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Abstract

Let Ω be a member of a certain class of convex ellipsoids of finite/infinite type in C2. In this paper, we
prove that every holomorphic function in Lp(Ω) can be approximated by holomorphic functions on Ω̄

in Lp(Ω)-norm, for 1 ≤ p < ∞. For the case p = ∞, the continuity up to the boundary is additionally
required. The proof is based on Lp bounds in the additive Cousin problem.
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1. Introduction and main theorem

Let Ω ⊂ C2 be a bounded domain, with smooth boundary bΩ. The smoothness means
that Ω admits a smooth, global defining function ρ on a neighbourhood of Ω̄ in the
sense that Ω = {z ∈ C2 : ρ(z) < 0} and ∇ρ , 0 on bΩ = {z ∈ C2 : ρ(z) = 0}, and ∇ρ ⊥ bΩ.

The main purpose of this paper is to study the Lp global approximation question:
Can every holomorphic function in Lp(Ω) be approximated by holomorphic functions
on Ω̄ in Lp(Ω)-norm, for 1 ≤ p ≤ ∞?

This problem is simple and classical when Ω is a domain in the complex plane
(see, for example, [13] or [5]). In higher dimensions, it is a difficult problem because
the boundary behaviour of domains in Cn for n ≥ 2 is more complicated than in C.
Lieb [11] and Kerzman [9] independently obtained the first significant results by
applying the Lp-estimates for the Henkin solution of the ∂̄ equation to give a positive
answer to the problem on strongly pseudoconvex domains. Their method provides a
connection between the approximation problem and the additive Cousin problem in
several complex variables (see [6]). Via this argument, Cole and Range [3] extended
the results on A-measure in Henkin [7] to relatively compact, strongly pseudoconvex
subdomains of complex manifolds.
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We would like to extend the result of Kerzman and Lieb to more general domains
in C2. Unfortunately, the Henkin solutions are not available on weakly pseudoconvex
domains (even of finite type) as shown in [10]. Therefore, we consider a more
restricted class of convex domains on which we can establish the Henkin solutions.

Let Ω be a smooth, bounded domain inC2, with defining function ρ such that for any
p ∈ bΩ, there exist a neighbourhood Up = B(p, δ) of p, a function Fp and coordinates
zp = (zp,1, zp,2) with the origin at p and such that

Ω ∩ Up = {zp = (zp,1, zp,2) ∈ C2 : ρ(zp) = Fp(|zp,1|
2) + rp(zp) < 0} (1.1)

or
Ω ∩ Up = {zp = (zp,1, zp,2) ∈ C2 : ρ(zp) = F(x2

p,1) + rp(zp) < 0}, (1.2)

where zp, j = xp, j + iyp, j, with xp, j, yp, j ∈ R, j = 1, 2, and i =
√
−1. We also assume that

the functions Fp : R→ R and rp : C2 → R satisfy:

(i) Fp(0) = 0;
(ii) F′p(t), F′′p (t), F′′′p (t) and (Fp(t)/t)′ are nonnegative on (0, δ);
(iii) rp(0) = 0 and ∂rp/∂zp,2 , 0;
(iv) rp is convex.

The class of such domains includes the following two well-known examples.

Example 1.1. If FP(t2) = t2m at the point P ∈ bΩ, then Ω ∩ UP is convex of finite type
2m at P. In particular, when m = 1, Ω is strictly convex or, equivalently, strongly
pseudoconvex at P.

Example 1.2. If FP(t2) = 2 exp(−1/tα) for 0 < α < 1 or FP(t2) = 2 exp(−1/t| ln t|α) for
α > 2 at the point P ∈ bΩ, then Ω ∩ UP is of infinite type at P.

Let H∞(Ω) be the weak-star closure of the algebra of functions that are continuous
on Ω̄ and holomorphic in Ω. The following is our main result.

Theorem 1.3 (Global Lp approximation theorem). Assume either of the following
conditions hold:

(i) Ω is defined by (1.1) and there is a δ > 0 such that∫ δ

0
| ln FP(t2)| dt <∞ for all P ∈ bΩ;

(ii) Ω is defined by (1.2) and there is a δ > 0 such that∫ δ

0
| ln(t) ln FP(t2)| dt <∞ for all P ∈ bΩ.

Then, each holomorphic function f ∈ Lp(Ω) can be approximated in Lp(Ω)-norm
by holomorphic functions { f τ}τ∈(0,τ0) on Ω̄ (as τ→ 0+), for some small τ0, and for
1 ≤ p <∞.
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Moreover, if the holomorphic function f only belongs to H∞(Ω) ∩ C(Ω̄), we also
obtain a family of holomorphic functions { f τ}τ∈(0,τ0) on Ω̄ so that:

(a) ‖ f τ‖H∞(Ω) . ‖ f ‖H∞(Ω) for all τ ∈ (0, τ0);
(b) f τ → f in Lp(Ω)-norm as τ→ 0+, for all 1 ≤ p <∞;
(c) f τ → f uniformly on Ω̄ as τ→ 0+.

Here and in what follows, the notations . and & denote inequalities up to a positive
constant and ≈ means the combination of . and &.

In [4], the authors provide an example to show that the approximation theorem does
not hold in general on smoothly bounded pseudoconvex domains. In 1978, Bedford
and Fornaess [1] established the theorem on weakly pseudoconvex domains with real
analytic boundary in C2. More generally, Beatrous and Range [2] obtained the result
on weakly pseudoconvex domains in Cn under the additional condition that the closure
of the domain is holomorphically convex.

The paper is organised as follows. In Section 2, we solve the additive Cousin
problem on Ω. Section 3 is devoted to proving the global Lp approximation theorem.

2. The solution of the additive Cousin problem

Theorem 2.1. Assume the conditions on Ω in Theorem 1.3 hold. Let V j = U j ∩ Ω,
where {U j} j=0,1,...,N is an open covering of Ω̄. Then we can find a finite positive constant
C such that the following property holds.

If the holomorphic functions gi j on Vi ∩ V j satisfy

gi j = −g ji,

gi j + g jk + gki = 0,
(2.1)

for all i, j, k = 0, 1, . . . , N, then there are holomorphic functions g j on V j, for j = 0,
1, . . . ,N, such that

g j − gi = gi j on Vi ∩ V j,
‖g j‖Lp(V j) . Mp({gi j}) for 1 ≤ p ≤ ∞,

where Mp({gi j}) = max{‖gi j‖Lp(Vi∩V j) : i, j = 0, 1, . . . ,N}.

Proof. The proof comprises two steps. The first is to construct functions v j ∈ C∞(V j),
j = 0, 1, . . . ,N, which satisfy v j − vi = gi j on Vi ∩ V j, for all i, j = 0, 1, . . .. The second
is to change these nonholomorphic functions into holomorphic functions by using the
following theorem.

Theorem 2.2 [8, Theorem 1.2]. If there exists δ > 0 and either of the conditions (i) or
(ii) in Theorem 1.3 hold, then for any ∂̄-closed (0, 1)-form φ in Lp(Ω) with 1 ≤ p ≤ ∞,
the Henkin kernel solution u on Ω satisfies ∂̄u = φ and

‖u‖Lp(Ω) . ‖φ‖Lp(Ω).
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Step 1. On Ω̄, we choose a partition of unity {χ j} j=0,1,...,N , where the χ j are smooth
functions with compact support in U j for j = 0, 1, . . . ,N and

∑N
j=0 χ j = 1 on Ω̄. Set

v j =

N∑
ν=0

χνgν j.

From the local finiteness of {V j}, the functions v j, j = 0, 1, . . . , N, are smooth on V j

and, by the Minkowski inequality,

‖v j‖Lp(V j) . Mp({gi j}). (2.2)

Moreover,

v j − vi =

N∑
ν=0

χνgν j −

N∑
ν=0

χνgνi =

N∑
ν=0

χν(gν j − gνi) =

N∑
ν=0

χνgi j = gi j,

where we have used (2.1) to replace gv j − gvi by gi j. Note that the functions v j,
j = 0, 1, . . . ,N, are not holomorphic. However, since ∂̄gi j = 0 on Vi ∩ V j, then

∂̄vi = ∂̄v j on Vi ∩ V j for all i, j = 0, 1, . . . ,N. (2.3)

Step 2. The above identity (2.3) implies that there is a smooth, globally well-defined
(0, 1)-form φ on Ω, which is locally equal to ∂̄v j on V j, for j = 0, 1, . . . ,N.

Since ∂̄v j =
∑N
ν=0(∂̄χν)gν j, it follows that

‖φ‖Lp
0,1(Ω) ≤

N∑
j=0

‖∂̄v j‖Lp(V j) . Mp({gi j}).

Since ∂̄φ = 0, by Theorem 2.2, there is a function u satisfying ∂̄u = φ on Ω and

‖u‖Lp(Ω) . ‖φ‖Lp(Ω) . Mp({gi j}), (2.4)

for 1 ≤ p ≤ ∞. Now, on each V j, for j = 0, 1, . . . ,N, we define

g j = v j − u,

so ∂̄g j = ∂̄v j − ∂̄u = ∂̄v j − φ = 0 on V j. Thus, each function g j is holomorphic in V j,
for j = 0, 1, . . . ,N. Moreover,

g j − gi = (v j − u) − (vi − u) = v j − vi = gi j on Vi ∩ V j.

Finally, (2.2) and (2.4) imply

‖g j‖Lp(V j) . Mp({gi j}) for 1 ≤ p ≤ ∞.

This completes the proof. �
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3. Proof of the global Lp approximation theorem

For convenience, we recall a preparation lemma which was proved in [3, 9] and
[12] on arbitrary smooth domains.

Let {U j, j = 1, . . . ,N} be an open covering of bΩ by neighbourhoods U j of boundary
points P j ∈ bΩ such that there is a constant τ0 > 0 for which

z + τµ j ∈ Ω for all z ∈ Ω̄ ∩ U j and 0 < τ < τ0.

Here µ j is the unit inner normal to bΩ at P j. We choose χ j ∈ C∞0 (U j), χ0 ∈ C∞0 (Ω), so
that

∑N
j=0 χ j = 1 on a neighbourhood Ω̃ of Ω̄. For 0 < τ < τ0, we choose η(τ) > 0 (in

fact, limτ→0+ η(τ) = 0) such that

Ωη(τ) := {z ∈ C2 : ρ(z) < η(τ)} ⊂ Ω̃ ∩

( N⋃
j=0

Uτ
j

)
,

where Uτ
0 = Ω and Uτ

j = {w − τµ j : w ∈ U j ∩ Ω} ∩ U j, for j = 1, . . . , N. Moreover,
when τ0 is sufficiently small, {Uτ

j : j = 0, 1, . . . ,N} is a covering of Ω̄, the Lp estimates
for the Henkin solutions to the ∂̄ equations on Ωη(τ) are independent of τ, and

supp χ j ∩ Ω̄η(τ) ⊂ Uτ
j for all 0 < τ < τ0 and j = 0, 1, . . . ,N.

Lemma 3.1. Suppose that 1 ≤ p ≤ ∞ and f ∈ Lp(Ω) is holomorphic on Ω. For
0 < τ < τ0, define f τ0 = f and

f τj (z) = f (z + τµ j) for j = 1, . . . ,N.

Then the following statements hold:

(a) f τj is holomorphic on Uτ
j and Lp(Uτ

j )-integrable for j = 0, 1, . . . ,N;
(b) limτ→0+ f τj = f pointwise on Ω ∩ U j;

(c) limτ→0+ ‖ f τj − f ‖Lp(U j∩Ω) = 0 if either 1 ≤ p <∞, or p =∞ and f ∈ C(Ω̄).
(d) Define gτi j = f τj − f τi on Uτ

i ∩ Uτ
j and

Mτ
p({gτi j}) = max{‖gτi j‖Lp(Uτ

i ∩Uτ
j ) : i, j = 0, 1, . . . ,N}.

Then

lim
τ→0+

Mτ
p({gτi j}) = 0 if 1 ≤ p <∞, or if p =∞ and f ∈ C(Ω̄),

and
Mτ
∞({gτi j}) . ‖ f ‖L∞(Ω) if f ∈ L∞(Ω).

Proof of Theorem 1.3. The main idea is to apply the construction of the additive
Cousin problem. Set

Vτ
j = Uτ

j ∩Ωη(τ) for 0 < τ < τ0.
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Applying Theorem 2.2 to the holomorphic functions gτi j on Vτ
i ∩ Vτ

j , we obtain
holomorphic functions gτj on Vτ

j for j = 0, 1, . . . ,N, which satisfy

gτj − gτi = gτi j on Vτ
i ∩ Vτ

j (3.1)

and
‖gτj‖Lp(Vτ

j ) . Mτ
p({gτi j}). (3.2)

The constant C implied in (3.2) is independent of τ since the Lp estimates of the Henkin
solution and the partition of unity {χ j} are independent of τ. By the definition of the f j

in Lemma 3.1 and (3.1),

f τj − gτj = f τi − gτi on Vτ
i ∩ Vτ

j .

Therefore, we can find a globally well-defined function f τ which is holomorphic on
Ωη(τ) such that

f τ = f τj − gτj on Vτ
j (3.3)

and

‖ f − f τ‖Lp(Ω) ≤

N∑
j=1

‖ f − f τj ‖Lp(U j∩Ω) + (N + 1)CMτ
p({gτi j}).

Combining this estimate with Lemma 3.1,

lim
τ→0+
‖ f − f τ‖Lp(Ω) = 0

if either 1 ≤ p <∞, or p =∞ and f extends continuously to Ω̄.
Finally, if f ∈ H∞(Ω) ∩C(Ω̄), then (3.3), (3.2) and Lemma 3.1 also imply

‖ f τ‖L∞(Ω) . ‖ f ‖L∞(Ω) uniformly in τ ∈ (0, τ0).

Since H∞ is a subset of Lp(Ω)-functions which are holomorphic on Ω for 1 ≤ p <∞,
the limit

lim
τ→0+
‖ f − f τ‖Lp(Ω) = 0

also holds for any 1 ≤ p <∞. This completes the proof. �
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