (X ∶ (P1 , m1), . . . , (Pr , mr)) be a stacky curve
over a number field K, S a finite set of places of K containing all primes of bad
reduction. Let X be a smooth proper model for X overOK ,S . The (X , S)-integral points
of X (usually abbreviated to S-integral points of X) are the points t ∈ X(K) such that

(t ⋅ P)ν ≡ 0 mod mP(3.14)

for all P ∈ X(K) and ν ∉ S.

We shall prove the following theorem.

Theorem 3.20 LetX = (X ∶ (P1 , m1), . . . , (Pr , mr)) be a stacky curve over K satisfying
our assumptions and choose S and a model X as we have specified. Then we have the
following conclusions.
(1)

X(OK ,S ,X) ⊆
r
⋂
i=1

X(Pi ; K),

where X(Pi ; K) = {t ∈ X(K)∶HX,Pi (t) = 1}.
(2) If K = Q, then

X(OK ,S ,X) =
r
⋂
i=1

X(Pi ; K).

In particular, the set of S-integral points of X is precisely the set of points where
HX,Pi (t) = 1 for all i = 1, ..., r.

Fix a prime ν ∉ S and write (t ⋅ P)ν = meν ,P(t)
P ⋅ qν ,P(t) where eν ,P(t) ≥ 0 and

qν ,P(t) ≥ 0 is not divisible by mP . In other words, qν ,P(t) is the mP-free part of
(t ⋅ P)ν . Set N(pν) = p f (ν)

ν . Then

λν(P, t) = p f (ν)(t⋅P)ν
ν = pmeν ,P(t)

P ⋅qν ,P(t)⋅ f (ν)
ν(3.15)
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and

λ(Pi , t) =∏
ν∉S

p
m

eν ,Pi
(t)

Pi
⋅qν ,Pi (t)⋅ f (ν)

ν .(3.16)

Using the functions λ(P, t), we can find subsets of the rational points that contain all
integral points.

Proposition 3.21 Suppose that mP > 1. Define X(P; K) = {t ∈ X(K)∶HX,P(t) = 1}.
Then

X(OK ,S ,X) ⊆ X(P; K).

Proof Note that HX,P(t) = 1 is equivalent to ϕmP(λ(P, t)) = 1, which is then equiv-
alent to rmP(λ(P, t)) = 1. Suppose now that t is an S-integral point. Then (t ⋅ P)ν ≡ 0
mod mP ⇒ eν ,P(t) > 0 for all ν ∉ S. Thus,

λ(P, t) =∏
ν∉S

p
m

eν ,Pi
(t)

Pi
⋅qν ,Pi (t)⋅ f (ν)

ν =
⎛
⎝∏v∉S

p
m

eν ,Pi
(t)−1

Pi
⋅qν ,Pi (t)⋅ f (ν)

ν
⎞
⎠

mP

,

whence HX,P(t) = 1 as λ(P, t) is an mP-power. ∎
We see that each point P with multiplicity mP > 1 imposes a height dropping

condition on the set of integral points. Thus, to study integral points, it suffices to
study

X(OK ,S ,X) ⊆ ⋂
mP>1

X(P; K).

We obtain the following, that the stacky part of the anti-canonical height cuts out the
integral points.

Corollary 3.22 Let X = X(X ∶ (p, m)) be a stacky curve and DX = ∏r
i=1 LPi . Then

X(OK ,S) ⊆ {t ∈ X(K)∶HDX
(t) = 1}.

In other words, the integral points are precisely those points where the stacky part of the
anti-canonical height vanishes.

Example 3.23 Let X = C be an elliptic curve. Then HDX
= H−KX

. In other words,
the integral points of the stacky elliptic curve are precisely the points where the
anti-canonical height vanishes. Since ϕm(x) = 1 ⇐⇒ rm(x) = 1, we have that the
S-integral points of a stacky elliptic curve are also precisely the points where the stacky
canonical height vanishes. If X is a scheme and X is an elliptic curve, then this is
certainly true, as the canonical height is trivial and every rational point is integral,
and vice versa.

Proof of Theorem 3.20 We have already shown part (1) of Theorem 3.20 in
(3.21). We turn to part (2) and assume that K = Q. We know that ⋂mP>1 X(P;Q) ⊆
X(OQ,S ,X) by (3.21). We now show the reverse inclusion. Let t ∈ X(Q) with
HX,P(t) = 1 for all P with mP > 1. Since K = Q, we have that N(pν) = pν and f (ν) =
1 for all finite places ν. Fix P with mP > 1. Toward a contradiction suppose that
(t ⋅ P)ν0 ≠ 0 mod mP for some ν0 ∉ S. Then eν0 ,P(t) = 0. Notice that HX,P(t) = 1
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means that λ(P, t) is an mP-power. Since if ν ≠ ν′ we have that pν ≠ pν′ , we have by
unique factorization of integers that

λ(P, t) =∏
ν∉S

pmeν ,P(t)
P ⋅qν ,P(t)

ν = (∏
ν∉S

pzν(t)
ν )mP

for some integers zν(t). In particular, for ν0, we have

pm
eν0 ,P(t)
P ⋅qν0 ,P(t)

ν0 = pqν0 ,P(t)
ν0 = pzν0 (t)mP

ν0 .

Thus, zν0(t)mP = qν0 ,P(t), which contradicts qν0 ,P(t) being indivisible by mP . Thus,
for all mP > 1 and ν ∉ S, we have (t ⋅ P)ν ≡ 0 mod mP and t is an S-integral point of
X by definition. ∎

4 Stacky curves with coarse space P1

We focus on the situation when the base curve is P1. Let X = P1
Q and S = {ν∞} and

take L to be OP1(1), so the ample height is the usual one. We consider the stacky curve

X = (P1
Q ∶ (P1 , m1), ..., (Pr , mr)).

In this situation, the λ(P, t) can be easily computed.

Proposition 4.1 Let t = [x ∶ y] and suppose that Pi = (a i ∶ b i)where ai , b i are coprime
integers. Then λ(Pi , t) =∣ a i y − b i x ∣ .

Proof We have that (t ⋅ Pi)p = maxn{[x ∶ y] ≡ [a i ∶ b i] mod pn}. Note that this
means there is some λ ≠ 0 mod pn with (x , y) = λ(a i , b i) mod pn . Since a i , b i have
been taken coprime, we may assume that p does not divide a i or b i . Suppose that
p ∤ a i (the other case is similar). Then λ = x

a i
mod pn and therefore b i x − a i y = 0

mod pn . Thus, (t ⋅ Pi)p = ordp(b i x − a i y). Then we have that

λ(Pi , t) =∏
p

pordp(b i x−a i y) =∣ a i y − b i x ∣,

as needed. ∎

Definition 4.2 (Euler characteristic of stacky curves [4]) Let X = (X ∶
(P1 , m1), . . . , (Pr , mr)) be a stacky curve. The Euler characteristic of X is defined by
the formula

χ(X) = 2 − 2g(X) −
r
∑
i=1
(1 − 1

m i
) = 2 − 2g(X) − r +

r
∑
i=1

1
m i

,

where g(X) is the genus of the curve X. We define the genus of a stacky curve by the
formula χ(X) = 2 − 2g(X).

We now begin assembling the necessary ingredients to compare our heights
constructed in Section 3 to those in [6]. We first work with Hst

L.
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Proposition 4.3 LetX = X(X ∶ (P1 , . . . , Pr), (m1 , . . . , mr)), and letL be a line bundle
on X with

L ≅ π∗XM ⊗
r
∏
i=1

L⊗d i
Pi

,

where 0 ≤ d i < m i and M is a line bundle on X with πX being the coarse space map. Let
Hst,ESZ-B

L
be the stable height as constructed in [6]. Then Hst

L = Hst,ESZ-B
L

.

Proof In [6], a general definition of the stable height is given. Let m = ∏r
i=1 m i . By

the properties of the stable height described in [6], we have that

Hst,ESZ-B
L

= (Hst,ESZ-B
L⊗m ) 1

m .

On the other hand,

L⊗m = π∗XM⊗m ⊗∏ π∗XOX (
d i m
m i

Pi) .

It is a fact that if L is a line bundle on X, then Hst,ESZ-B
π∗
X

L = HL ○ πX. Therefore, we have

Hst,ESZ-B
L⊗m = HL⊗m = Hm

M ⋅
r
∏
i=1

H
di m
mi

Pi
.

Taking mth roots gives the desired inequality. ∎
Corollary 4.4 LetX = X(P1 ∶ (P1 , . . . , Pr), (m1 , . . . , mr))), and letL be a line bundle
on X. Then

Hst
L = Hdeg

X
L

P1 .(4.1)

Proof Let L be a line bundle on X. Then we may write

L ≅ π∗XOP1(d) ⊗
r
∏
i=1

L⊗d i
Pi

.

On P1, we have that OP1(Pi) ≅ OP1(1). So, by definition, the stable height is

Hd
P1 ⋅∏H

di
mi
P1 = H

d+∑r
i=1

di
mi

P1 = Hdeg
X
L

P1 ,

as needed. ∎
We can now precisely define the heights on a stacky curve with coarse space P1

Q.

Definition 4.5 Let X = (P1
Q , (P1 , m1), . . . , (Pr , mr)) be a stacky curve. Set

Pi = [a i ∶ b i] with a i , b i coprime integers and �i(t) = ax − by when t = [x ∶ y]
for x , y coprime integers. Let L = π∗XM ⊗∏r

i=1 L
⊗d i
Pi

with 0 ≤ d i < m i . Then define

HL = max{∣x∣, ∣y∣}deg
X
L ⋅

r
∏
i=1

ϕm i (�i(x , y)d i )
1

mi .

In particular, we have that

H−KX
(t) = max{∣x∣, ∣y∣}χ(X) ⋅

r
∏
i=1

ϕm i (�i(x , y))
1

mi
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and

HKX
(t) = max{∣x∣, ∣y∣}−χ(X) ⋅

r
∏
i=1

rm i (�i(x , y))
1

mi .

When P1 = [1, 0], P2 = [1,−1], P3 = [1 ∶ 0], and m1 = m2 = m3 = 2, we obtain the
square root of the height function Question (2.7). We now have enough to prove our
main comparison theorem.

4.1 Proof of Theorem 3.16

We follow the argument given in [6, p. 45]. Write L ≅ π∗XM ⊗∏r
i=1 L

⊗d i
Pi

. From [6,
Section 2.3], we have a decomposition

HESZ-B
L

Hst,ESZ-B
L

=∏
p

δL, p ,(4.2)

where the δL, p ’s are the local discrepancies associated with HESZ-B
L . On the other hand,

we have that

HL(P)
Hst

L
(P) =

r
∏
i=1

ϕm i (�i(P)d i )
1

mi .(4.3)

By Proposition 4.3, we have that

Hst,ESZ-B
L

= Hst
L(4.4)

up to some positive constant. Therefore, it suffices to show that

∏
p

δL, p(P) =
r
∏
i=1

ϕm i (�i(P)d i )
1

mi .

Let x∶ spec Q→ X be a rational point whose image is not any of the stacky points Pi .
Then, in [6], there is a one-dimensional stack C called the tuning stack and a diagram:

spec Q

x

��
��

���
��

��
��

��
C

x̄ ��

π
��

X

����
��
��
��
�

spec Z

Moreover, the local discrepancies can be computed at a prime p by

p− deg π∗ x̄∗L−1−(− deg x̄∗L−1) .

These degrees can be computed locally on X in terms of the stacky points Pi . In other
words,
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deg x̄∗L−1 =
r
∑
i=1

degPi
x̄∗L−1 ,

deg π∗x̄∗L−1 =
r
∑
i=1

degPi
π∗x̄∗L−1 .

The local degree of L at Pi at Q/Z is d i
m i

. Following [6], we have the local degrees

degPi
x̄∗L−1 = −

d i ordp(�i(x))
m i

,

degPi
π∗x̄∗L−1 = ⌊−

d i ordp(�i(x))
m i

⌋ .

We obtain that the contribution at Pi to the local discrepancy at p can be written as

p⌈
di�i (x)

mi
⌉− di�i (x)

mi .

Now write d i�i(x) = q i m i + r i with 0 ≤ r i ≤ m i − 1. First, suppose that r i = 0. Then

⌈d i�i(x)
m i

⌉ − d i�i(x)
m i

= ⌈q i m i

m i
⌉ − q i m i

m i
= q i − q i = 0.

Now suppose that r i ≠ 0. Then we have that

⌈d i�i(x)
m i

⌉ − d i�i(x)
m i

= ⌈q i m i + r i

m i
⌉ − q i m i + r i

m i

= q i + ⌈
r i

m i
⌉ − r i

m i
− q i

= 1 − r i

m i
= m i − r i

m i
.

In other words, we have shown that

⌈d i�i(x)
m i

⌉ − d i�i(x)
m i

=
⎧⎪⎪⎨⎪⎪⎩

0, d i�i(x) = 0 mod m i ,
−d i�i(x) mod m i , d i�i(x) ≠ 0 mod m i ,

= −d i�i(x) mod m i

m i
=

Nm i ,d i (ordp(�i(x)))
m i

.

Thus, the local discrepancies are given by

∏
p

δL, p(x) =
r
∏
i=1
⋅
⎛
⎝∏p

p
Nmi ,di

(ordp(�i (x)))

mi
⎞
⎠

=
r
∏
i=1

ϕm i (�i(x)d i )
1

mi .

Combining equations 4.2–4.4 gives the desired conclusion.
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Question 4.6 Consider a stacky curve X = (X ∶ (P1 , m1), . . . , (Pr , mr)). A line
bundle M on X with a chosen height function HM and integers 0 ≤ d i < m i . Then
does

HL(t) = HM(t) ⋅
r
∏
i=1

H
di
mi
Pi
(t) ⋅

r
∏
i=1

ϕm i (λ(Pi , t)d i )
1

mi

agree with the height constructed in [6] up to a bounded constant when X ≠ P1
Q.

In other words, does our stacky height machine recover the heights in [6] for all
stacky curves over all number fields? If not, can one define different size functions
Ñm i ,d i ∶Z≥0 → Z≥0 so that the ESZ-B height associated with L is of the form

HL(t) = (HM(t) ⋅
r
∏
i=1

H
di
mi
Pi
(t)) ⋅

⎛
⎜
⎝

r
∏
i=1

⎛
⎝∏p

pÑmi ,di (t⋅Pi)p
⎞
⎠

1
mi ⎞
⎟
⎠

.

This result will follow provided one can show that the local degree of x̄∗L with respect
to Pi over a prime p is

d i ordp(λ(Pi , t))
m i

=
d i(t ⋅ Pi)p

m i
.

In this case, the argument given in Theorem 3.16 would give the desired result. Further,
one might ask if these methods could be extended to compute the height functions of
line bundles certain higher dimensional analogues of stacky curves.

4.2 Morphisms of stacky curves

We will require some results on morphisms between stacky curves.
Definition 4.7 (Darmon [4]) Let X1 = (X1 , (P, mP)),X2 = (X2 , (Q , mQ)) be M
curves defined over a number field K. A morphism of stacky curves over K is a
morphism of algebraic curves π∶X1 → X2 defined over K such that for all P ∈ X1(K)
with π(P) = Q, we have that

mQ ∣ eπ(P)mP ,

where eπ(P) is the ramification index of π at P. We also define eπ(P) = eπ(P)mP
mQ

the
ramification index of π at P.

Now let X = (X ∶ Q; (P1 , m1), . . . , (Pr , mr)) be an M curve. For any s < r, choose
positive divisors d i of m i for i = 1, ..., s. Then there is a multiplicity lowering morphism

π(d1 , . . . , ds)∶X(X ∶ (P1 , m1), . . . , (Pr , mr)) → X(X ∶ (P1 , d1), . . . , (Ps , ds))
defined by the identity morphism on X. The usefulness of this notion can be seen by
the following.
Proposition 4.8 (Darmon [4]) Let π∶X1 → X2 be a morphism of stacky curves defined
over K. Then

π(X1(OK ,S)) ⊆ X2(OK ,S).

In other words, a morphism of stacky curves preserves the notion of S-integral points.
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Lemma 4.9 Let K be a field and

U = [ 0 1
−1 0] .

Define a bilinear form L(v, x) = vT U T x. Let T be a non-singular matrix with entries in
K. Then

L(Tv, Tx) = (det T)L(v, x).

Proof We have that

L(Tv, Tx) = (Tv)T U T Tx = vT T U T Tx = v(UT)T Tx.

Direct computation shows that (UT)T T = (det T)U T . We then have

L(Tv, Tx) = v(UT)T Tx = vT(det T)U T x = (det T)L(v, x). ∎

Note that if P = [a ∶ b] and t = [x , y]where a, b and x , y are coprime integers, then
λ(P, t) = ay − bx by (4.1). In other words, λ(P, t) = L(P, t) as defined in (4.9).

Lemma 4.10 Let P = [a ∶ b], t = [x , y] ∈ P1
Q with a, b and x , y coprime integers. Fix

an integer m > 1. Let α∶P1
Q → P1

Q be an automorphism. Let det α be the smallest possible
nonnegative determinant of an integral representation of α and similarly for det α−1.
Then we have

(radm(det α−1))−(m−1)ϕm(λ(P, t)) ≤ ϕm(λ(α(P), α(t)) ≤ radm(det α)m−1ϕm(λ(P, t)).
(4.5)

Proof Let L be as (4.1). Then we have that

λ(P, t) = L(α(P)
d1

, α(t)
d2

) = (det α)
d1d2

L(P, t) = (det α)
d1d2

λ(P, t)(4.6)

for some integers d1 , d2 which account for common factors of α(P) and α(t). Let
n1 = q1m + r1 , n2 = q2m + r2 be integers with 0 ≤ r i < m.

ϕm(pn1+n2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

pm−r1−r2 = ϕm(pn1)ϕm(pn2)
pm , if r1 + r2 < m,

pm−(r1+r2−m) = p2m−r1−r2 = ϕm(pn1)ϕm(pn2), if r1 + r2 ≥ m.

(4.7)

Since ϕm is multiplicative, we have that ϕm(zw) ≤ ϕm(z)ϕm(w) ≤
radm(z)m−1ϕm(w). Therefore, using (4.6),

ϕm(λ(α(P), α(t))) ≤ radm(det α)m−1ϕm(λ(P, t)).

Applying the same reasoning using α−1, we have that

ϕm(λ(P, t)) ≤ radm(det α−1)m−1 λ(ϕ(P), ϕ(t)).
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Therefore, we have

(radm(det α−1))−(m−1)ϕm(λ(P, t)) ≤ ϕm(λ(α(P), α(t)) ≤ radm(det α)m−1ϕm(λ(P, t)),
(4.8)

as required. ∎

Corollary 4.11 Let X = X(P1; (P1 , m1), . . . , (Pr , mr)). Let α∶P1
Q → P1

Q be an auto-
morphism of P1

Q. Let Q i = α(Pi) and Y =Y(P1; (Q1 , m1), . . . , (Qr , mr)). Then α
induces an isomorphism α∶X→Y. Let det α and det α−1 be as in (4.10). Let D(α,X) =
∏r

i=1 radm i (det α)1−1/m i and similarly define D(α−1 ,X). Suppose that Cϕ is a constant
(such a constant always exists) such that

C−1
α HP1(t)χ(X) ≤ HP1(ϕ(t))χ(X) ≤ Cα HP1(t)χ(X) .(4.9)

Then

D(α−1 ,X)−1C−1
α H−KX

(t) ≤ HTY
(ϕ(t)) ≤ D(α,X)Cα H−KX

(t).(4.10)

Proof By assumption, for each i = 1, . . . , r, we have from (4.10) and our assumption
that

HTY
(ϕ(t)) = HP1(ϕ(t))χ(Y)

r
∏
i=1

ϕm i (λ(Q i , ϕ(t)))
1

mi

≤ Cα HP1(t)χ(X)
r
∏
i=1

radm i (det(α))1−1/m i ϕm i (λ(Pi , t))
1

mi

= Cα D(α,X)H−KX
(t).

Similarly, we have

HTY
(ϕ(t)) = HP1(ϕ(t))χ(Y)

r
∏
i=1

ϕm i (λ(Q i , ϕ(t)))
1

mi

≥ C−1
α HP1(t)χ(X)

r
∏
i=1

radm i (det(α−1))−(1−1/m i)ϕm i (λ(Pi , t))
1

mi

= C−1
α D(α−1 ,X)H−KX

(t). ∎

We can get slightly worse, but more understandable bounds as follows. We always
have radm(x) ≤ rad(x). Note that we have that ∑r

i=1(1 − 1/m i) = 2 − χ(X) = 2g(X).
Thus, we in fact have

C−1
α rad(det α−1)−2g(X)H−KX

(t) ≤ HTY
(ϕ(t)) ≤ Cα rad(det α)2g(X)H−KX

(t).
(4.11)

Of particular note is that we see that when studying the Northcott property, we may
change the height by an automorphism. Thus, the Northcott property is stable under
isomorphism as expected.
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4.3 Northcott property of the canonical height on stacky curves

We now investigate the properties of the canonical height on stacky curves, given by

H(a,m)(x , y) =
n
∏
i=1

rm i (�i(x , y))
1

mi ⋅max{∣x∣, ∣y∣}−δ(m) .(4.12)

When δ(m) = 0, we see that the canonical height exhibits a clear duality with the anti-
canonical height, and so the same argument shows that Northcott’s property will fail.
When δ(m) < 0, we then see at once that H(a,m) will have Northcott’s property as a
consequence that the Weil height having Northcott’s property. It remains to consider
Northcott’s property when δ(m) > 0. In this case, we have m = (2, m2 , m3) with

1
m2

+ 1
m3

> 1
2

.

It suffices to show that for any such pair (m2 , m3), there exist integers a, b, c such that
the curve

ax2 + bym2 + czm3 = 0, 1
2
+ 1

m2
+ 1

m3
> 1

has infinitely many primitive integral solutions. This is the content of Beukers’
paper [1], and we are done.

5 On the Northcott property of canonical and anti-canonical
heights on stacky curves

In this section, we prove Theorem 1.2, starting with Theorem 2.1. We start with a
reduction procedure of a curve X(P1 ∶ (a, m)) which we describe colloquially. By
convention, we shall take our weight vectors m to have the property that

m1 ≤ m2 ≤ ⋅ ⋅ ⋅ ≤ mn .

Definition 5.1 Consider a stacky curve X(X ∶ (a, m)) with a = (P1 , . . . , Pr).
Let i = i1 , . . . , ik be a sub-sequence of 1, 2, ..., r. Then there is a morphism πi∶X(X ∶
(a, m)) → X(X ∶ (a′ , m′)) where a′ = (Pi1 , . . . , Pik) and m′ = (m i1 , . . . , m ik). The
map is defined by taking the identity morphism on the coarse space X. We call such a
morphism a totally ramified canonical covering.

The above construction defines a morphism by the definition of a morphism of
M-curves. It is totally ramified in the sense that if i is some index that does not appear
in i, then πi has ramification index m i at Pi . We use the term canonical this type
of construction can be used for any stacky curve. In particular, by taking i to be the
empty set, we obtain the coarse space morphism. We will show that if Theorem 2.1
holds for a totally ramified canonical covering of the shape X(P1 ∶ (a′ , m′)) where
a′ , m′ is obtained from a, m, respectively, by removing a subset of indices, then it also
holds for X(P1 ∶ (a, m)) (see Theorem 5.2 below).
Theorem 5.2 Let X(P1 ∶ (a1 , m1), . . . , (an , mn)) be a stacky curve. If the Northcott
property fails for the height (2.2) for some totally ramified canonical cover of X, then it
will also fail for X.
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Proof Let X be given as in the statement of Theorem 5.2. We may assume, after
reindexing the points if necessary, that the Northcott property for the ESZ-B height
fails for the totally ramified canonical cover given by

X
(1) = X(P1 ∶ (a1 , m1), . . . , (ak , nk))

for some k ≤ n. This implies that, for some positive number Ck depending at most on
a1 , . . . , ak and m1 , . . . , mk , there are infinitely many integers x , y such that

H(a(k) ,m(k)) =
k
∏
i=1

ϕm i (�i(x , y))1/m i max{∣x∣, ∣y∣}δ(m(k)) < Ck .

Next, note that the quotient

Q =
H(a,m)(x , y)

H(a(k) ,m(k))(x , y) =
n
∏

i=k+1
ϕm i (�i(x , y))1/m i ⋅max{∣x∣, ∣y∣}∑

n
i=k+1(−1+1/m i).

Observe that ϕm(s) ≤ ∣s∣m−1 for any integer s, with equality if and only if s is square-
free. It follows that

Q ≤
n
∏

i=k+1
∣�i(x , y)∣1−1/m i ⋅max{∣x∣, ∣y∣}∑

n
i=k+1(−1+1/m i),

and from here we immediately see from the triangle inequality that

Q≪a 1.

Thus, by replacing Ck with a larger positive number if necessary, we see that the
Northcott property also fails for H(a,m) on X. ∎

Now, given Theorem 5.2, it remains to consider certain minimal choices of m. We
say that δ(m) is minimally nonnegative if there is no subsequence m′ of m such that
δ(m′) ≤ 0. We have the following lemma characterizing the minimally nonnegative
tuples.

Lemma 5.3 Suppose m = (m1 , . . . , mn)with 2 ≤ m1 ≤ ⋅ ⋅ ⋅ ≤ mn is minimally nonneg-
ative. Then n ≤ 4.

Proof Suppose n ≥ 5. If there exist m i , m j , mk ≥ 3, then the sub-sequence
(m i , m j , mk) satisfies δ((m i , m j , mk)) ≤ 0, so m is not minimally nonnegative. If
m3 ≥ 3, then such a choice of i , j, k exists, since n ≥ 5. Therefore, we may assume
that m1 = m2 = m3 = 2. But then, (2, 2, 2, m4) satisfies δ((2, 2, 2, m4)) ≤ 0, so m is not
minimally nonnegative. ∎

It remains to deal with minimally nonnegative tuples with n = 3, 4. Before we
proceed, we will require Theorem 2.2, which we prove now.

Proof of Theorem 2.2 As we remarked earlier, the proof given here is provided to us
by Shnidman in [15].

For given non-singular binary quartic form F ∈ Z[x , y] given by

F(x , y) = a4x4 + a3x3 y + a2x2 y2 + a1x y3 + a0 y4 ,
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we write CF for the curve defined by

CF ∶ z2 = F(u, v).

The Jacobian of the genus one curve Ca ,b is the elliptic curve Ea ,b given by

EF ∶ y2 = x3 − I(F)
3

x − J(F)
27

,

where I, J are the basic invariants given by

I(F) = 12a4a0 − 3a3a1 + a2
2 , J(F) = 72a4a2a0 + 9a3a2a1 − 27a0a2

3 − 27a4a2
1 − 2a3

2 .

By 2-descent, we see that CF corresponds to a class c in H1(Q, Ea ,b[2]). Note that for
any integer d, the group H1(Q, E(d)F [2]) is canonically isomorphic to H1(Q, E(d)F [2])
such that c is the class of C(d)F in H1(Q, E(d)F [2]).

We now consider two cases. First suppose that c does not come from 2-torsion. In
this case, it is immediate that E(d0)

F has positive rank, where

d0 = F(u0 , v0), u0 , v0 ∈ Z.

This is because in this case C(d0)
F (Q) ≠ ∅.

If c comes from 2-torsion, then we note that C(d)F (Q) is non-empty for all d ∈ Z.
That is, for all d ∈ Z, we have C(d)F is isomorphic to E(d)F over Q. We can then choose a
class c′ in H1(Q, EF[2]), represented by a different binary quartic form G, and choose
d such that the twist of the genus one curveC ∶ z2 = G(u, v) given byC(d) has a rational
point. This implies that E(d)F has positive rank. Then, with this choice of d, we find that
C(d)F (Q) ≠ ∅ and E(d)F has positive rank, which completes the proof. ∎

With Theorem 2.2, we proceed to handle minimally nonnegative tuples, starting
with the case n = 4.

5.1 Minimally nonnegative tuples with n = 4

We begin with the case m = (2, 2, 2, 2), and we will need Theorem 2.2. By 3-transivity
of the action of PGL2 on P1 and Lemma 4.10, we may assume that three of the points
are 0, 1,∞, corresponding to the linear forms x , y, x + y in the variables x , y. We then
write �(x , y) = ax + by for the linear form representing the fourth half-point.

We prove the following as a warm-up.

Lemma 5.4 There exist integers a, b such that the stack X(P1
Q ∶ (0, 2), (1, 2),

(∞, 2), (a/b, 2)) has infinitely many rational points of E-S-ZB height equal to one.

Proof In this case, the height is given by

H(x , y) = sqf(x) sqf(y) sqf(x + y) sqf(ax + by),

so this is equal to one if and only if each of x , y, x + y, ax + by is a square. To wit, we
set

x = x2
1 , y = x2

2 , x + y = x2
3 .
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This induces the equation

x2
1 + x2

2 = x2
3 ,

which is solvable and whose (primitive) integral solutions are parametrized by

x1 = 2uv , x2 = u2 − v2 , x3 = u2 + v2 .

Inserting this into ax + by gives

a(2uv)2 + b(u2 − v2)2 = Fa ,b(u, v).

We then fix u = u0 , v = v0 so that 2u0v0 and u2
0 − v2

0 are co-prime, then solve the linear
diophantine equation

a(2u0v0)2 + b(u2
0 − v2

0) = 1.

Given a solution (a, b) to this diophantine equation, one obtains a genus curve
defined by

w2 = Fa ,b(u, v)

which is isomorphic to an elliptic curve, since it has a rational point given by
w2

0 = Fa ,b(u0 , v0). In particular, it must be isomorphic to its Jacobian. A simple
calculation shows that the Jacobian of this genus one curve is given by the equation

Ea ,b ∶ y2 = x3 − 16(a2 − ab + b2)
3

− 64(a + b)(2a − b)(a − 2b
27

(5.1)

= (x − 4b − 8a
3

)(x − 4a − 8b
3

)(x − 4b + 4a
3

) ,

so it suffices to find a, b such that Ea ,b has positive rank. We find that setting
u0 = 1, v0 = 5 and a = 17, b = −118 that the curve Ea ,b has positive rank, and there-
fore w2 = Fa ,b(u, v) will have infinitely many integral solutions (u, v , w). This gives
infinitely many pairs u, v such that F17,−118(u, v) is a square. This implies our result,
since

sqf(x) sqf(y) sqf(x + y) sqf(17x − 118y)
= sqf((2uv)2) sqf((u2 − v2)2) sqf((u2 + v2)2) sqf(F17,−118(u, v)) = 1. ∎

The general case will follow by applying the same ideas in tandem with Theorem 2.2.
Indeed, Theorem 2.2 gives that for any a, b ∈ Z such that Fa ,b(u, v) = a(u2 − v2)2 +
4bu2v2 is non-singular that there exists d ∈ Z such that CF(Q) ≠ ∅ and EF has positive
rank. Fixing such a d, we see that there are infinitely many co-prime integers u, v , z
such that

dz2 = F(u, v).

Recall that in this setup we have

x = (u2 − v2)2 , y = 4u2v2 , x + y = (u2 + v2)2 ,
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whence

H(x , y) = 1 ⋅ 1 ⋅ 1 ⋅ sqf(F(u, v)) ≤ ∣d∣.

This concludes the proof for the m = (2, 2, 2, 2) case.
Note that if m = (m1 , m2 , m3 , m4) is minimally nonnegative, then m1 = m2 = 2,

since δ((3, 3, 3)) = 0. Thus, we may write

x = x1x2
2 , y = y1 y2

2

with x1 , y1 square-free. We then write

�3(x , y) = x + y = z1z2
2 ⋅ ⋅ ⋅ zm3

m3
, �4(x , y) = w1w2

2 ⋅ ⋅ ⋅wm4
m4

.

Again, we have z i , w j are square-free for 1 ≤ i ≤ m3 − 1 and 1 ≤ j ≤ m4 − 1.
We now specialize to the points where z i = w j = 1 except for i = 2 and j = 1, 2, as

well as x1 = y1 = 1. Applying Theorem 2.2 and using the same argument as in the
(2, 2, 2, 2) case, we see that there is a choice of w1 = d such that there are infinitely
many choices of x2 , y2 , w2 , z2 satisfying

x = x2
2 , y = y2

2 , x + y = z2
2 , �4(x , y) = dw2

2 .

The height of such a point is given by

ϕ2(x2
2)ϕ2(y2

2)ϕm3(z2
2)ϕm4(dw2

2)max{x2
2 , y2

2}1/m3+1/m4−1

≪ ∣z2∣1−2/m3 ∣w2∣1−2/m4 max{∣z2∣, ∣w2∣}(2/m3−1)+(2/m4−1 ≪ 1.

It follows that there are infinitely many points of bounded height, and so Northcott’s
property fails.

5.2 Minimally nonnegative tuples with n = 3

To complete the proof of Theorem 2.1, it remains to handle the cases when n = 3 and
χ(X) ≤ 0. We shall assume that m1 ≤ m2 ≤ m3. We then note that δ(m) ≤ 0 if and only
if one of the following conditions is satisfied:
(1) m1 ≥ 3.
(2) m1 = 2, m2 = 3, m3 ≥ 6.
(3) m1 = 2, m2 ≥ 4.

We deal with the first case. We then write

x = x1,1x2
1,2 ⋅ ⋅ ⋅ xm1

1,m1
, y = x2,1x2

2,2 ⋅ ⋅ ⋅ xm2
2,m2

,(5.2)

x + y = x3,1x2
3,2 ⋅ ⋅ ⋅ xm3

3,m3
.

Now set

x i , j = 1 for (i , j) /∈ {(1, 3), (2, 3), (3, 3), (3, 1)}

and

x1,3 = z1 , x2,3 = z2 , x3,3 = z3 , x3,1 = d .
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Then the value of the height H(a,m)(x , y) in this case is given by

H(z3
1 , z3

2) = ϕm1(z3
1 )1/m1 ϕm2(z3

2)1/m2 ϕm3(dz3
3)1/m3 max{∣z1∣3 , ∣z2∣3}1/m1+1/m2+1/m3−1

≤ dm3−1∣z1∣
m1−3

m1 ∣z2∣
m2−3

m2 ∣z3∣
m3−3

m3 max{∣z1 , ∣z2∣}(
3

m1
−1)+( 3

m2
−1)+( 3

m3
−1) .

Observe that

∣z i ∣
mi−3

3 max{∣z1∣, ∣z2∣}−1+ 3
mi ≪ 1

for i = 1, 2, 3.
It remains to choose d so that the plane cubic curve

z3
1 + z3

2 = dz3
3

has infinitely many rational points. This is an easy consequence of the seminal work
of Stewart and Top [18, Theorem 7], which in turn depends on the important work
of Stewart in [17]. In particular, they showed that the number of cube-free integers d
with ∣d∣ ≤ X such that the equation

x3 + y3 = d

defines an elliptic curve with rank at least 2 is asymptotically greater than X1/3. We,
of course, do not need such a strong statement; indeed, we only need one such d. This
completes the proof for the case m1 ≥ 3.

We proceed to handle the case m1 = 2, m2 ≥ 4. Using the same notation as in (5.2),
we then set

x i , j = 1 for all (i , j) /∈ {(1, 1), (1, 2), (2, 4), (3, 4)},

and set

x1,2 = z1 , x2,4 = z2 , x3,4 = z3 , x1,1 = d .

This gives a curve

dz2
1 = z4

3 − z4
2 .

We need to choose square-free d so that this curve has infinitely many integral
solutions, and such a d exists by Theorem 2.2. The height H(a,Bm)(x , y) is given by

H(a,m)(x , y) = ϕ2(dz2
1 )1/2ϕm2(z3

2)1/m i ϕm3(dz3
3)1/m3 max{d∣z1∣2 , ∣z2∣4}1/m2+1/m3−1/2

≤ d∣z2∣1−4/m2 ∣z3∣1−4/m3 max{d∣z1∣2 , ∣z2∣4}1/m2+1/m3−1/2 .

Note that

∣z3∣4 ≍ max{dz2
1 , z4

2},

so we obtain the upper bound

( ∣z2∣
max{∣z2∣, ∣z3∣}

)
1− 4

m2

⋅ ( ∣z3∣
max{∣z2∣, ∣z3∣}

)
1− 4

m3

≪ 1.

https://doi.org/10.4153/S0008414X24000075 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000075


Heights and quantitative arithmetic on stacky curves 31

It follows that there are infinitely many integers x , y such that H(a,m)(x , y) remains
bounded.

Finally, we resolve the case m1 = 2, m2 = 3, m3 ≥ 6. In this case, we use the fact that
there exist integers a, b, c with a square-free, b cube-free, and c sixth power-free such
that the equation

ax2 + by3 + cz6 = 0(5.3)

has infinitely many primitive solutions (see [5, Section 6.3]). Thus, by fixing such a
triple (a, b, c) and setting

x1,1 = a, x2,1x2
2,2 = b, x3,1 ⋅ ⋅ ⋅ x3,5 = c,

x1,2 = u1 , x2,3 = u2 , x3,6 = u3

and

x5, j = 1 for all j ≥ 7,

we specialized a point onX(P1 ∶ (0, 2), (∞, 3), (−1, 6)) to the curve given by (5.3). The
height of such a point is then bounded in terms of a, b, c only, and is thus absolutely
bounded. This shows that the Northcott property fails in this case as well.

This concludes the proof of Theorem 2.1.

5.3 Proof of Theorems 2.5

We proceed to prove Theorem 2.5. The claim when δ(m) = 0 is covered in Theorem 2.1,
so we will not discuss it again. When δ(m) > 0, we note that n = 3, and that in each
such case, there exist integers am , bm , cm such that the equation

amxm1 + bm ym2 + cmzm3 = 0

has infinitely many primitive integral solutions (see, for example, [1]). This shows that
the Northcott property fails for H0.

We may now work with the case when δ(m) < 0. We see that the height H0 is
bounded below by

ϕm1(x)1/m1 ϕm2(y)1/m2 ϕm3(x + y)1/m3 ,(5.4)

so it suffices to show that this quantity necessarily goes to infinity. We then use the
notation from (5.2), to obtain the equation

xm1
1,m1

m1−1
∏
j=1

x j
1, j + xm2

2,m2

m2−1
∏
j=1

x j
2, j = xm3

3,m3

m3−1
∏
j=1

x j
3, j .(5.5)

By convention, we have that x i , j is square-free for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m i − 1. Thus,
(5.4) is equal to

m1−1
∏
j=1

x
m1− j

m1
1, j

m2−1
∏
j=1

x
m2− j

m2
2, j

m3−1
∏
j=1

x
m3− j

m3
3, j .
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Viewing these products as coefficients in (5.5), we see that if H0 is to be bounded, these
coefficients must be bounded. Therefore, it suffices to check that for a fixed triple of
integers a, b, c, the equation

axm1 + bym2 + czm3 = 0

has finitely many primitive integer solutions when 1/m1 + 1/m2 + 1/m3 < 1. But this is
exactly the content of Darmon and Granville’s paper [5], so we are done.

6 Northcott property of perturbed anti-canonical heights and the
abc-conjecture

In this section, we prove Theorem 1.3, starting with Theorem 2.6. We consider the
property of recovering Northcott’s property on a modified ESZ-B anti-canonical
height on the stacky curve

X = X(P1
Q ∶ (a, m)).

Here, the modified height takes the shape

Hδ
(a,m)(x , y) =

n
∏
i=1

ϕm i (�i(x , y))1/m i max{∣x∣, ∣y∣}δ .

Since χ(X) = δ(m) = 2 −∑n
i=1(1 − 1

m i
) ≤ 0, our goal is to show that

γ(X) = inf{δ ∈ R∶Hδ
(a,m) has the Northcott property} = χ(X)

assuming the abc-conjecture. Recall that we have shown that H χ(X)
(a,m) does not have

the Northcott property unconditionally. Thus, we must show that H χ(X)+κ
(a,m) has the

Northcott property for all κ > 0. First, assume that χ(X) = 0. The Northcott property
for the standard height implies that Hδ

(a,m)(x , y)has the Northcott property whenever
δ > 0. So inf{δ ∈ R∶Hδ

(a,m) has the Northcott property} = 0 = χ(X) as needed. Now
suppose that χ(X) < 0. Assume, without loss of generality, that m1 ≤ m2 ≤ ⋅ ⋅ ⋅ ≤ mn .
We then write

�i(x , y) = z i ,1z2
i ,2 ⋅ ⋅ ⋅ zm i−1

i ,m i−1z
m i
i ,m i

.

We have

ϕm i (�i(x , y))
1

mi =
m i−1
∏
j=1

z
mi− j

mi
i , j .

It follows that

H χ(X)+δ
(a,m) = max{∣x∣, ∣y∣}χ(X)+δ

n
∏
i=1

m i−1
∏
j=1

z
mi− j

mi
i , j .
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Suppose that the following inequality holds for any ε > 0:

n
∏
i=1

m i−1
∏
j=1

z
mi− j

mi
i , j ≫ε max{∣x∣, ∣y∣}−χ(X)−ε .(6.1)

Then, by multiplying both sides of the equation by max{∣x∣, ∣y∣}χ(X)+κ, we obtain

max{∣x∣, ∣y∣}χ(X)+κ
n
∏
i=1

m i−1
∏
j=1

z
mi− j

mi
i , j ≫ε max{∣x∣, ∣y∣}κ−ε .(6.2)

Taking ε = κ
2 , we have that

H χ(X)+κ
(a,m) (x , y) ≫ε max{∣x∣, ∣y∣}κ

2 .(6.3)

Thus, H χ(X)+κ
(a,m) (x , y) must have the Northcott property as it cannot remain bounded

by the usual Northcott property for P1. Therefore, we are done if we can confirm
inequality (6.1). To do so, we require the following proposition, due to Granville [11].

Proposition 6.1 (Granville) Suppose that the abc-conjecture holds. Then, for any
binary form F with nonzero discriminant and ε > 0, we have

rad(F(m, n)) = ∏
p∣F(m ,n)

p ≫F ,ε max{∣m∣, ∣n∣}deg F−2−ε .

In other words, if the abc-conjecture holds, then the radical of F(m, n)will be quite
large compared to the variables m, n (provided that the degree is at least 3).

We will apply Proposition 6.1 to reduce the proof of Theorem 2.6 to a linear
programming problem.

6.1 A linear program bound

Observe that for each 1 ≤ i ≤ n,

m i

∏
j=1

z i , j ≥ rad
⎛
⎝

m i

∏
j=1

z i , j
⎞
⎠

.

Applying Proposition 6.1 to the binary form

Qa(x , y) =
n
∏
i=1

�i(x , y)

in conjunction with the above observation, we obtain
n
∏
i=1

m i

∏
j=1

z i , j ≥ rad(
n
∏
i=1

�i(x , y)) ≫ε max{∣x∣, ∣y∣}n−2−ε .(6.4)

Similarly, for each i, we have the bound

∣�i(x , y)∣ ≪ max{∣x∣, ∣y∣}.(6.5)
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Taking logarithms and writing y i , j = log ∣z i , j ∣, we then have an optimization problem:

min
n
∑
i=1

1
m i

m i−1
∑
j=1

(m i − j)y i , j(6.6)

subject to
n
∑
i=1

m i

∑
j=1

y i , j ≥ (n − 2 − ε) log B(6.7)

and
m i

∑
j=1

jy i , j ≪ log B,(6.8)

where B = max{∣x∣, ∣y∣}. Further, we have y i , j ≥ 0 for all i , j.
We emphasize that, at this point, integrality no longer plays a role, and neither does

the syzygies relating the z i , j ’s. Indeed, we only need to solve the above linear program
allowing arbitrary real inputs.

Now put

c i j =
m i − j

m i

for 1 ≤ i ≤ n and 1 ≤ j ≤ m i − 1. Write c i ,m i = 0 and let c = (c i , j) to be the column
vector with

cT = [c1,1 , c1,2 , . . . , c1,m1−1 , 0, c2,1 , c2,2 , . . . , cn ,1 , . . . cn ,mn−1 , 0].

We have that c ∈ RN where N = ∑n
i=1 nm i .

Let A be the matrix with rows representing the constraints,

C0 ∶
n
∑
i=1

m i

∑
j=1

y i , j ≥ (n − 2 − ε) log B(6.9)

C i ∶ −
m i

∑
j=1

jy i , j ≫ − log B.(6.10)

If we have taken ei , j to be a basis of RN , then we have that the rows of A are given by

a0 =
n
∑
i=1

m i

∑
j=1

ei , j ,(6.11)

ai =
m i

∑
j=1
− jei , j .(6.12)

Finally, let b be the column vector with n + 1 entries representing the constraints given
by (6.7) and (6.8). In other words, we have

b0 = (n − 2 − ε) log B,(6.13)
b i = − log B.(6.14)
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Our linear programming problem is then the following: Let y = (y i j) ordered as
above.

Minimize∶ cT y,(6.15)
subject to∶ Ay ≥ b and y ≥ 0.

The dual linear program is

Maximize∶ bT x,(6.16)
subject to∶ AT x ≤ c and x ≥ 0,

where x = [x0 , x1 , ..., xn]. We call a vector x dual feasible if AT x ≤ c and vector y primal
feasible if Ay ≥ b. We have the following well-known weak duality statement.

Lemma 6.2 (Weak duality) Let A be an m × n matrix with real entries and c an n × 1
real vector and b an m × 1 real vector. Consider the primal linear program

Minimize∶ cT ,
subject to∶ Ay ≥ b and y ≥ 0

and the dual linear program

Maximize∶ bT x,
subject to∶ AT x ≤ c and x ≥ 0.

Let y be any primal feasible vector and x a dual feasible vector. Then

cT y ≥ bT x.

Proof Let A = (a i , j). Because y is primal feasible, we have Ay ≥ b. Therefore, for all
1 ≤ i ≤ m, we have

n
∑
j=1

a i , j y j ≥ b i .

Multiplying by x i and summing over all i, we have
m
∑
i=1

n
∑
j=1

a i , j y jx i ≥
n
∑
i=1

b i x i = bT x.(6.17)

On the other hand, because x is dual feasible, we have that AT x ≤ c, so for each
1 ≤ j ≤ n, we have

m
∑
i=1

a j, i x i ≤ c j .

Multiplying by y j and summing over all j gives
n
∑
j=1

m
∑
i=1

a i , jx i y j ≤
n
∑
j=1

y jc j = cT y.(6.18)
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Combining inequality (6.17) and inequality (6.18) gives

c T y ≥
n
∑
j=1

m
∑
i=1

a i , jx i y j ≥ bT x. ∎

Returning to our problem, the weak duality theorem tells us that it suffices to find
a dual feasible solution x = [x0 , . . . xn] such that bT x ≥ −χ(X) + ε. In other words, we
seek x = [x0 , . . . , xn] with

bT x = log B
⎛
⎝
(n − 2 − ε)x1 −

n
∑
j=1

x i
⎞
⎠
≥ −χ(X) + ε,

AT x ≤ c,
x ≥ 0.

Take x = [1, 1
m1

, 1
m2

, . . . , 1
mn
]. We first show that x is dual feasible. In this case, A is an

(n + 1) ×∑n
i=1 m i matrix. So a row of AT is indexed by a pair (i , j) with 1 ≤ i ≤ n and

1 ≤ j ≤ m i . We have that the (i , j) entry of AT x = xT A can be computed as

x0 − jx i .

Therefore, to show that x is dual feasible for an arbitrary X, we need that

x0 − jx i ≤ c i , j =
m i − j

m i
= 1 − j

m i
.

In our case, the (i , j) entry of AT x is given by

1 − j
m i

= c i , j ,

so x is dual feasible. We then compute

bT x = log B(n − 2 − ε)x0 −
n
∑
i=1

x i log B

= log B(n − 2 − ε −
n
∑
i=1

1
m i

)

= log B(−(2 −
n
∑
i=1
(1 − 1

m i
) − ε))

= log B(−χ(X) − ε).

Therefore, x = (1, 1
m1

, . . . , 1
mn

) is a dual feasible solution and

bT x = log B(−χ(X) − ε).

By the weak duality theorem, we have that
n
∑
i=1

1
m i

m i−1
∑
j=1

(m i − j)y i , j ≥ log B(−χ(X) − ε).
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Exponentiating gives

n
∏
i=1

m i−1
∏
j=1

z
mi− j

mi
i , j ≥ B(−χ(X)−ε) .

As B = max{∣x∣, ∣y∣}, we have verified inequality (6.1) and consequently we have that
conditional on the abc-conjecture that

γ(X) = χ(X)

when χ(X) ≤ 0.

6.2 Proof of Theorem 1.3

One direction of the theorem is provided by Theorem 2.6, which we proved in the
previous subsection. It suffices to prove the converse.

Actually, for the converse, we only need the assertion that for any κ > 0 and
m ≥ 4, the function H−KXm

(x) ⋅ H(x)κ has Northcott’s property, where Xm = X(P1 ∶
((0, 1,∞), (m, m, m)). To see this, let us fix ε > 0. Choose 0 < κ < ε/3 and choose
m ∈ N sufficiently large so that

m − 3
m − 1

+ κm
2(m − 1) >

1
1 + ε

.

By hypothesis, we have

H−KXm
(x) = ϕm(x)1/m ϕm(y)1/m ϕm(x + y)1/m max{∣x∣, ∣y∣}

3
m −1 ≫κ max{∣x∣, ∣y∣}1− 3

m −
κ
2 .

(6.19)

Trivially, we see that

ϕm(u) ≤ rad(u)m−1

for all u ∈ Z. Hence, (6.19) implies

rad(x) m−1
m rad(y) m−1

m rad(x + y) m−1
m ≫κ max{∣x∣, ∣y∣}1− 3

m +
κ
2 .(6.20)

Since x , y, x + y are pairwise co-prime, we have rad(x) rad(y) rad(x + y) =
rad(x y(x + y)); hence,

rad(x y(x + y)) m−1
m ≫κ max{∣x∣, ∣y∣}1− 3

m +
κ
2 .

Raising both sides to the m/(m − 1) power, we have

rad(x y(x + y)) ≫κ max{∣x∣, ∣y∣}
m−3
m−1 +

κm
2(m−1) ≫κ max{∣x∣, ∣y∣} 1

1+ε ,

by our hypotheses on m,κ. It follows that

rad(x y(x + y))1+ε ≫ε max{∣x∣, ∣y∣},

which is plainly equivalent to the abc-conjecture, provided we adjust the implied
constant.
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7 Quantitative arithmetic of stacky curves

7.1 Crude bound for Nm(T), with m = (2, 2, m)

Here, we deal with the case m = (2, 2, m). The Euler characteristic is equal to

δ(m) = 2 − 1
2
− 1

2
− 1 + 1

m
= 1

m
.

The height H(x , y) is given by

H(x , y) = ∣x1∣1/2∣y1∣1/2∣zm−1
1 ⋅ ⋅ ⋅ zm−1∣1/m max{∣x1x2

2 ∣, ∣y1 y2
2 ∣}1/m ,

where x = x1x2
2 , y = y1 y2

2 and

x1x2
2 + y1 y2

2 = z1z2
2 ⋅ ⋅ ⋅ zm−1

m−1zm
m ,(7.1)

with x1 , y1 , z1 , . . . , zm−1 square-free. We normalize the height by raising it to the mth
power, obtaining the bound

∣x1 y1∣m/2∣zm−1
1 ⋅ ⋅ ⋅ zm−1∣max{∣x1x2

2 ∣, ∣y1 y2
2 ∣} ≤ T .(7.2)

From here, we see that

∣z1z2
2 ⋅ ⋅ ⋅ zm

m ∣ ≪ max{∣x1x2
2 ∣, ∣y1 y2

2 ∣} ≪
T

∣x1 y1∣m/2∣zm−1
1 ⋅ ⋅ ⋅ zm−1∣

,

whence we conclude that

∣zm ∣ ≪
T 1/m

∣x1 y1∣1/2∣z1 ⋅ ⋅ ⋅ zm−1∣
.

This bound and ∣zm ∣ ≥ 1 implies that

∣x1 y1∣1/2∣z1 ⋅ ⋅ ⋅ zm−1∣ ≪ T 1/m .

From here, we obtain a crude upper bound for Nm(T), which proves Theorem
2.7. Indeed, having chosen x1 , y1 , z1 , . . . , zm−1, there are then O(T 1/m/(∣x1 y1∣1/2
∣z1 ⋅ ⋅ ⋅ zm−1∣) possibilities for zm . Having chosen zm as well, there are then Oε(T ε) pos-
sibilities for x2 , y2, since x2 , y2 are polynomially bounded, so they will be determined
by the norm-equation (7.1) up to a log factor. Thus, there are

∑
∣x1 y1 ∣1/2 ∣z1 ⋅ ⋅ ⋅ zm−1 ∣≤T 1/m

Oε (
T 1/m+ε

∣x1 y1∣1/2∣z1 ⋅ ⋅ ⋅ zm−1∣
)(7.3)

possible solutions to (7.1) satisfying the height bound (7.2). We evaluate this as
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∑
∣x1 y1 ∣1/2 ∣z1 ⋅ ⋅ ⋅ zm−1 ∣≤T 1/m

Oε (
T 1/m+ε

∣x1 y1∣1/2∣z1 ⋅ ⋅ ⋅ zm−1∣
)

= ∑
∣x1 y1 ∣≤T2/m

1
∣x1 y1∣1/2

∑
∣z1 ⋅ ⋅ ⋅ zm−1 ∣≤T 1/m/∣x1 y1 ∣1/2

Oε (
T 1/m+ε

∣z1 ⋅ ⋅ ⋅ zm−1∣
)

≪ε ∑
∣x1 y1 ∣≤T2/m

T 1/m+ε

∣x1 y1∣1/2
≪ε T2/m+ε .

To give a lower bound, we choose square-free integers a, b, c so that the curve

ax2 + by2 = czm

has a primitive integral solution. Such a triple is guaranteed to exist (see [1]). Then we
can parametrize (some) of the solutions by a triple of integral binary forms (F , G , h)
where deg F = deg G = m and deg h = 2. By

x = F(u, v), y = G(u, v), z = h(u, v).

The height is

∣a∣m/2∣b∣m/2∣c∣m−1 max{∣ax2∣, ∣by2∣},

so if we treat a, b, c as constants, then

max{∣x∣, ∣y∣} ≪a ,b ,c T 1/2 .

Therefore, we are looking for solutions to the Thue inequality

max{∣F(u, v)∣, ∣G(u, v)∣} ≪a ,b ,c T 1/2 .

If we restrict u, v so that

max{∣u∣, ∣v∣} ≪a ,b ,c T 1/(2m) ,

then we see that the above height bound is satisfied. Thus, Nm(T) ≫ T 1/m .

7.2 Proof of Theorem 2.8

In this section, we prove Theorem 2.8. To do so, we will show that N2(T) =
O (T 1/2(log T)3) and give a separate argument to show that N2(T) ≫ T 1/2(log T)3.
The incompatibility of these two arguments represents the main obstacle as to why an
asymptotic formula for N2(T) remains elusive.

We count rational points of bounded height on the curve X(P1
Q; (0, 2),

(−1, 2), (∞, 2)) with the height on P1 given by (2.7). On writing

a = x1 y2
1 , b = x2 y2

2 , x1 , x2 square-free

(note that this differs from the notation used elsewhere in the paper), we then have

H(a, b) = ∣x1x2∣ sqf(x1 y2
1 + x2 y2

2)max{∣x1 y2
1 ∣, ∣x2 y2

2 ∣},
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and the max on the right-hand side is dependent only on the relative size of ∣a∣, ∣b∣. If
we write

x1 y2
1 + x2 y2

2 = x3 y2
3 ,(7.4)

then we further obtain the expression

H(a, b) = max{∣x2x3(x1 y1)2∣, ∣x1x3(x2 y2)2∣}.

We may assume without loss of generality that ∣x1 y2
1 ∣ ≥ ∣x2 y2∣2 and x1 > 0, so that

H(a, b) = ∣x2x3(x1 y1)2∣.

We consider the problem of counting integral points on the variety defined by (7.4),
subject to the constraint

0 < ∣x2x3(x1 y1)2∣ ≤ T , ∣x1 y2
1 ∣ ≥ ∣x2 y2

2 ∣.(7.5)

To obtain the upper bound, we must dissect (7.5) into suitable ranges. When
∣x1x2x3∣ ≤ T 1/2, we fix x1 , x2 , x3 and treat (7.4) as a diagonal ternary quadratic form,
say Qx. It is then the case that

∣y i ∣ ≤
T

∣x1x2x3∣ ⋅ ∣x i ∣
(7.6)

for i = 1, 2, 3, and by Corollary 2 of [3], we then have the estimate

O (d(x1x2x3)(
T 1/2

∣x1x2x3∣
+ O(1)))

for the number of y ∈ Z3
≠0 satisfying (7.5) and (7.4) provided that the quadratic form

Qx has a rational zero. Otherwise, it is clear that there will be no contribution. Thus,
we must estimate

∑
1≤∣x1 x2 x3 ∣≤T 1/2

Qx has a rational zero

d(x1x2x3).

This is similar to the work of Guo in [12], except he counted with respect to the height
∥x∥∞. Nevertheless, the techniques are similar, and again this may be of independent
interest.

Next, we must deal with the case when ∣x1x2x3∣ ≥ T 1/2. For this, it suffices to observe
from (7.6) that ∣x1x2x3∣ ≥ T 1/2 implies

∣y1 y2 y3∣ ≤
T3/2

(x1x2x3)2 ≤ T 1/2 .

We then treat (7.4) as a linear form Ly in x. We use this to show that the contribution
for each y is O (T 1/2∣y1 y2 y3∣−1 + 1), which gives an acceptable contribution upon
summing over y.

For the lower bound, we first restrict y1 , y2 , y3 ∈ Z≠0 satisfying

∣y1 y2 y3∣ ≤ T δ
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for some explicit δ > 0 to be specified later. We note that to obtain the correct order of
magnitude, it is permissible to choose any δ > 0.

Having fixed y = (y1 , y2 , y3), we consider the simultaneous conditions (7.4) and
(7.5). This gives rise to a binary form inequality of the shape

∣x2
1 x2(y2

1 x1 + y2
2x2)∣ ≤ Ty2

3 y−2
1 .(7.7)

Because ∣y1 y2 y3∣ is small, we can count the number of solutions x to this inequality
with reasonable precision. However, even with ∣y1 y2 y3∣ counting the number of
solutions x with enough uniformity appears to still be a challenging task, because the
binary form in (7.7) is singular. This difficulty is exacerbated by the fact that we will
need to apply a square-free sieve eventually to produce triples x with each coordinate
square-free.

To get around this issue, we simply count solutions to (7.7) with x1 , x2 satisfying the
inequalities

∣x i y2
i ∣ ≤ c i T 1/4∣y1 y2 y3∣1/2 , i = 1, 2

for some positive numbers c1 , c2. This has the effect that the long cusps inherent in (7.7)
are removed, and reduce the problem to a more straightforward geometry of numbers
question.

7.2.1 Upper bounds

To obtain upper bounds, it is crucial to view (7.4) as a plane in x1 , x2 , x3 when
∣y1 y2 y3∣ ≤ T 1/2 and viewing (7.4) as a conic in y1 , y2 , y3) when ∣x1x2x3∣ ≤ T 1/2. We
call the former the linear case and the latter the quadratic case. We proceed to deal
with the linear case below.

We shall first suppose that ∣y1 y2 y3∣ ≤ T 1/2 is fixed, and count the triples (x1 , x2 , x3)
and (y1 , y2 , y3) for which (7.4) holds.

The key is the following lemma on counting points in sublattices of Z2.

Lemma 7.1 Let Λ ⊂ Z2 be a lattice. Then, for all positive real numbers R1 , R2,
the number of primitive integral points x ∈ Λ satisfying ∣x i ∣ ≤ R i , i = 1, 2 is at most
O (R1R2/det(Λ) + 1).

Proof If the rectangle [−R1 , R2] × [−R2 , R2] contains at least two primitive vectors
in Λ, say x1 , x2, then since this rectangle is convex it contains the parallelogram with
end points ±x1 ,±x2. The area of this parallelogram is at least as large as det Λ, since
the lattice spanned by x1 , x2 is a sublattice of Λ. It thus follows that

R1R2 ≫ det Λ.

Otherwise, the rectangle [−R1 , R1] × [−R2 , R2] contains at most one primitive vector
in Λ. This completes the proof. ∎

The strength of this lemma is that it gives a strong upper bound even in lopsided
boxes.

Given (7.4), it follows that there is at least one i ∈ {2, 3} such that

∣x i y2
i ∣/2 ≤ x1 y2

1 ≤ 2∣x i y2
i ∣,
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whence

x1 y2
1

2y−2
i

≤ ∣x i ∣ ≤
2x1 y2

1
y2

i
.

Without loss of generality, we assume that this holds for i = 2. Suppose that M1 ≤ x1 <
2M1. By (7.5), we have

∣x3∣ ≤
T

∣x2x2
1 y2

1 ∣
,

whence

∣x3∣ ≤ T ⋅ 2y2
2

(x1 y2
1 )(x2

1 y2
1 )

≤ 2y2
2T

M3
1 y4

1
.

Applying Lemma 7.1 to the lattice defined by the congruence y2
1 x1 − y2

3 x3 ≡ 0(mod y2
2)

which has determinant equal to y2
2 , there are

O (M1 ⋅
Ty2

2
M3

1 y4
1
⋅ 1

y2
2
+ 1) = O ( T

M2
1 y4

1
+ 1)

possibilities for x1 , x3, which then determines x2 = (y2
1 x1 − y2

3 x3)/y2
2 . Similarly, apply-

ing Lemma 7.1 to the lattice defined by y2
1 x1 + y2

2x2 ≡ 0(mod y2
3), with determinant

equal to y2
3 , gives the estimate

O (M1 ⋅
y2

1 M1

y2
2

1
y2

3
+ 1) = O (M2

1 y2
1

y2
2 y2

3
+ 1)

for the number of x1 , x2, which then also determine x3. The two bounds coincide when

M1 =
T 1/4∣y2 y3∣1/2

∣y1∣3/2
,

and we get the bound

O (T 1/2∣y2 y3∣y2
1

y2
2 y2

3 ∣y1∣3
+ 1) = O ( T 1/2

∣y1 y2 y3∣
+ 1)

for the number of x1 , x2 , x3 given y1 , y2 , y3. Thus, we obtain an acceptable estimate
whenever ∣y1 y2 y3∣ ≪ T 1/2, since

∑
1≤∣y1 y2 y3 ∣≤T 1/2

T 1/2

∣y1 y2 y3∣
+ 1 ≪ T 1/2 ∑

n≤T 1/2

d3(n)
n

+ ∑
n≤T 1/2

d3(n)

It is well known that

∑
n≤Z

d3(n) = Z(log Z)2 + O(Z log Z).
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By partial summation, we have

∑
n≤Z

d3(n)
n

= Z−1 ∑
n≤Z

d3(n) + ∫
Z

1
(∑

n≤t
d3(n)) dt

t2

≪ (log Z)2 + ∫
Z

1

(log t)2dt
t

≪ (log Z)3 .

It follows that

T 1/2 ∑
n≤T 1/2

d3(n)
n

+ ∑
n≤T 1/2

d3(n) ≪ T 1/2(log T)3 .

It remains to deal with the case when ∣y1 y2 y3∣ ≫ T 1/2, where we instead fiber over
x and consider zeros of the corresponding diagonal quadratic forms Qx. Since

∣x i y2
i ∣ ≪ x1 y2

1

for i = 1, 2 by assumption, it follows that

∣x1x2x3 y2
1 y2

2 y2
3 ∣ ≤ x3

1 y6
1 ;

hence,

∣y2
1 y2

2 y2
3 ∣ ≪

x3
1 y6

1
x1∣x2x3∣

.

If ∣x1x2x3∣ ≫ T 1/2, then

x3
1 y6

1 ≫ T3/2 ⇔ x1 y2
1 ≫ T 1/2 .

This implies that

∣x1x2x3∣ ⋅ x1 y2
1 ≫ T ,

which violates (7.5) if the implied constants are sufficiently large. It thus follows that
we must have ∣x1x2x3∣ ≪ T 1/2 in this case.

We now fix x1 , x2 , x3 and consider (7.4) as a ternary quadratic form in y1 , y2 , y3.
We shall require the following version of Corollary 2 in [3], which is an analogue of
Lemma 7.1.

Lemma 7.2 Let x1 , x2 , x3 be pairwise co-prime square-free integers. Let R1 , R2 , R3 be
positive real numbers. Then the number of primitive solutions y1 , y2 , y3 to the equation

x1 y2
1 + x2 y2

2 = x3 y2
3

with ∣y i ∣ ≤ R i is bounded by

O
⎛
⎝

d(x1x2x3)
⎛
⎝
(R1R2R3

∣x1x2x3∣
)

1/3

+ 1
⎞
⎠
⎞
⎠

.

Since ∣x i y2
i ∣ ≪ x1 y2

1 for i = 1, 2, it follows that

∣x1x2x3(x i y2
i )∣ ≪ ∣x1x2x3(x1 y2

1 )∣ ≤ T
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for i = 1, 2, whence

∣(x1 y1)2x2x3∣, ∣(x2 y2)2x1x3∣, ∣(x3 y3)2x1x2∣ ≪ T .

This implies that

(y1 y2 y3)2(x1x2x3)4 ≪ T3;

hence

∣y1 y2 y3∣ ≪
T3/2

(x1x2x3)2 .

Lemma 7.2 then implies that for fixed x1 , x2 , x3, the number of primitive y =
(y1 , y2 , y3) satisfying (7.4) is

O (d(x1x2x3)(
T 1/2

∣x1x2x3∣
+ 1)) .

We now sum over primitive x ∈ Z3 satisfying ∣x1x2x3∣ ≪ T 1/2, with the property that
the quadratic form Qx given by (7.4) has a rational zero. By the Hasse–Minkowski the-
orem, this is tantamount to the form Qx(y) = x1 y2

1 + x2 y2
2 − x3 y2

3 being everywhere
locally soluble. The estimation of this is interesting on its own right and will be handled
in a separate subsection.

7.2.2 Counting soluble ternary quadratic forms

In this section, we consider the set

S ={(x1 , x2 , x3) ∈ Z3 ∶ x1 , x2 , x3 > 0, gcd(x1 , x2) = gcd(x1 , x3) = gcd(x2 , x3) = 1,
x i square-free for i = 1, 2, 3, x1 y2

1 + x2 y2
2 − x3 y2

3 is everywhere locally soluble}.

By a well-known theorem of Legendre (see [12]), the indicator function for S is given
by

fS(x1 , x2 , x3) =
⎛
⎝

2−ω(x1) ∑
a1 ∣x1

( x2x3

a1
)
⎞
⎠
⎛
⎝

2−ω(x2) ∑
a2 ∣x2

( x1x3

a2
)
⎞
⎠
⎛
⎝

2−ω(x3) ∑
a3 ∣x3

(−x1x2

a3
)
⎞
⎠

.

(7.8)

We will now combine the ideas given in [12] and those in [8].
Put

S(X) = ∑
1≤x1 x2 x3≤X

∑
(x1 ,x2 ,x3)∈S

d(x1x2x3)
x1x2x3

= ∑
1≤∣x1 x2 x3 ∣≤X

d(x1x2x3)
x1x2x3

fS(x1 , x2 , x3).

Since x1 , x2 , x3 are pairwise coprime and square-free, it follows that

d(x1x2x3) = 2ω(x1 x2 x3) = 2ω(x1) ⋅ 2ω(x2) ⋅ 2ω(x3) ,
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where ω(n) is the number of distinct prime factors of n. It follows that

S(X) = ∑
1≤x1 x2 x3≤X

2ω(x1 x2 x3)

x1x2x3
fS(x1 , x2 , x3)(7.9)

= ∑
1≤x1 x2 x3≤X

1
x1x2x3

⎛
⎝

1 + (x2x3

x1
)(x1x3

x2
)(−x1x2

x3
) +∑

g
g(x1 , x2 , x3)

⎞
⎠

,

where g expresses a product of Jacobi symbols. The sum

S1(X) = ∑
1≤∣x1 x2 x3 ∣≤X

1
x1x2x3

(1 + (x2x3

x1
)(x1x3

x2
)(−x1x2

x3
))(7.10)

is expected to contribute the main term, while the sum

S2(x) = ∑
1≤x1 x2 x3≤X

1
x1x2x3

∑
g

g(x1 , x2 , x3)(7.11)

is expected to be negligible, due to the cancellation of characters.
By partial summation, we obtain

Si(X) = 1
X

Σ i(X) + ∫
X

1
Σ i(t) t

t2 ,(7.12)

where

Σ1(X) = ∑
1≤∣x1 x2 x3 ∣≤X

x1 x2 x3 square-free
Q(x1 ,x2 ,x3) is soluble

(1 + (x2x3

x1
)(x1x3

x2
)(x1x2

x3
))

and

Σ2(X) = ∑
1≤x1 x2 x3≤X

∑
g

g(x1 , x2 , x3).

Our situation differs from that of Guo in [12] since we are counting over triples with
∣x1x2x3∣ ≤ X rather than max{∣x1∣, ∣x2∣, ∣x3∣} ≤ X, which introduces some difficulties.
However, this is exactly analogous to the situation encountered by Fouvry and Kluners
in [8].

Our key proposition will be the following.

Proposition 7.3 We have the asymptotic upper bound

S(X) = O ((log X)3) .

In fact, we can refine Proposition 7.3 to give an asymptotic formula, but this is
unnecessary for our purposes.

We proceed to prove Proposition 7.3 in the remainder of the section. We begin by
showing that triples (x1 , x2 , x3) with μ2(x1x2x3) = 1 and ω(x1x2x3) large contribute
negligibly. To wit, put

S
(r)
2 (X) = ∑

1≤x1 x2 x3≤X
ω(x1 x2 x3)=r

1
x1x2x3

∑
g

g(x1 , x2 , x3).
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By the triangle inequality, it is clear that

∣S(r)2 (X)∣ ≪ ∑
n≤X

μ2(n)=1,ω(n)=r

d3(n)
n

.

By partial summation, we have

∑
n≤X

μ2(n)=1,ω(n)=r

d3(n)
n

= X−1 ∑
n≤X

μ2(n)=1,ω(n)=r

d3(n) + ∫
X

1

⎛
⎜⎜
⎝

∑
n≤t

μ2(n)=1,ω(n)=r

d3(n)
⎞
⎟⎟
⎠

dt
t2 .

To estimate the latter sum, we will need the following result, which is Lemma 11 in [8].

Lemma 7.4 There exists an absolute constant B0 ≥ 1 such that for every r ≥ 0, we have

∣{n ≤ X ∶ ω(n) = r, μ2(n) = 1}∣ ≤ B0 ⋅
X

log X
⋅ (log log X + B0)r

r!
.

Applying the lemma, we have for Ω = 30(log log X + B0)

∑
n≤X

μ2(n)=1,ω(n)≥Ω

d3(n) ≪ X
log X ∑

r≥Ω
3r ⋅ (log log X + B0)r

r!

≪ X
log X ∑

r≥Ω
(3e(log log X + B0)

r
)

r

≪ X
log X ∑

r≥Ω
(3e

10
)

r
,

the final sum a convergent geometric series. Hence,

∑
r≥Ω

(3e
10
)

r
≪ (3e

10
)

Ω
≪ 1

log X
.

We thus conclude that

∑
r≥Ω

∣S(r)2 (X)∣ ≪ 1 + (log X)−2 + ∫
X

1

dt
t(log t)2(7.13)

= O(1)
and is thus negligible.

Note that x1 , x2 ,−x3 cannot all be the same sign; otherwise, (7.4) will only have a
trivial real solution. Hence, the signs of (x1 , x2 , x3) must be (+,+,+), or (+,−,+),
since we assumed x1 > 0 and x1 y2

1 ≥ ∣x2 y2
2 ∣. By rearranging, we must thus assume

x1 , x2 , x3 > 0.
We then expand (7.11) by writing x i = x i1x i2 for i = 1, 2, 3, and

∑
1≤x1 x2 x3≤X

μ2(x1 x2 x3)=1

∑
g

g(x1 , x2 , x3)

= ∑
(x11 x12)(x21 x22)(x31 x32)≤X

1<x i1<x i for 1≤i≤3

(x21x22x31x32

x11
)(x11x12x31x32

x21
)(x11x12x21x22

x31
) .
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We now follow the strategy outlined in [8] and break up the set

{(x11 , x12 , x21 , x22 , x31 , x32) ∈ N6 ∶ x11x12x21x22x31x32 ≤ X}

by restricting the x i j ’s to intervals of the form

[A i j , ΔA i j),

where

Δ = 1 + (log X)−3 .

For a given A = (A11 , A12 , A21 , A22 , A31 , A32), put

S2(X; A) = ∑
x i j∈[A i j ,ΔA i j)

μ2(x11 x12 x21 x22 x31 x32)=1
∏i , j x i j≤X

(x21x22x31x32

x11
)(x11x12x31x32

x21
)(x11x12x21x22

x31
) .

We then have the following lemma.

Lemma 7.5 We have the bound

∑
∏ A i j≥Δ−6 X

∣S2(X; A)∣ = O (X(log X)−1) .

Proof We have

∑
∏ A i j≥Δ−6 X

∣S2(X; A)∣ ≤ ∑
Δ−6 X≤n≤X

μ2(n)=1

d3(n)

≪ ∑
Δ−6 X≤n≤X

3ω(n)

≪ (1 − Δ−6)X(log X)2 .

By Taylor’s theorem, we have

Δ−6 = (1 + (log X)−3)−6 = 1 − 6(log X)−3 + O ((log X)−6) .

The proof then follows. ∎

To proceed, we shall require the following well-known lemma regarding character
sums.

Lemma 7.6 (Double Oscillation Lemma) Let {αn}, {βm} be two sequences of com-
plex numbers with each term having absolute value bounded by 1. Let M , N be positive
real numbers. Then we have

∑
m≤M

∑
n≤N

αm βn μ2(2m)μ2(2n) (m
n
)

≪ min{(M−1/2 + (N/M)−1/2) , (N−1/2 + (M/N)−1/2)}
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and for every ε > 0,

∑
m≤M

∑
n≤N

αm βn μ2(2m)μ2(2n) ≪ε MN (M−1/2 + N−1/2) (MN)ε .

We will also need the following variant of the Siegel–Walfisz theorem.

Lemma 7.7 Let χq be a primitive character modulo q ≥ 2. Then, for every A > 1, we
have

∑
Y≤p≤X

χq(p) = OA (
√q ⋅ X(log X)−A)

uniformly for X ≥ Y ≥ 2.

We now consider, as in [8], the quantities

X† = (log X)9 , X‡ = exp ((log X)1/8) .(7.14)

We now consider those A with the property that at most two entries larger than X‡. We
dissect the sum according to the number r ≤ 2 of terms A i j greater than X‡. Let n be
the product of those x i j which are larger than X‡, and m the product of the remaining
ones. We sum over A with such properties to obtain

∑(2)

A
∣S2(X; A)∣ ≤ ∑

r≤2
∑

m≤(X‡)6−r

μ2(m)d6−r(m) ∑
n≤X/m

μ2(n)dr(n)

≪ ∑
r≤2

∑
m≤(X‡)6−r

μ2(m)d6−r(m) ( X
m
)(log X)r−1

≪ X (∑
r≤2
(log X)r−1)

⎛
⎝ ∑

m≤(X‡)6

d6(m)
m

⎞
⎠

≪ X(log X) (log exp ((log X)1/8))7

≪ X(log X)15/8 .

This is sufficiently small for our purposes.
We may now assume that A i j ≥ X‡ for at least three pairs i , j with 1 ≤ i ≤ 3, 1 ≤ j ≤ 2.

We now suppose that there exist a ≠ b such that

Aa ,2 , Ab ,1 ≥ X† .

The sum over A satisfying these properties can be bounded by

∑
A
∣S2(X; A)∣ ≤ ∑

x i j ,(i , j)≠(a ,2),(b ,1)
∏

(i , j)≠(a ,2),(b ,1)

HHHHHHHHHHH
∑
xa ,2

∑
xb ,1

α(a ,2)β(b ,1) (
xa ,2

xb ,1
)
HHHHHHHHHHH

,

where α, β have modulus at most one. Lemma 7.6 then applies, and since our variables
xa ,2 , xb ,1 range over intervals exceeding X† in length, it follows that

∣S2(X; A)∣ ≪
⎛
⎝ ∏
(i , j)≠(a ,2),(b ,1)

A i j (Aa ,2Ab ,1 (A−1/3
a ,2 + A−1/3

b ,1 ))
⎞
⎠
≪ X(X†)−1/3 = O (X(log X)−3) ,

which is again enough.

https://doi.org/10.4153/S0008414X24000075 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000075


Heights and quantitative arithmetic on stacky curves 49

Next, consider the family where the two previous conditions do not hold, and
in addition there exist a ≠ b such that 2 ≤ Ab ,1 ≤ X† and Aa ,2 > X‡. Under these
conditions, we see that

∣S2(X; A)∣ ≪ ∑
x i j ,(i , j)≠(a ,2),(b ,1)

∑
xa ,2

HHHHHHHHHHHH
∑
xb ,1

μ2 ⎛
⎝ ∏
(i , j)≠(a ,2),(b ,1)

x i j
⎞
⎠
(xa ,2

xb ,1
)
HHHHHHHHHHHH

,

where A i j ≤ x i j ≤ ΔA i j and ω(x i j) ≤ Ω for 1 ≤ i ≤ 3, 1 ≤ j ≤ 2. Now put � = ω(xa ,2),
writing

xa ,2 = p1 ⋅ ⋅ ⋅ p�

with p1 < p2 < ⋅ ⋅ ⋅ < p�, we obtain

∣S2(X; A)∣ ≪ ∑
x i j

(i , j)≠(a ,2),(b ,1)

∑
xb ,1

∑
0≤�≤Ω

HHHHHHHHHHHH
∑

ω(xa ,2)=�
μ2 ⎛
⎝∏i , j

x i j
⎞
⎠
(xa ,2

xb ,1
)
HHHHHHHHHHHH

,

the inner sum being bounded by

∑
p1 ⋅ ⋅ ⋅ p�−1

HHHHHHHHHHH
∑
p�

( p�

xb ,1
)
HHHHHHHHHHH

,

and p1 , . . . , p� satisfy Aa ,2 ≤ p1 ⋅ ⋅ ⋅ p� ≤ ΔAa ,2. Note that

p� ≥ A1/�
a ,2 ≥ exp ((log X)1/9) .

We may now apply Lemma 7.7 to obtain the bound
HHHHHHHHHHH
∑
p�

( p�

xb ,1
)
HHHHHHHHHHH
≪A A1/2

b ,1
Aa ,2

p1 ⋅ ⋅ ⋅ p�−1
(log X)−A/9 + Ω,

with A arbitrarily large. Note that p1 ⋅ ⋅ ⋅ p�−1 ≤ X, and hence

∑
p1 ⋅ ⋅ ⋅ p�−1≤X

(p1 ⋅ ⋅ ⋅ p�−1)−1 ≪ ∑
n≤X

1
n
≪ log X .

Hence,

∑(3)

A
∣S2(X; A)∣ ≪ A1/2

b ,1 ∏
i , j

A i j(log X)−A/9+1 ≪ X(log X)−A/9+11/2 .

Choosing A large shows that this contribution is negligible.
The remaining case can be summarized by the following properties:

(1) ∏i , j A i j ≤ Δ−6 X.
(2) A i j ≥ X‡ for at least three pairs of indices (i , j).
(3) If A i j , Ak� ≥ X†, then j = �.
(4) If A i j ≤ Ak� with j ≠ �, then either A i j = 1 or 2 ≤ A i j ≤ X† and Ak� < X‡.

We now show that the second option in (4) cannot happen. This will imply that
we have accounted for all possibilities for (7.11), and hence reduced our problem to
estimating S1(X).
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Suppose, without loss of generality, that 2 ≤ A11 ≤ X† and A22 < X‡. Since A i j ≥ X‡

for at least three pairs of indices (i , j), one of A12 or A32 must exceed X‡. We then have
A11 ≤ X† and A32, say, exceeds X‡, which means that our earlier estimation covers this
case.

The upshot now is that
Σ2(X) ≪A X(log X)15/8(7.15)

for some κ(A) > 0. It follows from (7.12) that

S2(X) = X−1Σ2(X) + ∫
X

1
Σ2(t)dt

t2

≪ (log X)15/8 + ∫
X

1

(log t)15/8dt
t

= (log X)23/8 ,

which is sufficiently small for our purposes.
Finally, we may evaluate the main term, which is given by (7.10). By the triangle

inequality, we have

S1(X) ≪ ∑
x1 x2 x3≤X

1
x1x2x3

= ∑
n≤X

d3(n)
n

,

which is O((log X)3). This completes the proof of the proposition.

7.2.3 Lower bounds

For the lower bound, it suffices to give an accurate count for some subset of the points
enumerated by the quantity N2(T). The arguments used here are inspired by the work
of the second author and C.L. Stewart in [19], though the situation here is slightly
simpler. To wit, we shall consider the subset of points (x, y) satisfying the condition

1 ≤ ∣y1 y2 y3∣ ≤ T δ ,(7.16)

where δ is some explicit positive number which we shall specify later. Next, we suppose
that x1 , x2 satisfy

∣x i y2
i ∣ ≤

T 1/4

2
∣y1 y2 y3∣1/2 , i = 1, 2(7.17)

Note that

∣x3 y2
3 ∣ = ∣x1 y2

1 + x2 y2
2 ∣ ≤ ∣x1 y2

1 ∣ + ∣x2 y2
2 ∣ ≤ (

1
2
+ 1

2
)T 1/4∣y1 y2 y3∣1/2 ,

whence

∣x1x2x3∣(y1 y2 y3)2 = ∣x1 y2
1 ∣∣x2 y2

2 ∣∣x3 y2
3 ∣ ≤

T3/4

4
∣y1 y2 y3∣3/2 .

Thus,

∣(x1 y2
1 )x1x2x3∣ ≤ (

T 1/4

2
∣y1 y2 y3∣1/2)(

T3/4

4
∣y1 y2 y3∣−1/2) < T .
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Therefore, every pair (x1 , x2) satisfying (7.17) with x1 , x2 both square-free and
x3 = (y2

1 x1 + y2
2x2)y−2

3 ∈ Z square-free will contribute to N2(T).
We now count pairs (x1 , x2) such that:

(1) (x1 , x2) satisfies (7.17);
(2) gcd(x1 , x2) = 1;
(3) x1 , x2 are square-free; and
(4) y2

1 x1 + y2
2x2 ≡ 0(mod y2

3), (y2
1 x1 + y2

2x2)y−2
3 is square-free.

For each prime p, we interpret conditions (2)–(4) modulo p2. Condition (2) is the
assertion that p∣x1 ⇒ p ∤ x2, Condition (3) is the assertion that for all primes p we
have p2 ∤ x1 , x2, and condition (4) is stating y2

3 ∣y2
1 x1 + y2

2x2, and if ps ∣∣y3, then p2s+2 ∤
y2

1 x1 + y2
2x2. Let

ρy(m) = #{(x1 , x2) (mod m) ∶ (2) to (4) holds for all p∣m}.

It is apparent that ρy(⋅) is multiplicative. Put

N∗(y; T) = #{(x1 , x2) ∈ Z2 ∶ (1) to (4) hold}

and

N∗b (y; T) = #{(x1 , x2) ∈ Z2 ∶ (7.17) holds, (2) to (4) holds mod b}.

By standard arguments using the inclusion–exclusion sieve, we have

N∗(y; T) = ∏
p≤Y
(1 − ρy(p2k)

p2k
) T 1/2

∣y1 y2 y3 ∣
+ O
⎛
⎝ ∑

Y<p<T 1/8 ∣y1 y2 y3 ∣1/4 max{∣y1 ∣−1 ,∣y2 ∣−1}

( T 1/2

p2 ∣y1 y2 y3 ∣
+ 1)
⎞
⎠

,

the error term being bounded by

O ( T 1/2

Y ∣y1 y2 y3∣
+ T 1/8∣y1 y2 y3∣1/2

min{∣y1∣, ∣y2∣}
) .

Since ∣y1 y2 y3∣ ≤ T δ , we obtain an acceptable error term provided that δ < 1/4. This
shows that

N(T) ≫ ∑
1≤∣y1 y2 y3 ∣≤Tδ

N∗(y; T) ≫ ∑
1≤∣y1 y2 y3 ∣≤Tδ

T 1/2

∣y1 y2 y3∣
.

Since

∑
1≤∣y1 y2 y3 ∣≤Z

∣y1 y2 y3∣−1 ≫ ∑
n≤Z

d3(n)n−1 ≫ (log Z)3 ,

this confirms the lower bound.

7.3 Counting points with respect to the canonical height when χ(X) < 0

In this section, we first prove that the number of quadratic points on a hyperelliptic
curve given by the model

CF ∶ z2 = F(x , y)
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where F is an integral, non-singular binary form having degree 2g + 2 with g ≥ 2, is
dominated by the “obvious” points given by triples (x , y,

√
F(x , y)). To show that the

proper quadratic points are negligible, we note that when g = 2 the proper quadratic
points, which come in conjugate pairs, are in bijection with the rational points of the
Jacobian Jac(CF) via the correspondence [P] ↦ [P1 + P2] − KCF , where KCF is the
canonical divisor. Thus, in this case, the proper quadratic points of bounded height
are given by the rational points of bounded height in Jac(CF)(Q), for which there are
OF((log T)rF ) many, where rF is the Mordell–Weil rank of Jac(CF). For g ≥ 3, the
proper quadratic points are finite by Faltings’ theorem. Thus, the number of quadratic
points on CF is asymptotically equal to the number of rational points inP1

Q of bounded
height.

To the contrary, for X = X(P1 ∶ (a, m)) with χ(X) < 0, we get a much less reason-
able result. This is because we have little control over the set of integers x , y such that
�i(x , y) is divisible by a large square for i = 1, . . . , n. Even with the abc-conjecture,
there is only so much that can be shown. In the case when m = (2, . . . , 2), we have the
following.

Theorem 7.8 LetX = X(P1 ∶ (a, m)) be a stacky curve with m = (2, . . . , 2)
KLLLLLLLLLLLLLLLLLMLLLLLLLLLLLLLLLLN

n

with n ≥ 5.

Let Na,n(T) be the number of rational points on X satisfying H(a,m)(x , y) ≤ T. Assume
that the abc-conjecture holds. Then, for any ε > 0, we have

N(a,m)(T) ≪ε T
1

n−3+ε .

Proof This is similar to the proof of Theorem 2.6. We conclude from that proof that

n
∏
i=1
∣x i y i ∣ ≥ rad(

n
∏
i=1

�i(x , y)) ≫ε max{∣x∣, ∣y∣}n−2−ε ,

and
n
∏
i=1
∣x i y2

i ∣ ≪ max{∣x∣, ∣y∣}n

by the triangle inequality. Comparing, we conclude that

n
∏
i=1
∣y i ∣ ≪ε max{∣x∣, ∣y∣}2+ε

and in turn
n
∏
i=1
∣x i ∣ ≫ε max{∣x∣, ∣y∣}n−4−ε .

It follows that

H(a,m)(x , y) = max{∣x∣, ∣y∣}n−4
n
∏
i=1
∣x i ∣ ≫ε max{∣x∣, ∣y∣}2n−8−ε .
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Hence, N(a,m)(T) is bounded by the number of rational points in P1
Q having height

at most Oε (T 1
2n−8−ε ), which is Oε (T 1

n−4−ε ). By adjusting ε, we see that

N(a,m)(T) ≪ε T
1

n−4+ε . ∎

Remark 7.9 We do not expect the upper bound given in Theorem 7.8 to be sharp.
Indeed, the bound we obtain essentially comes from the scenario that for almost
all integers m ≪ε T2+ε that there exist x , y with max{∣x∣, ∣y∣} ≪ε T2+ε with Q(x , y)
divisible by m2. We expect that this should not be the case.

7.4 Hasse principle for integral points when m = (2, 2, 2)

We now consider the question of whether the Hasse principle holds for integral points
on stacky curves of the shape X = X(P1

Q ∶ (a1 , a2 , a3), (2, 2, 2)). By Theorem 3.20 it
suffices to consider when it is possible for the stacky part of the height to be equal
to one. This is tantamount to requiring the existence of co-prime integers x , y and
integers y1 , y2 , y3 for which

∣�i(x , y)∣ = y2
i for i = 1, 2, 3.

Here, as we recall, �i(x , y) = α i x − β i y, with a i = [α i ∶ β i]. For i = 1, 2, we obtain a
system of linear equations

[α1 −β1
α2 −β2

] [x
y] = [

y2
1

y2
2
] .

Inverting, we find that

[x
y] =

1
α1β2 − α2β1

[β2 −β1
α2 −α1

] [y2
1

y2
2
] .

It follows that

(α1β2 − α2β1)y2
3 = α3 (β2 y2

1 − β1 y2
2) − β3 (α2 y2

1 − α1 y2
2) ,

which we can write as

(α2β3 − α3β2)y2
1 − (α1β3 − α3β1)y2

2 + (α1β2 − α2β1)y2
3 =

HHHHHHHHHHHHH

y2
1 y2

2 y2
3

α1 α2 α3
β1 β2 β3

HHHHHHHHHHHHH
= 0.

Therefore, the existence of the integers y1 , y2 , y3, and hence x , y, depends on whether
this conic has a rational point.
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