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In this article, we study the higher-order Moreau’s sweeping process introduced in [1],

in the case where an exogenous time-varying function u(·) is present in both the linear

dynamics and in the unilateral constraints. First, we show that the well-posedness results

(existence and uniqueness of solutions) obtained in [1] for the autonomous case, extend to

the non-autonomous case when u(·) is smooth and piece-wise analytic, after a suitable state

transformation is done. Stability issues are discussed. The complexity of such non-smooth

non-autonomous dynamical systems is illustrated in a particular case named the higher-order

bouncing ball, where trajectories with accumulations of jumps are exhibited. Examples from

mechanics and circuits illustrate some of the results. The link with complementarity dynamical

systems and with switching differential-algebraic equations is made.
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1 Introduction

The sweeping processes are a well-known class of differential inclusions, introduced by

Moreau [22,23], and which has had numerous extensions since then (see, e.g., [3,15,20,30]

and references therein). The so-called higher-order sweeping process (HOSP) was intro-

duced in [1]. The primary objective of the HOSP is to settle a dynamical formalism, which

provides a mathematical framework for a state or state-control unilaterally constrained

dynamical system of the form

{
ẋ(t) = Ax(t) + Bλ(t) + Eu(t)

0 � w(t) = Cx(t) + Fu(t)
(1.1)

where x(t) ∈ IRn is the state, u : IR+ �→ IRp is an input or exogenous disturbance, λ(t) ∈ IRm
is a Lagrange multiplier, w(t) ∈ IRm is an ‘output’ signal, A ∈ IRn×n, B ∈ IRn×m, C ∈ IRm×n,
E ∈ IRn×p, F ∈ IRm×p. These systems are square because λ and w necessarily have the

same dimension, λ being a Lagrange multiplier associated with the constraint w(t) � 0

for all t � 0. The complete analysis of the HOSP (including time-discretization) is done

in the autonomous case [i.e., u(·) = 0 in (1.1)] in [1] by embedding (1.1) into a specific

Distribution Differential Inclusion (DDI) that is an extension of the second-order sweeping
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process, which is tailored to Lagrangian systems. The applications may be found in

optimal control with state inequality constraints [10] as well as in feedback control of

circuits [1, Section 6]. The analysis is also close to viability studies [4, 17] if one thinks of

λ as an exogenous input (and not as a Lagrange multiplier associated with the inequality

constraint). Within this framework the term Bλ + Eu(·) may be considered as an input

whose distributional part is λ while its function part is u(·).
Consider for instance the system ẋ1(t) = x2(t), ẋ2(t) = x3(t), ẋ3(t) = u(t)+λ(t), 0 � x1(t).

Suppose that u(·) is a bounded function, and that x2(0) < 0, x1(0) = 0, x3(0) = 0. If λ(·) is

a bounded function, then x1(t) becomes negative in a right neighbourhood of t = 0. The

only solution to keep the non-negativity of x1(·), is to make x2(·) jump to a non-negative

value at t = 0. This implies that x3(·) must be a Dirac measure with atom at t = 0, and

λ is the derivative of a Dirac measure. Consequently the dynamical system has to be

interpreted in a suitable way to make sense, as it involves in a natural way distributions

of higher degree, and the state jumps have to be incorporated in the analysis. Finally, in-

between state jumps, one has to guarantee that the trajectories do not leave the admissible

domain w(t) � 0, when the system ‘slides’ on the boundary w(t) = 0. Again this can be

done with a suitable choice of the multiplier λ, which acts as a ‘force’ that keeps the state

inside the admissible domain.

The HOSP allows to treat all system’s modes (‘sliding contact’, state jumps, free-motion

inside the admissible domain) in a single dynamical formalism. It indicates how to design

λ to assure the positive invariance of the moving polyhedral set Φu
Δ
= {x ∈ IRn |

Cx + Fu(t) � 0}. Consequently it is of interest to characterize in a precise way the

nature of the solutions. The functional framework for the autonomous HOSP is carefully

introduced in [1], where solutions are a subclass of Schwartz distributions constructed

from functions of local special bounded variation. Whether or not the solutions possess

accumulations of state jumps is an important feature. In this article, it is shown with

specific input functions u(·) that left-accumulations of state jumps (i.e., accumulations on

the left of some time) may occur in the non-autonomous HOSP. The basic idea is to

consider systems which are ‘higher order bouncing balls’. More specifically, one may view

them as a chain of integrators with a constant input, and a specific ‘impact law’, which acts

on the derivatives of the constrained signal w(·). In the mechanical bouncing ball system,

w(·) is the continuous position of the ball, whereas ẇ(·) is its discontinuous velocity.

This article is organized as follows. Section 2 is devoted to the analysis of a state trans-

formation, which allows to recast (1.1) into a suitable canonical form for the subsequent

existence and uniqueness of solutions analysis. Section 3 recalls the HOSP framework in

which (1.1) is embedded, and states the well-posedness of the non-autonomous HOSP.

In Section 4, the relationships between the HOSP and complementarity systems, as well

as switching DAEs, are explained. In Section 5, we study a particular case of the non-

autonomous HOSP (named the higher-order bouncing ball for obvious analogy with

Mechanics), and we show that the so-called restitution coefficients play a crucial role

in the dynamical behaviour. Section 6 deals with the existence of equilibria, stability,

and positive invariance. Conclusions end the article in Section 7, and some auxiliary

mathematics are in the Appendix.

Notations and definitions: The indicator function of a set Φ ⊂ IRn is defined as ψΦ(x) = 0 if

x ∈ Φ, ψΦ(x) = +∞ if x � Φ. When Φ is closed, non-empty and convex, so is ψΦ(·) and its
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subdifferential ∂ψΦ : IRn � IRn is a set-valued mapping, equal to the normal cone NΦ(x)

to Φ at x. We have NΦ(x) = {0} if x is in the interior of Φ. A matrix M is positive definite

(M > 0) if and only if xTMx > 0 for all x �= 0. The projection of a vector x ∈ IRn on

Φ, in the metric defined by M = MT > 0, is denoted as projM[Φ; x]. The lexicographical

inequality: (x1, x2, . . . , xn) � 0 means that either all xi = 0, or the first non-zero xi > 0.

Let n and r be integers. The n × n identity matrix is In, 0n = (0, 0, . . . , 0)T ∈ IRn×1,

0n = (0, 0, . . . , 0) ∈ IR1×n, 0n×r ∈ IRn×r is the zero n× r matrix. Let M be a matrix with n

rows, then Mr̄ ∈ IRr×n denote the first r rows of M, Mp its last p rows. For a matrix M,

Mi• is its ith row, M•i is its ith column. A square matrix M ∈ IRn×n is a Stieltjes matrix

if [16, Definition 3.11.1]: M = MT , Mij � 0 for all 1 � i � n, 1 � j � n, i �= j, and M is a

P-matrix (hence, it is positive definite since it is symmetric). If M is a Stieltjes matrix, then

M−1 is symmetric non-negative, i.e. the entries (M−1)ij are non-negative for all i, j. For

a square matrix M, λmax(M) denotes its largest eigenvalue, λmin(M) denotes its smallest

eigenvalue.

2 State transformation into a canonical form

The analysis of the autonomous HOSP with u(·) = 0 is made in [1] from a specific

state-space representation which allows to settle a suitable functional set of potential

solutions that are Schwartz’ distributions. In this section, we show how to extend this

canonical transformed dynamics for (1.1), which will be useful for the well-posedness

analysis. Let m = 1 and let the transfer function C(sIn − A)−1B �= 0, s ∈ C. Then,

there exists 1 � r � n, that is the relative degree between w and λ. In other words,

CAi−1B = 0 for all 1 � i � r − 1 and the scalar CAr−1B �= 0. Let us assume that u(·)
is r-times differentiable, and let us denote U(t) = (u(t)T , u̇(t)T , ..., u(r−1)(t)T )T ∈ IRrp,

and W(t) = (u(t)T , u̇(t)T , . . . , u(r)(t)T )T ∈ IR(r+1)p. Let us perform the extended state

transformation1:

z = Wx+ TU (2.1)

with z =

(
z̄

ξ

)
, z̄ = (z1, z2, . . . , zr)

T , ξ ∈ IRn−r , and where

zi(t) = CAi−1x(t) +

i−2∑
j=0

CAjEu(i−2−j)(t) + Fu(i−1), (2.2)

with 2 � i � r, z1(t) = w(t) = Cx(t) + Fu. Notice that żi = zi+1, 1 � i � r − 1. Due to the

existence of a relative degree between w and λ, there exists a matrix W ∈ IRn×n, which is

full-rank and such that [27]

WB =

⎛
⎝ 0r−1

CAr−1B

0n−r

⎞
⎠ ∈ IRn, CW−1 =

(
1 0n−1

)
∈ IR1×n (2.3)

1 ‘Extended’ refers here to the fact that this transformation involves both the state and the

exogenous term.
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WAW−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0n−r

0 0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . . . . 0 1 0n−r
d1 d2 d3 . . . dr dTξ
Bξ 0n−r 0n−r . . . 0n−r Aξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.4)

where Aξ ∈ IR(n−r)×(n−r), Bξ ∈ IR(n−r)×1, and (dT , dTξ ) = (CArW−1)T with d = (d1, . . . , dr)
T .

Moreover, from the definition of the variables zi in (2.2), we have

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 0p 0p . . . . . . 0p 0p
CE F 0p . . . 0p 0p 0p
CAE CE F . . . 0p 0p 0p

...
...

...
... F 0p

CAr−2E CAr−3E . . . . . . CAE CE F

0(n−r)×p 0(n−r)×p . . . . . . . . . 0(n−r)×p 0(n−r)×p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ IRn×rp. (2.5)

The matrix W being full-rank, the state transformation is bijective and x = W−1(z−TU).

This allows one to transform (1.1) into the following canonical form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = z2(t)

ż2(t) = z3(t)
...

żr−1(t) = zr(t)

żr(t) = CArW−1z(t) − CArW−1TU(t) + CAr−1Bλ+
∑r−1

i=0 CA
iEu(r−1−i)(t) + Fu(r)

ξ̇(t) = Aξξ(t) + Bξz1(t) + GξU(t)

0 � w(t) = z1(t)
(2.6)

for some matrix Gξ ∈ IR(n−r)×rp such that GξU(t) = −Wn−rAW
−1TU(t) + Wn−rEu(t) +

Tn−rU̇(t). This stems from the fact that ξ̇ = Wn−rẋ + Tn−rU̇ . Noting that Tn−r = 0,

we obtain ξ̇ = Wn−rAW
−1z −Wn−rAW

−1TU +Wn−rBλ+Wn−rEu, and using (2.3) and

(2.4) yields the result (in particular Wn−rB = 0(n−r)×m). In Systems and Control the

ξ−dynamics is called the zero dynamics. As we shall see later, the zero-dynamics plays

a crucial role in the system’s behaviour when trajectories evolve on the boundary of Φu.

Notice that adding the term TU in the state transformation is necessary to obtain the

chain of integrators in (2.6), but the zero-dynamics depends in general on u(·) and its

derivatives. Let us denote
∑r−1

i=0 CA
iEu(r−1−i)(t) + Fu(r) − CArW−1TU(t) = ḠW(t) for a

suitable constant row vector Ḡ ∈ IR1×(r+1). One can then rewrite the rth line of (2.6) as

żr(t) = CArW−1z(t) + CAr−1Bλ+ ḠW(t) (= dT z̄ + dTξ ξ + CAr−1Bλ+ ḠW(t)), (2.7)
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where Ḡ ∈ IR1×(r+1)p, and the dynamics in (2.6) more compactly as

ż(t) = WAW−1z(t) +WBλ(t) +HW(t) (2.8)

where H ∈ IRn×(r+1)p is a suitable matrix obtained from ḠW and WξU by grouping the

terms of equal derivation index in U and W . Obviously we may also calculate (2.8) from

ż(t) = WAW−1z(t) +WBλ(t) +WEu(t) + T U̇(t) −WAW−1TU(t) (2.9)

so that HW = WEu + T U̇ −WAW−1TU . Notice that one may have T = 0 but this

does not mean that the transformed dynamics is independent of u(·). We still assume that

m = 1 and that ei � 0, 1 � i � r.

Example 2.1 Let us consider the system with n = 4, p = 1,

A =

⎛
⎜⎜⎝

2 7 3 − 2α −2β + 2

−1 −3 −1 + α β − 1

0 0 0 1

1 2 1 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

−2

1

0

0

⎞
⎟⎟⎠ , C =

(
1 2 0 0

)
,

where α, β ∈ IR, F = 0 and E = (1 1 1 1)T . We have CB = 0 and CAB = 1, and hence

r = 2. The transformed dynamics may be obtained from (2.9) as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1(t) = z2(t)

ż2(t) = λ(t) − z1(t) − z2(t) + αξ1(t) + βξ2(t) + (5 − 2α)u(t) + 3u̇(t)

ξ̇1(t) = ξ2(t) + u(t) + 2u̇(t)

ξ̇2(t) = ξ1(t) + z1(t) + 3u(t)

0 � w(t) = z1(t)

(2.10)

In this example, one has W =

(
1 2 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
, T = (0 3 2 0)T . The derivative of u(·) enters the

ξ−dynamics, which in turn enters the z̄-dynamics in ż2(t).

Other examples can be found in Section 4.3. It is worth remarking that the ξ−dynamics

may enter the z̄-dynamics as shown in (2.10). Therefore, the well-posedness analysis has

to be made from the most general case in (2.6).

3 Embedding into the HOSP

In this section, we briefly recall the mathematical tools and formalisms, which are necessary

to construct the HOSP, a particular DDI. First, the set of solutions is introduced, then

the DDI, the state-jump mapping and the link with complementarity are presented. The

complete developments can be found in [1, Sections 2–4].

3.1 The space of distributional solutions

Let I = [α, β], α ∈ IR, β ∈ IR∪{+∞}, be a real non-degenerate interval. We denote as Tn(I)
the set of distributions of degree n + 1, which are generated by RCSLBV functions on
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I [see (B 1) and (B 2) in Appendix B], whose successive derivatives possess an absolutely

continuous part (denoted as [·]), that is also RCSLBV on I . More precisely, the right

derivative of the absolutely continuous component [h] of h(·) is denoted as ĥ(1) Δ
= d+[h]

dt
(t) =

limσ→0+
[h](t+σ)−[h](t)

σ
. The set of such functions is denoted as F∞(I; IR) = ∩k∈INFk(I; IR),

with

Fk(I; IR) = {h ∈ Fk−1(I; IR) | ĥ(k) Δ
=
d+

dt
[ĥ(k−1)] ∈ RCSLBV (I; IR)}. (3.1)

In particular F0(I; IR) = RCSLBV (I; IR), and F1(I; IR) = {h ∈ F0(I; IR) | ĥ(1) ∈
RCSLBV (I; IR)}. Furthermore, ĥ(1) = [ĥ(1)] + Jĥ(1) (see (B 1)), and F2(I; IR) = {h ∈
F1(I; IR) | ĥ(2) Δ

= d+

dt
[ĥ(1)] ∈ RCSLBV (I; IR)}.

If the distribution T ∈ Tn(I) and is generated by a function F ∈ F∞(I; IR), it has a

‘function’ part denoted as {T}(·) = [F̂ (n)](·), and a ‘measure’ part denoted as 
 T �
such that 〈
 T �, ϕ〉 =

∫ +∞
−∞ ϕ d[F̂ (n−1)], for all ϕ ∈ C∞

0 (I). D denotes the distributional

derivative, and dz denotes the Stieltjes or differential measure generated by a function z of

local bounded variation (see Appendix B), while C∞
0 (I) is the space of real-valued C∞(I)

mappings with compact support contained in ]α, β[. Thus, given n ∈ IN, Tn(I) denotes the

set of all Schwartz’ distributions such that there exists a function F ∈ F∞(I; IR) such that

T = DnF . We have T0(I) = F∞(I; IR). Let n be the smallest integer such that T ∈ Tn(I),
we set the degree of T as

deg(T ) =

⎧⎨
⎩
n+ 1 if n � 1

1 if n = 0 and E0({T}) �= ∅
0 if n = 0 and E0({T}) = ∅

(3.2)

where E0(f) denotes the set of points of discontinuity of the function f. Distributions of

degree n = 0 are continuous functions in F∞(I; IR), those of degree n = 1 are discontinuous

functions in F∞(I; IR). The nth derivative of the Dirac measure, δ(n)
t (t ∈ I) is of degree

n + 2. This concept of solutions is an extension of the case of Non-smooth Mechanics,

where positions are locally absolutely continuous, velocities are RCLBV, accelerations are

the differential measures of the velocities [20].

Finally, let us define the set T∞(I) = ∪n∈INTn(I): a Schwartz distribution belongs to

T∞(I) if there exist n ∈ IN and F ∈ F∞(I; IR) such that T = DnF . This set contains

Bohl distributions, which are used elsewhere for the analysis of Linear Complementarity

Systems (LCS) [14]. Within this functional framework for solutions, the system’s state is

allowed to be discontinuous with accumulations of discontinuity times; however, the set

of state-jump times is countable. For examples of functions in F∞(I; IR) and distributions

in T∞(I), see [1, Examples 1, 2, 3].

3.2 The distribution differential inclusion

Let us first recall that, in order to simplify the presentation we shall continue to assume

that m = 1. In [1, Remarks 3, 7, 20] it is indicated how the material extends to the

multivariable (MIMO) case m � 2, when CAr−1B is a Stieltjes matrix. We shall come

back on the MIMO case in Section 4.1. Let K be a non-empty closed convex subset of
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IR. We denote by TK (x) the tangent cone of K at x ∈ IR defined by

TK (x) = cone(K − {x}) (3.3)

where cone(K − {x}) denotes the cone generated by K − {x} and cone(K − {x}) denotes

the closure of cone(K − {x}), i.e. cone(K − {x}) = cone(K − {x}). The definition in (3.3)

allows us to take into account constraints violations. Note that TIR+
(x) =

{
IR if x > 0
IR+ if x � 0

and TIR(x) = IR. Let us now set Φ
Δ
= IR+. For z ∈ IRr , we set Zi = (z1, z2, . . . , zi), (1 �

i � r). By convention, we set Z0 = 0 and T 0
Φ(Z0) = Φ, and we define T 1

Φ(Z1) = TΦ(z1),

T 2
Φ(Z2) = TT 1

Φ(Z1)(z2), T
r
Φ(Zr) = TT 1

Φ(Zr−1)(zr) (so that Zr = z̄). To summarize

T i
Φ(Zi) = TTi−1

Φ (Zi−1)
(zi), for all 1 � i � r. (3.4)

It follows that z1 > 0 ⇒ T i
Φ(Zi) = IR and ∂ψTi

Φ(Zi)(·) = {0} for all 1 � i � r. Moreover

assume that there exists j ∈ {1, r − 1} such that z1 � 0, . . . , zj � 0, and zj+1 > 0. Then,

T 0
Φ(Z0) = T 1

Φ(Z1) = . . . = T
j
Φ(Zj) = IR+, and Tj+1

Φ (Zj+1) = . . . = Tr−1
Φ (Zr−1) = IR. Let us

finally remind that ∂ψIR(x) = {0} for all reals x, ∂ψIR+
= {0} if x > 0, ∂ψIR+

(0) = IR−.

We now pass to the DDI. Let T > 0, T ∈ IR ∪ {+∞} be given and set I = [0, T [.

Let zT0 = (z̄T0 , ξ
T
0 ) be given in IRn with z̄0 ∈ IRr and ξ0 ∈ IRn−r . We also introduce a set

(e1, . . . , er) of r real numbers named restitution coefficients from an obvious analogy with

Mechanics. The choice of these coefficients depends on the application (for instance in

Mechanics the restitution applied to the velocity belongs to [0, 1] because of the kinetic

energy dissipation and kinematic consistency [12]). Let us denote

ζi(t) =
{zi}(t+) + ei{zi}(t−)

1 + ei
, 1 � i � r. (3.5)

The DDI formalism is as follows:

Problem HOSP(z0;I): Find z1, . . . , zr ∈ T∞(I) and ξi ∈ T∞(I) (1 � i � n − r), satisfying

the distributional differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dz1 − z2 = 0

Dz2 − z3 = 0

Dz3 − z4 = 0
...

Dzr−1 − zr = 0

Dzr − CArW−1{z} − ḠW = CAr−1Bλ

Dξ = Aξξ + Bξz1 + GξU ,

(3.6)

λ = (CAr−1B)−1
[∑r−1

i=1 D(r−i) 
 Dzi − {zi+1} �
]
+ 
 Dzr − CArW−1{z} �

−(CAr−1B)−1ḠW ,
(3.7)
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and satisfying the Measure Differential Inclusion (MDI) on ]0, T [:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d{z1} − {z2}(t)dt ∈ −∂ψΦ(ζ1(t)),

d{z2} − {z3}(t)dt ∈ −∂ψT 1
Φ({Z1}(t−))(ζ2(t)),

...

d{zr−1} − {zr}(t)dt ∈ −∂ψTr−2
Φ ({Zr−2}(t−))(ζr−1(t)),

(CAr−1B)−1[d{zr} − CArW−1{z}(t)dt− ḠWdt] ∈ −∂ψTr−1
Φ ({Zr−1}(t−))(ζr(t)),

(3.8)

and the initial conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{z1}(0+) − z1(0
−) ∈ −∂ψΦ(ζ1(0)),

{z2}(0+) − z2(0
−) ∈ −∂ψT 1

Φ(Z1(0−))(ζ2(0)),
...

{zr−1}(0+) − zr−1(0
−) ∈ −∂ψTr−2

Φ (Zr−2(0−))(ζr−1(0)),

(CAr−1B)−1[{zr}(0+) − zr(0
−)] ∈ −∂ψTr−1

Φ (Zr−1(0−))(ζr(0)),

{ξ}(0+) = ξ0.

(3.9)

(see Remark 3.1 about the initial data z0 definition). The rationale behind the expression

of λ in (3.7), is that this is a distribution whose degree depends on which of the state

components zi, 1 � i � r, are discontinuous. The fact that the state-space representation

uses a chain of integrators, explains the term between brackets in (3.7). For instance,

a jump in z1 will propagate through the differentiations and induce a distribution of

degree 2 in z2 (a Dirac measure), or degree 3 in z3, of degree r in zr , and finally of degree

r+1 in λ. For more details see [1, Equations (32)–(40), Example 7]. In the MDI formalism

(3.8), one considers only the measure parts of the distributions in order to give a meaning

to the inclusions into normal cones. In view of (3.6), (3.7) and (3.8), it is legitimate to

name the HOSP a DDI.

The rationale behind the choice for the normal cones to the tangent cones in the right-

hand sides of the differential inclusions in (3.8), is that this guarantees, as we will see in

the next sections, that any solution of the HOSP satisfies z1(t)(= w(t) = Cx(t)+Fu(t)) � 0

for all t > 0 (i.e., except possibly initially on the left of t = 0) even if some of the

derivatives of z1(·) tend to make it leave this admissible domain. One can view this in the

n-dimensional state space, as trajectories ‘grazing’ the admissible domain boundary w = 0

with a certain degree of tangency [that corresponds to the number of null derivatives of

z1(·)]: the selections inside the normal cones as defined in (3.8) secure that if the first non-

zero derivative has a negative sign on the left of t, then it jumps to a non-negative value

on the right of t. Actually, the construction of the normal cones sequence imposes the

lexicographical inequality {z̄}(t+) � 0. The fact that the measures dνi
Δ
= d{z}i − {zi+1}dt,

1 � i � r− 1, do not appear in the right-hand side of (2.8) [only λ does, see WB in (2.3)]

stems from the fact that these measures are present in the MDI formalism only to take

into account state re-initializations.

The set-valued functions in the right-hand side of (3.9) naturally extend the second-

order sweeping process right-hand side (called Moreau’s set [12]), and hence it is justified
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to name (3.6)–(3.9) a HOSP, though higher-relative-degree sweeping process could be

more appropriate.

Remark 3.1 If z denotes a solution of Problem HOSP(z0;I), we will write by convention

that {z̄}(0−) = z̄0, {ξ}(0−) = ξ0. Then, the relations in (3.8) formulated on ]0, T [ together

with the initial conditions in (3.9) reduce to the relations in (3.8) formulated on I = [0, T [.

The solutions of the Problem HOSP(z0; I) are distributions of a certain degree as the next

proposition shows.

Proposition 3.1 [1, Proposition 3] Let (z1, . . . , zr, ξ) ∈ (T∞(I))n be a solution of Problem

HOSP(z0;I). Then, deg(zi) � i for all 1 � i � r, and z1 = {z1} ∈ F∞(I; IR), ξ = {ξ} ∈
(F∞(I; IR))n−r ∩ (C0(I; IR))n−r .

The proof follows the same arguments as in [1, Example 1] and it is intuitively clear from

(3.6), since z2 = Dz1, z3 = Dz2 = D2z1, etc., while z1 and ξ are functions of time (with z1
possibly discontinuous).

3.3 The state jump mapping

Another way to write the MDI in (3.8) is as follows: find z1, . . . , zr, ξ1, . . . , ξn−r ∈ F∞(I; IR)

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1 = z2(t)dt+ dν1
dz2 = z3(t)dt+ dν2
...

dzr−1 = zr(t)dt+ dνr−1

dzr = CArW−1z(t)dt+ ḠW(t)dt+ CAr−1B dνr
dξ = (Aξξ(t) + Bξz1(t) + GξU(t))dt,

(3.10)

where dνi denotes Radon measures, dzi (1 � i � r) is the differential measure generated

by zi, and the measures dνi satisfy the inclusions [see (3.8)]:

dνi ∈ −∂ψTi−1
Φ ({Zi−1}(t−))(ζi(t)) on I, for all 1 � i � r. (3.11)

Roughly speaking, we retain only the measure part of the DDI, and the multiplier λ is

replaced in the MDI formalism by the measure dνr . It makes sense then to write inclusions

into normal cones as in (3.8) or (3.11) since measures are signed while distributions are

not (see [1, Section 2] for the rigorous mathematical meaning of the inclusions in (3.11)).

The relationship between λ and dνr is further understood by the fact that outside the

atoms of the measures dνi, 1 � i � r, each measure satisfies dνi = χi(t)dt for some function

χi ∈ F∞(I; IR), and λ = χr(t).

The following holds [1, Propositions 4 and 5, Remark 15 (iii)].
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Proposition 3.2 Let m = 1 and CAr−1B > 0. Let z be a solution of the Problem

HOSP(z0; I) in (3.6)–(3.9). One has{
{zi}(t+) − {zi}(t−) ∈ −∂ψTi−1

Φ ({Zi−1}(t−))(ζi(t)) for all 1 � i � r − 1

{zr}(t+) − {zr}(t−) ∈ −(CAr−1B) ∂ψTr−1
Φ ({Zr−1}(t−))(ζr(t)) for i = r

(3.12)

if and only if

{zi}(t+) = −ei{zi}(t−) + (1 + ei)proj
[
T i−1
Φ ({Zi−1}(t−)); {zi}(t−)

]
. (3.13)

Moreover:

dνi({t}) = d{zi}({t}) − {zi+1}(t)dt({t}) = d{zi}({t}) = {zi}(t+) − {zi}(t−)

for all 1 � i � r − 1, and

(CAr−1B) dνr({t}) = d{zr}({t}) − CArW−1{z}(t)dt({t}) = d{zr}({t})
= {zr}(t+) − {zr}(t−).

(3.14)

It follows that if T i
Φ({Zi}(t−)) = IR+ and if {zi+1}(t−) < 0, then {zi+1}(t+) =

−ei+1{zi+1}(t−) so that sign({zi+1}(t+)) =sign(ei+1). We infer that {zi+1}(t−) � 0 ⇒
ei+1 � 0: only non-negative coefficients ei bring the trajectories back in the admissible

domain when a grazing trajectory tends to leave it. We therefore choose in the following

ei � 0 for all 1 � ei � r (we shall see in Section 5 that further bounds may be imposed

on ei to better characterize the system’s behaviour, see Lemma 5.1). In the case m = 1,

both expressions in (3.12) are the same as long as CAr−1B > 0; however, when m � 2 the

expression for i = r is crucial.

As alluded to above, in the HOSP formalism the positivity of the multiplier λ, that

makes sense only if λ is a measure, is replaced by the positivity of the measure dνr , which

is the ‘measure part’ of the distribution λ. The definition of dνr is clear from (3.14): it is

defined from the discontinuity in the function part of zr .

3.4 Existence and uniqueness of solutions

Following [1], let us first define the class of solutions.

Definition 3.1 Let 0 � a < b � T � +∞ be given. We say that a solution z ∈
(T∞([0, T [))n of Problem HOSP(z0; [0, T [) is regular on [a, b[ if for each t ∈ [a, b[, there

exists a right neighbourhood [t, t+ σ[ (σ > 0) such that the restriction of {z} to [t, t+ σ[

is analytic.

Regular solutions do not hamper the existence of Zeno behaviour with possible left

accumulations of state jump times; however, they preclude accumulations on the right.

Let us state the following fundamental assumption on the input u(·).

Assumption 3.1 The function u : IR+ → IRp is a smooth, piece-wise analytic and bounded

function, such that sups∈[0,T ] ‖HW(s)‖2 � αeβT for some α > 0, β ∈ IR.
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Such an assumption may appear quite stringent. However, the analyticity of the data has

been shown to be necessary for the uniqueness of solutions of mechanical systems with

unilateral constraints and impacts, see, e.g., [5, 9, 25, 28], preventing the appearance of

infinity of state jumps on the right of some accumulation points. It is therefore a common

assumption for systems with state unilateral constraints.

Theorem 3.2 (Global existence and uniqueness in the class of regular solutions) Let

CAr−1B > 0 and Assumption 3.1 hold. For each z0 ∈ IRn, Problem HOSP(z0; [0,+∞[)

has at least one regular solution z such that: i) z1 ≡ {z1} � 0 on [0,+∞[, ii) ||{z}(t)|| �
max(zmax(t), e

Λt(||z0 + βt)) for all t ∈ [0,+∞[, iii) If z∗ is a regular solution of problem

HOSP(z0; [0, T ∗[), 0 < T ∗ � +∞, then 〈z∗, ϕ〉 = 〈z, ϕ〉 for all ϕ ∈ C∞
0 ([0, T ∗[; IRn).

The proof of Theorem 3.2 can be found in [13, Section 4]. On the one hand, the complete

proof is rather long; on the other hand, it happens that the proof of several key results is

not changed compared with the autonomous case. Therefore, in the well-posedness proof,

only the results of [1, Sections 4.3, 4.4, 4.6] need to be modified in order to comply

with the non-autonomous case and ei > 0 (only the case ei = 0 is treated in [1]). It is

still assumed that m = 1; however, the results still hold in the multivariable case m � 2,

provided that the vector relative degree is r̄ = (r, r, . . . , r)T for some 0 � r � n, and the

so-called decoupling matrix CAr−1B is a Stieltjes matrix. We shall give more details on

the case m � 2 in Section 4.1.

4 The link with complementarity systems and switching DAEs

There is a close link between the DDI in (3.6)–(3.8) and complementarity systems. This

stems from the MDI in (3.10). We may write each measure dνi as

dνi = χi(t)dt+ dJi, (4.1)

where χi ∈ F∞(I; IR) and dJi is an atomic measure with countable set of atoms generated

by a right-continuous jump function Ji.

Theorem 4.1 [1, Theorem 1, Remark 14] Let m = 1, and z be a solution of Problem

HOSP(z0;I). Then, for each t ∈ I , we have

0 � z1(t
+) ⊥ dνr({t}) � 0. (4.2)

The measure dνi is atomic, consequently χi(t) = 0 a.e. t ∈ I , for all 1 � i � r − 1, while

χr(t) ∈ −∂ψTr−1
Φ ({Zr−1}(t−))({zr}(t+)), a.e. t ∈ I . Thus

0 � z1(t
+) ⊥ χr(t) � 0, a.e. t ∈ I. (4.3)

This means that if z1(0) � 0, then z1(t) � 0 for all future times. However, the left limits

of the derivatives of z1(·) may take wrong signs at any time: the HOSP right-hand side

takes care of bringing them back to non-negative values via the impact law (3.13), see

Proposition 3.2. Here, we recover also the case of Mechanics because (4.3) implies that if
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z1(0) � 0, then z1(t) � 0 for all t ∈ I and dν1 = 0: the function z1(·) is time continuous,

and z2(·) (the velocity) can have jumps. The fact that measures dνi are atomic for all

1 � i < r − 1 follows from (3.10).

Using (3.6) and (3.7), the original dynamics (1.1) can therefore be written as the

complementarity system with distributional solutions:⎧⎨
⎩

Dx = A{x} + Bλ+ Eu

0 � w(t) = Cx(t) + Fu(t) ⊥ χr(t) � 0 for any t that is not an atom of dνi, 1 � i � r.

0 � w(t+) ⊥ dνr({t}) � 0, for all t ∈ I.
(4.4)

The remaining part of this section is devoted also to show that the HOSP may be seen

as a system of switching Differential Algebraic Equations (DAEs), where the switches are

ruled by complementarity conditions (hence, are state dependent), as in LCS [14]. Other

types of switching DAEs have been studied in [29], where switching times are exogenous

and do not accumulate in finite time.

4.1 The canonical state space representation

The canonical transformation yielding (2.6) extends to m � 2, m < n, for systems

with vector relative degree r̄ = (r, r, .., r)T ∈ IRm, which satisfy CAi−1B = 0 for all

1 � i � r − 1, and CAr−1B ∈ IRm×m is non-singular. We shall adopt the notations:

z̄i
Δ
= (z1

i , z
2
i , . . . , z

r
i )
T ∈ IRr , 1 � i � m, ξ ∈ IRn−mr , z1 Δ

= (w1, w2, . . . , wm)T = (z1
1 , z

1
2 , . . . , z

1
m)T ∈

IRm, zi
Δ
= (zi1, z

i
2, . . . , z

i
m)T ∈ IRm, 1 � i � r, the zero dynamics vector ξ ∈ IRn−mr , the state

vector given by z = (z̄T1 , z̄
T
2 , . . . , z̄

T
m , ξ

T )T ∈ IRn, Bξ ∈ IR(n−mr)×m, Aξ ∈ IR(n−mr)×(n−mr),

WB ∈ IRn×m, CW−1 ∈ IRm×n. In case m = 1, we have denoted zi
Δ
= zi1 for 1 � i � r. The

canonical form then reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1
i (t) = z2

i (t)

ż2
i (t) = z3

i (t)
... 1 � i � m,

żr−1
i (t) = zri (t)

żri (t) = (CArW−1)i•z(t) + (CAr−1B)i•λ(t) + (ḠW(t))i
ξ̇(t) = Aξξ(t) + Bξz

1 + GξU(t),

(4.5)

where (CArW−1)i• = CiA
rW−1 ∈ IR1×n, (CAr−1B)i• = CiA

r−1B ∈ IR1×m, 1 � i � m. The

system in (4.5) can be rewritten compactly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = z2(t)

ż2(t) = z3(t)
...

żr−1(t) = zr(t)

żr(t) = CArW−1z(t) + CAr−1Bλ(t) + ḠW(t)

ξ̇(t) = Aξξ(t) + Bξz
1 + GξU(t),

(4.6)

with Ḡ ∈ IRm×(r+1)p. The set Φ in (3.4) can be generalized to Φm = IRm+, TΦm (Z
i) =

×m

k=1T
i
Φ(Zi

k) [1, Remark 7], and from [26, Proposition 3.1.10], we obtain: NTΦm (Zi)(z
i+1) =
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×m

k=1NTi
Φ(Zi

k)
(zik), with Zi Δ

= (z1,T , z2,T , . . . , zi,T )T , Zi
k

Δ
= (z1

k , z
2
k , . . . , z

i
k)
T . The tangent and

the normal cones in the right-hand side of (3.8) can be calculated, see an example

in [13, Section F]. We denote dνi = (dνi1, dν
i
2, . . . , dν

i
m)T and we still impose (3.11) for each

dνi, 1 � i � r, with dνi = dzi− zi+1 [see (3.10)]. The state jump rule in (3.13) is unchanged

for all 1 � i � r − 1, replacing zi by zi. For i = r we obtain using (3.12):

{zr}(t+) = −er{zr}(t−) + (1 + er)proj(CAr−1B)−1

[
Tr−1
Φm

({Zr−1}(t−)); {zr}(t−)
]
. (4.7)

The generalization of the MDI in (3.10) and (3.11) is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1 − z2(t)dt ∈ −∂ψT 0
Φm

({Z0}(t−))(ζ
1(t))

dz2 − z3(t)dt ∈ −∂ψT 1
Φm

({Z1}(t−))(ζ
2(t))

...

dzr−1 − zr(t)dt ∈ −∂ψTr−2
Φm

({Zr−2}(t−))(ζ
r−1(t))

dzr − CArW−1z(t)dt− ḠW(t)dt ∈ −(CAr−1B) ∂ψTr−1
Φm

({Zr−1}(t−))(ζ
r(t))

dξ = (Aξξ(t) + Bξz1(t) + GξU(t))dt.

(4.8)

As indicated in [1, Remarks 15, 17] [13, Section 5.2], Proposition 3.2 continues to hold

when CAr−1B = (CAr−1B)T > 0. Provided that CAr−1B is a Stieltjes matrix, Theorem

3.2, continues to hold also [1, Remark 20 ii)].

Another peculiarity of the MIMO case is that CAr−1B is usually non-diagonal, implying

couplings between the variables at impacts. Indeed assume that dνrj ({t}) �= 0 at some t,

for some 1 � j � m. From {zr}(t+) − {zr}(t−) = CAr−1B dνr({t}), it follows that some

variables {zri }, i �= j, may jump. A mechanical example is treated in details in [13].

Remark 4.1 In the HOSP framework we allow for different restitution coefficients ei for

each variable zi (in the SISO case), or each vector zi (in the MIMO case). However, we

do not allow one coefficient ei,j per component zij , i.e. we take ei,j = ei for all 1 � j � m,

1 � i � r. This is the same in Mechanics where Moreau’s impact rule has one global

coefficient, while other models may consider one coefficient for each constraint [12].

4.2 Complementarity switching DAEs

Due to the constraint imposed on dνr , the complementarity in Theorem 4.1 continues to

hold in the MIMO case. Let z1(τ
+) = 0 on some interval ]t, t + σ], σ > 0. On ]t, t + σ],

the function z1(·) is analytic, and we have z1(τ) = z2(τ) = · · · = zr(τ) = 0. From (4.3),

we have λ(τ) = χr(τ) � 0 on ]t, t + σ[, and żr(τ
+) � 0 also. It can also be shown that

żr(τ
+) > 0 ⇒ χr(τ) = 0. Thus, 0 � żr(τ

+) ⊥ λ(τ) = χr(τ) � 0 holds2. Using (2.7) this gives

rise to the contact Linear Complementarity Problem (LCP) with unknown λ(τ):

0 � λ(τ) ⊥ żr(τ
+) = w(r)(τ+) = CArW−1

(
0

ξ(τ)

)
+ CAr−1Bλ(τ) + ḠW(τ) � 0, (4.9)

2 Remind that χr(·) is right-continuous, as well as żr(·), being zr(·) in F∞(I; IR).
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for all τ ∈]t, t + σ[. Provided that CAr−1B is a P-matrix (which is guaranteed if it is a

Stieljes matrix), the contact LCP in (4.9), which holds on time intervals where z1 = 0,

has a unique solution λ(t) for any ξ(t) and W(t), and it has 2m modes corresponding to

żri (τ
+) > 0 and λi(τ) = 0 (detachment from z1

i = 0), or żri (τ
+) = 0 and λi(τ) > 0 (contact

remains active at z1
i = 0). Let us now assume that z1

i (τ) = 0 for all i ∈ I ⊆ {1, m},
z
j
1(τ) > 0 for all j ∈ Ī = {1, m} \ I , and all τ ∈]t, t+ σ], σ > 0. We denote card(I) = m′,

card(Ī) = m̄, m̄ + m′ = m 3, λI = (λi1 , λi2 , . . . , λim′ )
T with ij ∈ I , ziI is defined similarly as

ziI = (zii1 , z
i
i2
, . . . , ziim′ )

T . We have λI(τ) � 0, z1
I(τ) = 0, and λĪ(τ) = 0, z1

Ī(τ) > 0, on ]t, t+σ].

Thus, we obtain from (4.5):

żrI(τ) = (CArW 1)I•z(τ) + (CAr−1B)IIλI(τ) + (ḠW(τ))I (= 0), (4.10)

where (CArW 1)I• ∈ IRm
′×n is made of the rows of CArW 1 indexed in I , (CAr−1B)II ∈

IRm
′×m′

is the principal submatrix of CAr−1B obtained by deleting rows and columns

indexed in Ī , from which we infer the contact LCP for active constraints in I on ]t, t+σ[:

0 � λI(τ) ⊥ (CArW−1)I•z(τ) + (CAr−1B)IIλI(τ) + (ḠW(τ))I � 0. (4.11)

Let us recall that if CAr−1B is a P-matrix, so is any of its principal submatrices and so

are their inverses. Thus, the contact LCPs as in (4.11) always have a unique solution,

whatever the number of active constraints. By assumption we have on ]t, t+ σ[: λI(τ) =

−(CAr−1B)−1
II

[
(CArW−1)I•z(τ) + (ḠW(t))I

]
� 0. Similarly to the case m = 1, the LCP

in (4.11) rules the possible detachments from the active constraints at τ = t + σ. It is

noteworthy that λĪ(τ) may influence ziĪ . Indeed we have:

żrĪ(τ) = (CArW−1)Ī•z(τ) + (CAr−1B)ĪIλI(τ) + (ḠW(τ))Ī
= [(CArW−1)Ī• − (CAr−1B)ĪICA

r−1B)−1
II(CArW−1)I•]z(τ)

+(ḠW(τ))Ī − (CAr−1B)ĪI(CAr−1B)−1
II(ḠW(t))I ,

(4.12)

where (CAr−1B)ĪI ∈ IR(m−m′)×m′
is the submatrix of CAr−1B obtained from the rows

indexed in Ī and the columns indexed in I . It represents the couplings between the

unilateral constraints, and it makes the DAE vector field depend on the contact LCP

solution. The contact DAE in a semi-explicit form is made of the dynamics in (4.6) with the

constraint z1
I = 0. It follows that this is a DAE with (vector) index (r+1, r+1, . . . , r+1)T ∈

IRm.

Therefore, the HOSP is a DDI which switches between 2m DAEs with index r+ 1, and

with vector fields as in (4.10) and (4.12), for varying index sets I and Ī . We might name

it complementarity switching DAEs. It is noteworthy that if the contact LCP implies a

switch between a DAE associated with the index set of active constraints I1, and another

DAE with index set of active constraints I2, then one may have (a) I1 ⊂ I2, (b) I1 ⊃ I2

(c) I1 �= I2 with neither (a) nor (b). Case (a) means that active constraints are added

possibly implying jumps in z̄ solution of the MDI (see calculations in Section 5 on a

particular case), case (b) means that some active constraints are deactivated (according

to solutions of the contact LCP in (4.11) at time t + σ), case (c) is the more general

3 Both m′ and m̄ are simple functions of time and state, along the HOSP solutions.
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situation with a switching event accompanied with state jumps and detachments ruled by

the contact LCP. These various transitions are taken into account in the framework of

tracking control of complementarity Lagrangian systems in [21].

Remark 4.2 The complementarity switching DAEs can also be viewed in the original x-

dynamics (1.1), with DAEs in semi-explicit form. It corresponds to modes wi(x, u) = 0 and

wj(x, u) > 0, i, j ∈ {1, . . . , m}. With each mode is associated a multiplier solution of the

contact LCP, that modifies the DAE right-hand side. Getting back to the discrepancies with

respect to switching DAEs as in [29]: in the HOSP the choice of the DAEs vector fields is

dictated in part by the complementarity problem in (4.11).

4.3 HOSP with time-dependent-switching state feedback

Let us assume that on [0, τ1[, τ1 � δ > 0, we apply the feedback u1(x, t) = K1x+ v1(t), and

on [τ1, τ2[, τ2 � τ1 + δ for some δ > 0, we apply u2(x, t) = K2x+ v2(t), for some matrices

K1, K2 and exogenous signals v1(·), v2(·) satisfying Assumption 3.1. This gives rise to the

switched closed-loop dynamics [instead of (1.1)]:

(a)

⎧⎨
⎩
ẋ(t) = (A+ EK1)x(t) + Bλ+ Ev1(t)

0 � w1(t) = (C + FK1)x(t) + Fv1(t)

x(0−) = x0,

for all t ∈ [0, τ1[

(b)

{
ẋ(t) = (A+ EK2)x(t) + Bλ+ Ev2(t)

0 � w2(t) = (C + FK2)x(t) + Fv2(t)
for all t ∈ [τ1, τ2[.

(4.13)

Let us assume that each subsystem (A + EKi, B, C + FKi), i = 1, 2, has a vector relative

degree r̄i = (ri, ri, . . . , ri)
T , so that one can associate, with each of them, a canonical

representation as in (2.6) after the transformation z = Wix + TiUi, i = 1, 2. Using

Corollary 3.2, we can prove the well-posedness of the HOSP associated with the quadruple

[A + EK1, B, C + FK1, v1(t)] on [0, τ1[ for any x0. Given any x(τ−1 ), the well-posedness

of the HOSP associated with the quadruple (A + EK2, B, C + FK2, v2(t)) on [τ1, τ2[ can

be proved also. If τ1 is equal to a state jump time for subsystem (4.13) (a), then one

can apply the state reinitialization mapping (3.13), (4.7) and (2.1) to this subsystem, to

obtain zs1 (τ
+
1 ) and x(τ+1 ) = W−1

1 (zs1 (τ
+
1 ) − T1U1(τ1)), where zs1 = (z̄Ts1 , ξ

T
s1

)T denotes here

the state variable of the canonical state representation (2.6) of subsystem (4.13) (a). Then

in a second step one can apply the state reinitialization mapping (3.13), (4.7) and (2.1)

for the subsystem (4.13) (b), considering zs2 ,0
Δ
= W2x(τ

+
1 ) + T2U2(τ1) = W2W

−1
1 (zs1 (τ

+
1 ) −

T1U1(τ1)) + T2U2(τ1) as an initial condition, compute zs2 (τ
+
1 ) and obtain a reinitialized

state x(τ++
1 ) = W−1

2 (zs2 (τ
+
1 )−T2U2(τ1)) for subsystem (4.13) (b), where the upperscript ++

indicates that the jump mapping has been applied twice at t = τ1. If τ1 is not equal to a

state jump time for subsystem (4.13) (a), then one can initialize subsystem (4.13) (b) with

x(τ1), with which is associated zs2 (τ
−
1 )

Δ
= W−1

2 (x(τ1) − T2U2(τ1)). Therefore, we see that

the HOSP state jump rule, furnishes a natural way to switch between the two subsystems

in (4.13), which are themselves complementarity switching DAEs. One can then define a

sequence of switching times {τi}i�0, τi+1 � τi + δ. We thus have proved the following:
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u(t)
D

λ

R

L

C

i

Figure 1. A circuit with an ideal diode and a voltage source.

Proposition 4.1 Consider the unilaterally constrained system in (1.1). Let us define the

sequence {τi}i�0, τi+1 � τi + δ, δ > 0 of switching times, and define u = Ki+1x + vi+1 on

[τi, τi+1). Assume that each subsystem (A + EKi, B, C + FKi) has a vector relative degree

r̄i = (ri, . . . , ri)
T , and that (C + FKi)(A+ EKi)

ri−1B is a Stieltjes matrix for each i. Assume

further that the functions vi : IR+ → IRpi , satisfy Assumption 3.1. Then, the switching HOSP

system admits a global, unique regular solution in the sense of Definition 3.1.

Remark 4.3 There is a fundamental difference between the exogenous switching times in

this section, and the complementarity switching times (i.e., the switching times due to the

complementarity conditions): the latter admit accumulation times (where the crossing of the

accumulation time is taken care of by the multiplier λ), while the former need some dwell

time δ > 0. An open problem is to design state-dependent switching times (other than the

complementarity ones) between HOSPs as in (4.13). This however creates serious difficulties,

like how to avoid finite accumulations or even an infinity of switching times at one instant,

or continuation after such accumulations, or sliding modes, etc.

Example 4.1 Let us provide an academic example from circuits with ideal diodes. Let us

consider the simple circuit in Figure 1. Its dynamics is given by [12, Example 5.16]:⎧⎨
⎩
ẋ1(t) = x2(t)

ẋ2(t) = −R
L
x2(t) − 1

LC
x1(t) − 1

L
λ(t) + 1

L
u(t)

0 � w(t) = −x2(t) ⊥ λ(t) � 0,

(4.14)

where x1(t) is the charge of the capacitor, x2(t) = i(t) is the current through the circuit, u(t)

is a voltage source. We first propose two dynamic feedback controllers:

(a)

⎧⎨
⎩
u1(x, λ, t) = λ− Lx3 + v1(t)

ẋ3(t) = x4(t)

ẋ4(t) = λ(t)

(b)

⎧⎨
⎩
u2(x, λ, t) = λ+ Lx3 − x4(t) + v2(t)

ẋ3(t) = x4(t)

ẋ4(t) = λ(t).

(4.15)
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The corresponding canonical dynamics are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) =−R
L
x2(t) − 1

LC
x1(t)

−x3(t) + v1(t)
L

ẋ3(t) = x4(t)

ẋ4(t) = λ(t)

w(t) = −x2(t)

⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ż1(t) = z2(t)

ż2(t) = z3(t)

ż3(t) = −R
L
z3(t) − 1

LC
z2(t) + λ(t) − v̈1(t)

L

ξ̇(t) = z1(t)

z1(t) = −x2(t),

(4.16)

for (4.15) (a), and⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) =−R
L
x2(t) − 1

LC
x1(t) + x3(t)

− x4(t)
L

+ v2(t)
L

ẋ3(t) = x4(t)

ẋ4(t) = λ(t)

w(t) = −x2(t)

⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ż1(t) = z2(t)

ż2(t) =−R
L
z2(t) − 1

L
z1(t) − Fξξ(t)

−Gξz1(t) + λ(t)
L

− v̇2
L

ξ̇(t) = Aξξ(t) + Bξz1(t)

z1(t) = −x2(t),

(4.17)

for (4.15) (b), where ξ(t) ∈ IR2, Fξ(sI2−Aξ)−1Bξ+Gξ = LCs2+RCs−1
Cs(s−L)

, s ∈ C, (Aξ, Bξ, Fξ, Gξ)

a minimal representation, and x4 = Fξξ + Gξz1. The proof is outlined in Appendix C. It is

possible to apply Proposition 4.1 to a switching system with (4.16) and (4.17).

5 The higher-order bouncing ball

In this section, we consider a very particular form of the ‘input’ term in (2.6) and of the

chain of integrators, in order to mimic the mechanical bouncing ball. The focus is put

on the existence of trajectories of the HOSP, which possess accumulations of state jumps

(the solutions of the HOSP admit infinity of discontinuities in finite time, as functions of

local bounded variations do). The results demonstrate that the dynamics of the HOSP

may be quite complex when external excitation and non-zero restitution coefficients are

considered. Notice that the exhibited complexity could not be shown in the autonomous

framework of [1].

Definition 5.1 A left accumulation of state reinitialization times tk at t, is an accumulation

on the left of t. In other words, limk→+∞ tk = t with tk < t for all k � 0.

In Mechanics, the bouncing ball example shows that a constant input to a chain of

two integrators, and a restitution e ∈ (0, 1) can produce left accumulations of velocity

jumps. The position is time-continuous and made of portions of paraboloids, velocities are

piecewise linear functions of time, and the force input signal is constant. It is of interest

to study whether or not a constant input in (2.6) can also induce left accumulations of

state jumps, when r � 3. We denote Tr(s) =
∑r−1

i=0 CA
iEsr−1−i + Fsr , where s ∈ C is the

Laplace variable, and we denote the Laplace transform as L[·].

Lemma 5.1 Consider r � 2 and m = 1. Let us consider the HOSP with external inputs

and non-zero restitution coefficients ei in (3.5), with all ej = 0 except ei > 0 for some
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i ∈ {2, . . . , r}. Assume that F = 0, CAr = 0 and CAr−1B > 0, and that L[u(t)] = a
Tr(s)

, with

a < 0, a constant and Tr(s) �= 0. (i) A unique regular solution exists globally for all a < 0 and

any initial condition. (ii) Let {tk} be a strictly increasing sequence, with limk→+∞ tk < +∞.

Then, a solution z(·) satisfying for all k � 0: z1(tk) = 0, Δk = tk+1 − tk > 0, zi(t
−
k ) < 0,

z1(t) > 0 on ]tk, tk+1[, and limk→+∞ zj(t
+
k ) = 0 for all j ∈ {1, . . . , r}, exists if and only if

ei ∈
]
0,

(i− 1)!(r − i+ 1)!

r! − (i− 1)!(r − i+ 1)!

[
. (5.1)

Proof (i) The function u(·) is defined as the inverse Laplace transform u(t) = L−1
(

a
Tr(s)

)
.

There exists a realization (M,N, P ) of the transfer function 1
Tr(s)

such that 1
Tr(s)

= P (sIr−1−
M)−1N, v̇(t) = Mv(t) +Na, u(t) = Pv(t). Thus, v(·) is analytic and so is u(·). Corollary 3.2

applies.

(ii) Only if : From the data of the Lemma, we get Tr(
d
dt

)u(t) = a < 0 so that from (2.6)

the system is a chain of integrators with a constant input a. The equality of measures in

(3.10) is given by ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dz1 = z2(t)dt+ dν1
dz2 = z3(t)dt+ dν2
...

dzr−1 = zr(t)dt+ dνr−1

dzr = CAr−1Bdνr + a dt.

(5.2)

It is also worth noting that zi(t
−
k ) < 0 (⇒ zi(t

+
k ) > 0) is necessary for the accumulation

of ‘bounces’ to exist, since zj(t
+
k ) = 0 for all j �= i, due to ej = 0. Integrating on ]tk, t[ we

obtain

z1(t) =

r−1∑
j=0

zr−j(t
+
k )

(t− tk)
r−1−j

(r − 1 − j)!
+
a

r!
(t− tk)

r (5.3)

on [tk, tk+1[. Since z1(tk) = 0 for all k and all ej = 0 except ei, we get from (5.3)

zi(t
+
k )

Δi−2
k

(i− 1)!
+
a

r!
Δr−1
k = 0, (5.4)

where we also used that i � 2. It follows that

Δk =

(
− r!
a

zi(t
+
k )

(i− 1)!

) 1
r+1−i

, (5.5)

where we used that 0 � i− 2 � r− 2 < r− 1, and Δk > 0 for all k < +∞. Notice that the

right-hand side of (5.5) is positive as zi(t
+
k ) > 0. Now, we have

zr−α(t
−
k+1) = zi(t

+
k )

Δα−r+ik

(α− r + i)!
+

a

(α+ 1)!
Δα+1
k (5.6)
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for α ∈ {0, ..., r − i}. Taking α = r − i, and recalling from Proposition 3.2 that zi(t
+
k+1) =

−eizi(t−k+1) when zi(t
−
k+1) < 0, we obtain from (5.6) and (5.5)

zi(t
+
k+1) = ei

(
−1 +

r!

(i− 1)!(r − i+ 1)!

)
zi(t

+
k ), (5.7)

from which we deduce that

zi(t
+
k+1) =

(
ei

(
−1 +

r!

(i− 1)!(r − i+ 1)!

))k+1

zi(t
+
0 ), k � 0. (5.8)

One checks that provided zi(t
+
0 ) > 0 then zi(t

+
k+1) > 0 for all 1 � k < +∞ as r!

(i−1)!(r−i+1)!
>

1, see Lemma A.1 in the Appendix. The necessary part is proved since (5.7) is a geometric

series. It also follows from (5.5) and (5.7) that

Δk = − r!

a(i− 1)!
ēki zi(t

+
0 ), (5.9)

with ēi = ei

(
−1 + r!

(i−1)!(r−i+1)!

)
. From (5.9), it follows that the total duration of the

sequence of infinite impacts is bounded and equal to

+∞∑
k=0

Δk =
−r! zi(t+0 )

a(i− 1)!

1

1 − ēi
. (5.10)

If : Let the system be initialized at z(0−) and let z(0+) be the solution of the state jump

rule in Proposition 3.2. Then, from (5.3) there exists t∗ < +∞ such that for t > t∗ one

has z1(t) < 0 and z1(t
∗) = 0. Since the reasoning applies to any initial condition on z(·),

one deduces that there exists a contact time for the initial data zj(0
−) = 0 and zi(0

−) < 0

at some bounded t0 > 0. Using (5.8) with k = 0 it follows that zi(t
−
1 ) < 0 and zi(t

+
1 ) > 0.

And so on. Therefore, (5.1) is sufficient for an accumulation to exist. �

The Mechanical bouncing ball model implies E =
(

0
1

)
, C = (1 0), A =

(
0 1
0 0

)
, so that

Tr(s) =
∑1

i=0 CA
iEs1−i = 1. In the case of a triple integrator z(3)

1 (t) = u(t) + λ(t), one

gets that either e2 = 0 and e3 ∈
]
0, 1

2

[
, or e3 = 0 and e2 ∈

]
0, 1

2

[
. If i = r or i = 2 then

ei ∈
]
0, 1

r−1

[
. Since imposing w(0) � 0 implies that w(·) is continuous (as a consequence

of (3.13) for i = 1, which implies that {z1}(t+) = {z1}(t−) at all times t � 0 since

T 0
Φ = Φ = IR+), one recovers the case of the bouncing ball where r = i = 2 so e2 ∈ ]0, 1[.

If i = α+1 or i = r− α+1 for some α, then ei ∈
]
0, 1

r!
α!(r−α)!−1

[
in (5.1). If ei � 0 but it does

not satisfy the constraint in (5.1), then the above accumulation may not exist (ei = 0) or

the solution may diverge (ei � (i−1)!(r−i+1)!
r!−(i−1)!(r−i+1)!

). Notice finally that after the finite time of

state jump accumulation has been reached, the system may enter a phase of persistent

contact with z̄(t) = 0. Then, the multiplier λ(t) = χr(t) is a solution of the contact LCP

(see Section 4) and takes care of maintaining the trajectories on the unilateral constraint

boundary.
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6 Fixed points, stability, positive invariance

6.1 Existence and uniqueness of fixed points

Consider the MDI in (3.10) and (3.11) in a MIMO setting as (4.6), then fixed points

z∗ = (z̄∗,T , ξ∗,T )T have to satisfy the generalized equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 = WAW−1z∗ +Nχ∗(t) +HW(t)

χ̄∗(t) ∈ −

⎛
⎜⎜⎜⎜⎝

∂ψΦm(z
1,∗)

∂ψTΦm (z1,∗)(z
2,∗)

...

∂ψTr−1
Φm

(z1,∗ ,...,zr−1,∗))(z
r,∗)

⎞
⎟⎟⎟⎟⎠ (6.1)

for all t � 0, χ̄ = (χ1, ..., χr)
T ∈ IRrm, χ = (χ̄, 0n−rm)T and

N =

⎛
⎝ Ir−1 0r−1 0(r−1)×(n−r)

0r−1 CAr−1B 0n−r
0(n−r)×(r−1) 0n−r In−r

⎞
⎠ . (6.2)

Example 6.1 Consider the classical bouncing ball dynamics: ż1(t) = z2(t), ż2(t) = u(t) + λ,

0 � z1(t) ⊥ χ2(t) � 0, where λ = χ2(t) outside impact times. We suppose z1(0) � 0 so that

dν1 = 0. Fixed points are solutions of χ2(t) = −u(t), 0 � z∗1 ⊥ χ2(t) � 0. Suppose that

u(t) < 0, then the unique fixed point is z∗1 = z∗2 = 0 with χ∗2 (t) = −u(t) > 0 (this is the

static equilibrium of the ball on the ground). This justifies why χ̄∗ may be time-dependent

in (6.1) while the set-valued term is independent of time.

Equilibria occur outside jump times; hence, z̄∗ = (z1,∗,T , 0m, . . . , 0m)T , χ∗i (t) = 0, 1 � i �
r − 1, χr(t) � 0. This allows us to rewrite equivalently (6.1) as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) 0 ∈ ∂ψΦ(z1,∗)

(b) 0 ∈ ∂ψTi−1
Φm

(z1,∗ ,0,...,0)(0), 2 � i � r − 1

(c) 0 ∈ CArW−1(z1,∗, 0r−1, ξ
∗,T )T + ḠW(t) + CAr−1Bχ∗r (t)

(d) 0 = Aξξ
∗ + Bξz

1,∗ + GξU(t)

(e) χ∗r (t) ∈ −∂ψTr−1
Φm

(z1,∗ ,0m,...,0m)(0).

(6.3)

The inclusions in (6.3) (a) and (b) are trivially satisfied since the right-hand sides are

cones. Let m = 1. We can study first two cases: (i) z∗1 > 0 ⇒ χr(t) = 0 and fixed

points are solutions of d1z
∗
1 + dTξ ξ

∗ + ḠW(t) = 0 and Aξξ
∗ + Bξz

∗
1 + GξU(t) = 0. (ii)

z∗1 = 0 ⇒ χr(t) � 0, and fixed points are solutions of 0 ∈ dTξ ξ
∗ + ḠW(t) + CAr−1Bχ∗r (t),

Aξξ
∗ + GξU(t) = 0, χ∗r (t) � 0 [we made use of (2.4) to simplify the equations]. Various

conditions can be derived from these equations to study the existence and uniqueness of

equilibrium points.

Proposition 6.1 Suppose that CAr−1B > 0, and Aξ is full rank. Let m = 1, d1−dTξ A−1
ξ Bξ �=

0, and assume that dTξ A
−1
ξ GξU(t) − ḠW(t) is non-constant. Then, necessarily z∗1 = 0
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(i.e., the equilibrium, if it exists, necessarily occurs on the unilateral constraint boundary). On

the boundary the equilibrium exists if and only if (CAr−1B)−1(dTξ A
−1
ξ GξU(t)− ḠW(t)) � 0.

Proof Let z∗1 > 0, then χ∗r (t) = 0 and using (6.3) (c) and (d) we obtain z∗1 = (d1 −
dTξ A

−1
ξ Bξ)

−1(dTξ A
−1
ξ GξU(t) − ḠW(t)), which is not possible if the term between brackets

is not constant. The second result follows from (6.3) (c)–(e), using (2.4). One obtains

(CAr−1B)−1(dTξ A
−1
ξ GξU(t) − ḠW(t)) = χ∗r (t), while (c) (e) with z∗1 = 0 is equivalent to

χ∗r (t) ∈ IR+. The result follows. �

Proposition 6.1 allows us to determine when the mixed LCP: Ax∗ +Bλ∗(t) +Eu(t) = 0,

0 � w∗ = Cx∗ + Fu(t) ⊥ λ∗(t) � 0 has a unique solution (x∗, λ∗(t)) with w∗ = 0, and u(t)

not identically zero (the exogenous term ‘pushes’ the system on bd(Φu), in a sort of static

equilibrium on a moving constraint). In (2.10), the matrix Aξ is full rank. When m � 2,

the rth row of WAW−1 in (2.4) is equal to (D1, D2, . . . , Dr, Dξ) with Di ∈ IRm×m, 1 � i � r,

Dξ ∈ IRm×(n−rm). Also, Ḡ ∈ IRm×(r+1)p, Gξ ∈ IR(n−mr)×rp and Φ = (IR+)m. Then, (6.3) (c)–(e)

becomes ⎧⎪⎨
⎪⎩
D1z

1,∗ + Dξξ
∗ + ḠW(t) + CAr−1Bχr(t) = 0

Aξξ
∗ + Bξz

1,∗ + GξU(t) = 0

χr(t) ∈ −∂ψTr−1
Φ (z1,∗ ,0m,...,0m)(0

m).

(6.4)

In general one may have equilibria with z
1,∗
i = 0 and z

1,∗
j > 0, i �= j. We do not study

further the generalized equation (6.4); however, conditions which guarantee that it has a

unique solution are given in [13, Remark 10].

6.2 Stability and stabilization

The canonical form (4.6) is obtained by considering λ as an ‘input’ and w as an ‘output’,

therefore its use for control with u(·) differs from the usual case where the canonical

form is obtained with the input u(·). In addition one has to cope with the unilateral

constraints and the state jumps. Let us analyze the asymptotic stability via passification.

Let us consider the MIMO system in (4.6). We can write the associated MDI formalism

as

dz = WAW−1z(t)dt+ N̄dν +HW(t)dt, (6.5)

with dν = (dνT1 , . . . , dν
T
r )T ∈ IRrm, dνi ∈ IRm 4, N̄ =

(
Im(r−1) 0(r−1)m×m

0m×m(r−1) CAr−1B
0(n−mr)×m(r−1) 0(n−mr)×m

)
∈ IRn×mr ,

CAr−1B ∈ IRm×m. We recall that HW(t) =

(
0m(r−1)

ḠW(t)
GξU (t)

)
, see (2.7) and (4.6), and that W(t)

and U(t) involve u(i)(t) for 0 � i � r. In the autonomous case, the stability of the trivial

solution z∗ = 0 is shown in [1, Proposition 10] under a positive real [11, Definition

2.29] condition of the triplet (WAW−1, N̂, Ĉ), where when m = 1, N̂ =
(

ˆ̂
N

0(n−r)×r

)
∈

IRn×r , ˆ̂
N =

(
Ir−1 0r−1

0r−1 CA
r−1B

)
∈ IRr×r is a leading principal submatrix of N in (6.2), Ĉ =

(Ir, 0r×(n−r)), and thus defining a system with r inputs and r outputs. Then, the matrix

4 Written here with some abuse of notation.
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J =
(

ˆ̂
N−1 0r×(n−r)

0(n−r)×r Jξ

)
, 0 < Jξ = JTξ ∈ IR(n−r)×(n−r), is a solution of the KYP Lemma LMI

associated with the triplet (WAW−1, N̂, Ĉ) [11, Lemma 3.1]. Let us extend this result to

the MIMO case by letting u = Ky + v for some K ∈ IRp×n and y = Lx is a measurable

output and v the new input. The triplet (A,B, C) in (1.1) is transformed into the triplet

(Ã, B, C̃)
Δ
= (A + EKL,B, C + FKL), which does not necessarily have the same relative

degree as (A,B, C). Letting v = 0 and still denoting the vector relative degree of (Ã, B, C̃)

as r̄ = (r, . . . , r)T ∈ IRm, we can use the canonical transformation to obtain:

dz = WÃW−1z(t)dt+ Ñdν, Ñ =

(
˜̃N

0(n−rm)×rm

)
∈ IRn×rm

˜̃N =

(
Im(r−1) 0m(r−1)×m

0m×m(r−1) C̃Ãr−1B

)
∈ IRrm×rm,

(6.6)

with C̃Ãr−1B ∈ IRm×m. The next proposition states the stability of the origin for the

dynamical system HOSP(z0, [0, T [), and extends the results of Section 4.5 in [1] to the

MIMO case with feedback. Let C Δ
= (Imr, 0mr×(n−rm)), A Δ

= WÃW−1, then the triplet

(A, Ñ, C) defines a system with rm inputs and rm outputs. The next proposition states

conditions under which one can find a common Lyapunov function for the HOSP

seen as switching DAEs, with possible state jumps and solutions being higher-degree

distributions.

Proposition 6.2 Suppose that the pair (C,A) is observable, the pair (A, Ñ) is controllable,

and the matrix A is exponentially stable. If the transfer matrix C(sIn − A)−1Ñ is strictly

positive real, then the trivial solution of the (autonomous) HOSP is Lyapunov stable and

globally attractive.

Proof From the KYP Lemma for SPR systems [11, Lemma 3.11] there exists IRn×n �
P = PT > 0 such that ATP + PA < 0 and PÑ = CT . The second equality implies that

P =
(

P 0rm×(n−rm)

0(n−rm)×rm Pξ

)
with P ˜̃N = Irm. Thus, the strict positive realness implies that

˜̃N = P−1 > 0, which in turn implies that C̃Ãr−1B > 0. Let us now show that P defines a

quadratic storage function for the autonomous HOSP (including state jumps), then derive

a dissipation inequality. The transfer matrix being SPR, it is clear that on any interval (τ, s)

not containing any state jump time, s > τ, the dissipation equality V ({z}(s))−V ({z}(τ)) =∫
(τ,s)

dν

dt
(t)TC{z}(t)︸ ︷︷ ︸

=χr(t)T z1(t)=0

dt +
∫

(τ,s)
{z}(t)T (ATP + PA){z}(t)dt holds with the storage function

V ({z}) = 1
2
{z}TP{z} [11, Example 4.65]. It is then sufficient to check that the storage func-

tion is non-increasing at state-discontinuity times. We can calculate that V (t+)−V (t−) =

({Z}r(t+) + {Z}r(t−))T ˜̃N−1({Z}r(t+) − {Z}r(t−)), where {Z}r = ({z}1, {z}2, . . . , {z}r)T
(see Section 4.1). Using (6.6), we have {Z}r(t+) − {Z}r(t−) = ˜̃Ndν({t}); hence, we obtain

V (t+) − V (t−) = ({Z}r(t+) + {Z}r(t−))Tdν({t}) =
∑r

i=1〈{z}i(t+) + {z}i(t−), ηi(t)〉, with

ηi(t) ∈ −∂ψTi−1
Φm

({Z}i−1(t−))(ζi(t)). We can rewrite {z}i(t+) + {z}i(t−) = ζi(t) − 1−ei
1+ei

{z}i(t−),

and since {0} belongs to the normal cone computed at any point of its domain of
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definition, it follows by maximal monotonicity of the normal cone mapping (to

a convex set) that 〈{z}i(t+) + {z}i(t−), ηi(t)〉 � 0 for all 1 � i � r. Thus, Lya-

punov stability is shown. Next, we have for all s � 0: V ({z}(s)) − V ({z}(0)) �

−λmax(−ATP − PA)
∫

[0,s]
||{z}(t)||2dt � − λmax(−ATP−PA)

λmin(P)

∫
[0,s]

V ({z}(t))dt. Assume now

that V (t) → V∞ > 0 as t → +∞. Thus, there exists T < +∞ and δ > 0 such that

V (t) � δ for all t � T . We obtain for all s > T :

V ({z}(s)) � V ({z}(0)) − λmax(−ATP−PA)
λmin(P)

(∫
[0,T ]

V ({z}(t))dt−
∫

[T ,s]
V ({z}(t))dt

)
� V ({z}(0)) − λmax(−ATP−PA)

λmin(P)

∫
[0,T ]

V ({z}(t))dt− λmax(−ATP−PA)
λmin(P)

δ(s− T )

(6.7)

Letting s → +∞ in both sides yields a contradiction, showing that V (t) → 0 and

consequently {z}(t) → 0 as t→ +∞, for any initial condition. �

Remark 6.1 Continuity in the initial conditions usually does not hold in the MIMO case,

a well-known fact in unilaterally constrained mechanical systems [5, 12]. This precludes in

general the application of the Krasovskii–LaSalle invariance principle, except in cases where

continuity holds [18, Theorem 6.3.1].

Remark 6.2 We do not investigate here conditions that guarantee the existence of K such

that given (A,B, C) and L, then (A, Ñ, C) is SPR (which is a novel kind of passification by

feedback, where the passification of the operator dν �→ Cz is done using the input u(·)). The

KYP Lemma yields a nonlinear matrix inequality in P and K . It is noteworthy that (A, Ñ, C)

may be SPR while (A,B, C) is not, e.g., for all systems with r � 2. We have exhibited a

Lyapunov function and shown global stability of the origin, which proves that the origin

is the unique fixed point under the above SPR condition. This could be shown directly as

proved in [13, Lemma 5].

6.3 Positive invariance

Nagumo’s theorem states a sufficient condition for the positive invariance of sets S [8],

for ODEs ẋ(t) = f(x(t), t) with unique solutions, as f(x, t) ∈ TS (x) for all x ∈ S , where

TS (x) is the tangent cone (or in a more general setting the contingent cone [4]) to S at

x. When the system is autonomous, the condition is also necessary [4, 17]. Its geometric

interpretation is clear: on the boundary of S the vector field points inwards S . For

the second-order sweeping process applied to Lagrangian systems, Moreau’s viability

Lemma holds [12, Lemma 5.1] [24, Proposition 2.4], which states that if the initial

position is admissible, then it is sufficient that the velocity belongs to the tangent cone

linearization cone for almost all times, to guarantee that positions are admissible for all

times. The HOSP is a differential inclusion which guarantees that z1(t+) ∈ Φm for any

initial condition {z}(0−) (or, in the x-dynamics (1.1), the positive invariance of the set

Φu = {x ∈ IRn | Cx+ Fu � 0}). Moreau’s viability Lemma is extended as follows.

Lemma 6.1 Assume that z is a solution of HOSP(z0; I), that z1(0) ∈ Φm, and that {z2}(t) ∈
TΦm (z

1(t)) for Lebesgue-almost all t ∈ I . Then, z1(t) ∈ Φm for all t ∈ I .
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Proof Suppose that there exists t1 > 0 such that z1(t1) � Φm, that is there exists a non-

empty set J = {j1, j2, ..., jq} such that z1
ji
(t1) < 0 for all ji ∈ J . By absolute continuity of

z1(·), we have z1
ji
(t1) − z1

ji
(0) =

∫
[0,t1]

{z2
ji
}(s)ds < 0, since by assumption z1

ji
(0) � 0. From

the definition of the tangent cone, and the fact that TΦm(Z
i) = ×m

k=1T
i
Φ(Zi

k), it follows

that almost everywhere {z2
ji
}(t) ∈ TΦ(z1

ji
(t)) = IR+. Hence, a contradiction, and we infer

that J = ∅. �

Let us now prove the following result, which we may name the HOSP Viability Lemma

of order 3, while Lemma 6.1 may be named the Viability Lemma of order 2.

Lemma 6.2 Let z be a solution of HOSP(z0; I), with z1(·), {z2}(·) and {z3}(·) absolutely

continuous on I = [0, T [, T > 0. Assume that z1(0) ∈ Φm, {z2}(0) ∈ TΦm(z
1(0)), and

{z3}(t) ∈ T 2
Φm

(z1(t), {z2}(t)) for all t ∈ I . Then z1(t) ∈ Φm for all t ∈ I and {z2}(t) ∈
TΦm(z

1(t)) for all t ∈ I .

Proof First of all, we remark that since TΦm (Z
i) = ×m

k=1T
i
Φ(Zi

k), we can do the proof

for the case m = 1 in order to simplify the presentation. We can therefore adopt the

notation for the SISO case in what follows. Let us consider two cases: a) z1(0) = 0 with

subcases a1) {z2}(0) = 0, and a2) {z2}(0) > 0, and b) z1(0) > 0. Let us analyze case

b). If z1(t) > 0 for all t ∈ I then TΦ(z1(t)) = IR for all t ∈ I and {z2}(t) ∈ TΦ(z1(t))

for all t ∈ I . If there exists t1 > 0 such that z1(t1) = 0, then we can go to case

a), changing t = t1 to t = 0. Let us therefore analyze case a). In case a2), we have

z1(t) − z1(0) =
∫ t

0
{z2}(s)ds for all t ∈ I , by the absolute continuity. Also, {z2}(t) > 0

in a right neighbourhood of t = 0, so that z1(t) > 0 in this neighbourhood, and we

are back to case b). In case a1), we have z1(0) = {z2}(0) = 0 so {z3}(0) � 0. We

consider two subcases a11) {z3}(0) = 0, and a12) {z3}(0) > 0. Let us start with a12).

In a right neighbourhood of t = 0, we have by continuity {z3}(t) > 0, consequently

{z2}(t) > 0 and z1(t) > 0 in this neighbourhood, since {z2}(t)− {z2}(0) =
∫ t

0
{z3}(s)ds and

z1(t) − z1(0) =
∫ t

0
{z2}(s)ds for all t ∈ I . So we are back to case b). We can now split case

a11) into three subcases: a111) {z4}(0) = 0, a112) {z4}(0) > 0, a113) {z4}(0) < 0. In case

a113), we have {z3}(t)−{z3}(0) =
∫ t

0
{z4}(s)ds so that {z3}(t) =

∫ t
0
{z4}(s)ds < 0 in a right

neighbourhood of t = 0. However, by assumption {z3}(t) ∈ T 2
Φ(z1(t), {z2}(t)) for all t ∈ I ,

so in particular {z3}(0) ∈ T 2
Φ(0, 0) = IR+ so that {z3}(0) � 0 in a right neighbourhood

of t = 0: this is a contradiction, and we infer that case a113) is impossible. Thus, only

a111) and a112) are possible. In case a112), we have z1(0) = {z2}(0) = {z3}(0) = 0 and

{z4}(0) > 0. Again by integrating in a right neighbourhood of t = 0, we get {z3}(t) > 0,

{z2}(t) > 0 and {z1}(t) > 0 in this neighbourhood, and we are back to case b). Case

a111) is z1(0) = {z2}(0) = {z3}(0) = {z4}(0) = 0. As we saw in case a113) we cannot have

{z4}(t) < 0 in a right neighbourhood of t = 0. Thus we can only get {z4(t)} � 0, i.e, either

{z4}(t) = 0 almost everywhere or not in a right neighbourhood of t = 0. Integrating again

on [0, t] for some small enough t > 0, we infer that in this neighbourhood z1(t) ∈ Φ with

either z1(t1) = 0 or z1(t1) > 0 for some t1 > 0, and in both cases using similar arguments

as above, we deduce that {z2(t)}(t) ∈ TΦ(z1(t)) for all t ∈ [0, t1]. Since the solution is

supposed to exist on I , the result is proved. �
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Viability Lemmas of higher order could be proved in a similar way.

7 Conclusions

In this article, we have shown that the autonomous HOSP introduced in [1], can be

extended when an exogenous term [a control, or a disturbance u(·)] acts in the smooth

dynamics as well as in the inequality function, and is well-posed provided that the

exogenous term satisfies some analycity conditions. The link with complementarity systems

and switching DAEs is studied. Stability and stabilization by state feedback issues are

analyzed under positive real constraints. The so-called high-order bouncing ball illustrates

how complex such differential inclusions (with distribution solutions) may be, with Zeno

behaviours for transitions between constrained and unconstrained modes. It is noteworthy

that the time-discretization of the HOSP, which is detailed in [1], also applies to the non-

autonomous case studied above.

Topics of future investigations are numerous: relax the uniqueness of solutions, which

is not a crucial property for stability; relax the Stieltjes property of the matrix CAr−1B in

the MIMO case; analyze the MIMO case with vector relative degree r̄ = (r1, r2, . . . , rm)T ,

with ri �= rj , i �= j, which would allow to switch between DAEs with different indices; find

conditions such that switching feedback controllers allow the HOSP to coincide with given

switching DAEs and/or LCS (said another way: try to recast larger classes of switching

DAEs or LCSs into an HOSP framework); use switching strategies in the HOSP with time-

dependent switching state feedback controllers, to study new stabilization strategies, with

possibly non-monotonic Lyapunov functions; study cases of globally well-posed nonlinear

HOSP (involving products of distributions) relying on non-standard analysis [6]; analyze

the case of mixed unilateral and bilateral (equality) constraints; analyze switching between

systems (HOSP) with varying state dimension (switching dynamic feedback controllers).
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Appendix A Auxiliary lemma

Lemma A.1 Let r � 2 and i ∈ {2, . . . , r}. Then, r!
(i−1)!(r−i+1)!

> 1. Consequently one has
(i−1)!(r−i+1)!

r!−(i−1)!(r−i+1)!
> 0.
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Proof A simple calculation shows that when i = 2 and i = r, then r!
(i−1)!(r−i+1)!

= r. Let us

consider first r = 2α+1, α ∈ IN, α � 1, and i � r
2
+1 ⇔ i � α+1 since i and α are integers.

Then, r − i + 1 � α + 1. Thus, r − i + 1 � i. Let us examine the term (i − 1)!(r − i + 1)!.

Let us increase i to i + 1. We get i!(r − i)!. Doing so the term (i − 1)! is multiplied by

i while the term (r − i + 1)! is divided by r − i + 1. Since r − i + 1 � i one finds that

i!(r− i)! � (i−1)!(r− i+1)!. By induction it follows that the maximum value is attained at

i = 2. The problem is symmetric in the sense that (i−1)!(r− i+1)! has the same value for

i = k and i = r−k+2. By the symmetry one may now consider r � i � r
2
+1 and conclude

similarly. The reasoning can be applied for i = 2, 3, . . . , k with k < r
2
+1, which shows that

the maximum is indeed attained for i = 2 and i = r. In the even case with r = 2α, α ∈ IN,

α � 1, one gets i < r
2

+ 1 ⇔ i � α so that r − i + 1 > α and r − i + 1 > i. A reasoning

similar to the odd case applies and by symmetry one considers integers r � i � α+ 2. For

i = α+ 1, one gets r!
(i−1)!(r−i+1)!

= r!
α!α!

> 1 for all r � 2. Therefore, −1 + r!
(i−1)!(r−i+1)!

> 0,

and the last statement follows. �

Appendix B Some mathematical definitions

The next notions may be found in [1,20]. Let I denote a non-degenerate real interval (not

empty, nor reduced to a singleton).

• By z ∈ BV (I; IRn), it is meant that z is a IRn-valued function of Bounded Variation if

there exists a constant C > 0 such that for all finite sequences t0 < t1 < . . . . < tN (N

arbitrary) of points of I , we have
∑N

i=1 ‖z(ti) − z(ti−1)‖ � C . Let J be a subinterval of

I . The real number var(z, J)
Δ
= sup

∑N
i=1 ‖z(ti) − z(ti−1)‖, where the supremum is taken

with respect to all the finite sequences t0 < t1 < . . . < tN (N arbitrary) of points of J , is

called the variation of z in J .

Any BV function has a countable set of discontinuity points and is almost everywhere

differentiable. A BV function defined on [a, b] ⊂ I possesses left-limits in ]a, b] and

right-limits in [a, b[. Moreover, the functions t �→ z(t+)
Δ
= lims→t,s>t z(s) and t �→ z(t−)

Δ
=

lims→t,s<t z(s) are both BV functions.

• We denote by LBV (I; IRn) the space of functions of Locally Bounded Variation, i.e. of

bounded variation on every compact subinterval of I .

• We denote by RCLBV (I; IRn) the space of Right-Continuous functions of Locally

Bounded Variation. It is known that if z ∈ RCLBV (I; IRn) and [a, b] denotes a compact

subinterval of I , then z can be represented in the form:

z(t) = Jz(t) + [z](t) + ζz(t), forall t ∈ [a, b],

where Jz is a jump function, [z] is an absolutely continuous function and ζz is a singular

function. Here, Jz is a jump function in the sense that Jz is right-continuous and given

any ε > 0, there exist finitely many points of discontinuity t1, . . . , tN of Jz such that∑N
i=1 ‖Jz(ti)−Jz(t−i )‖+ε > var(Jz , [a, b]), [z] is an absolutely continuous function in the

sense that for every ε > 0, there exists δ > 0 such that
∑N

i=1 ‖[z](βi)−[z](αi)‖ < ε, for any

collection of disjoint subintervals ]αi, βi] ⊂ [a, b](1 � i � N) such that
∑N

i=1(βi−αi) < δ,
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and ζz is a singular function in the sense that ζz is a continuous and bounded variation

function on [a, b] such that ζ̇z = 0 almost everywhere on [a, b].

• By z ∈ RCSLBV (I; IRn) it is meant that z is a Right-Continuous function of Special

Locally Bounded Variation, i.e., z is of bounded variation and can be written as the sum

of a jump function and an absolutely continuous function on every compact subinterval

of I . So, if z ∈ RCSLBV (I; IRn) then

z = [z] + Jz , (B 1)

where [z] is a locally absolutely continuous function called the absolutely continuous

component of z, and Jz is uniquely defined up to a constant by

Jz(t) =
∑
t�tn

z(t+n ) − z(t−n ) =
∑
t�tn

z(tn) − z(t−n ), (B 2)

where t1, t2, . . . , tn, . . . denote the countably many points of discontinuity of z in I . Notice

that the notion of solutions that is used in [29] for switched DAEs (with exogenous

switching times) has the same structure as (B 1) with a ‘smooth’ and a jump parts

(without finite accumulations of jump instants).

Differential (or Stieltjes) measure. Let z ∈ LBV (I; IRn) be given. We denote by dz the

Stieltjes or differential measure generated by z. For a � b, a, b ∈ I one has dz([a, b]) =

z(b+)−z(a−), dz([a, b[) = z(b−)−z(a−), dz(]a, b]) = z(b+)−z(a+), dz(]a, b[) = z(b−)−z(a+).

In particular, we have dz({a}) = z(a+) − z(a−).

Appendix C Calculation of the canonical form (4.17)

Starting from the x-dynamics in (4.17), one calculates w(s) = Cs2−CLs
s2(LCs2+RCs−1)

λ(s) −
Cs3

s2(LCs2+RCs−1)
v2(s). Starting from the z2-dynamics one finds that w(s) = z1(s) =

Cs2

s2(LCs2+RCs−1)
λ(s)− Cs3

s2(LCs2+RCs−1)
v2(s)− LCs

s2(LCs2+RCs−1)
sx4(s). Let sx4(s) = H(s)z1(s)+G(s)v2(s)

for some transfer functions H(s) and G(s) to be calculated. We obtain z1(s) =(
1 + LCH(s)

LCs2+RCs−1

)−1
C

LCs2+RCs−1
λ(s) −

(
1 + LCH(s)

LCs2+RCs−1

)−1
Cs+LCG(s)
LCs2+RCs−1

v2(s). Equalling both

expressions, we obtain H(s) = 1
LC

(
s(LCs2+RCs−1)

s−L − (LCs2+RCs−1)(s−L)
s−L

)
= LCs2+RCs−1

C(s−L)
. Sim-

ilar calculations yield
(
1 + LCH(s)

LCs2+RCs−1

)−1
Cs+LCG(s)
LCs2+RCs−1

= C(s−L)s+C(s−L)LG(s)
s(LCs2+RCs−1)

while we want

this expression to equal Cs
LCs2+RCs−1

. This yields G(s) = 0. Hence, x4(s) = LCs2+RCs−1
C(s−L)s

z1(s).

Since ż2(t) = −R
L
z2(t) − 1

LC
z1(t) − x4(t) − v̇2(t)

L
+ λ(t)

L
, the result follows.
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