
Twisted Whittaker category on affine flags and the
category of representations of the mixed

quantum group

Ruotao Yang

Compositio Math. 160 (2024), 1349–1417.

doi:10.1112/S0010437X24007139

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007139
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X24007139&domain=pdf
https://doi.org/10.1112/S0010437X24007139


Compositio Math. 160 (2024) 1349–1417
doi:10.1112/S0010437X24007139
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quantum group

Ruotao Yang

Abstract

Let G be a reductive group, and let Ǧ be its Langlands dual group. Arkhipov and
Bezrukavnikov proved that the Whittaker category on the affine flags FlG is equivalent
to the category of Ǧ-equivariant quasi-coherent sheaves on the Springer resolution of
the nilpotent cone. This paper proves this theorem in the quantum case. We show
that the twisted Whittaker category on FlG and the category of representations of
the mixed quantum group are equivalent. In particular, we prove that the quantum
category O is equivalent to the twisted Whittaker category on FlG in the generic case.
The strong version of our main theorem claims a motivic equivalence between the
Whittaker category on FlG and a factorization module category, which holds in the
de Rham setting, the Betti setting, and the �-adic setting.
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1. Introduction

1.1 Reminder about the work of [AB09]
1.1.1 Let G be a reductive group over an algebraically closed field k. Fix a pair (B, B−)

of opposite Borel subgroups, and denote by N and N− their unipotent radicals, respectively.
Denote by K = k((t)) the field of Laurent series and by O = k[[t]] the ring of formal power series.
We denote by G(K) the loop group of G, by I the Iwahori subgroup, and by FlG := G(K)/I the
affine flags. In this section, we assume k = C.

It is known that the category of D-modules on FlG, with certain equivariance properties, can
be realized in terms of the category of representations of the Langlands dual group Ǧ.

An important equivariance condition is the Whittaker condition. Denote by N(K) the loop
group of N . We refer to the category of Whittaker D-modules on FlG as the (DG) category of
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D-modules on FlG which are N(K)-equivariant against a non-degenerate character χ. We denote
it by Whit(D-mod(FlG)). A well-known result of Arkhipov and Bezrukavnikov [AB09] states
that there is an equivalence of categories

Whit(D-mod(FlG)) � QCoh(Ñ/Ǧ). (1.1.1)

In the above formula, Ñ := T ∗(Ǧ/B̌) is the Springer resolution of the nilpotent cone, and
QCoh(Ñ/Ǧ) is the (DG) category of Ǧ-equivariant quasi-coherent sheaves on Ñ.

It is natural to consider the following question.

Question 1. What is the deformed version of (1.1.1)?

1.1.2 It is expected that (1.1.1) deforms over the space of levels, i.e. the space of Weyl
group-invariant symmetric bilinear forms on Λ. Here Λ is the coweight lattice of G.

The left-hand side of (1.1.1) admits a naturally defined level-parameterized deformation.
Namely, a level κ gives rise to a twisting, and we can consider κ-twisted D-modules on FlG.
Then Whit(D-modκ(FlG)), the category of κ-twisted Whittaker D-modules on FlG, is defined as
the category of (N(K), χ)-equivariant κ-twisted D-modules on FlG.

The deformation of the right-hand side of (1.1.1) is not obvious. In order to present it, we
rewrite Ñ/Ǧ as ň/B̌. Here ň is the Lie algebra of the unipotent radical Ň of B̌, and the action
of B̌ on ň is the adjoint action.

A quasi-coherent sheaf on ň/B̌ is a O(ň)-module with a compatible action of B̌. It can be
regarded as a Λ-graded vector space with compatible actions of Sym(ň−) and U(ň), with the
locally nilpotent condition. The universal enveloping algebra U(ň) naturally deforms. Namely,
the Lusztig quantum group UL

q (ň) provides a deformation of U(ň) over the space of levels. Here
the relation between the level κ and the quantum parameter

q : Λ→ C/Z = C×

is given by q(λ) = exp(πi · κ(λ, λ)) for λ ∈ Λ. Note that Sym(ň−) is the graded dual of U(ň), so
the graded dual of UL

q (ň) provides a deformation of Sym(ň−) over the space of levels.
From this point of view, the right-hand side of (1.1.1) has a deformation. It is given by

the category of representations of a certain quantum group, whose positive part is the Lusztig
quantum group UL

q (ň) and the negative part is the De Concini–Kac quantum group UDK
q (ň−)

(i.e. the graded dual of the Lusztig quantum group). It is exactly the category of representations
of the mixed quantum group introduced by Gaitsgory in [Gai21a, § 5.3], which is denoted by
Repmxd

q (Ǧ).
Now it is natural to ask the following question.

Question 2. Is there an equivalence

Whit(D-modκ(FlG)) � Repmxd
q (Ǧ)? (1.1.2)

1.2 Main theorem of this paper
The weak version of the main theorem (Theorem 3.3.2) says that, when q avoids small torsion
(see § 3.3.1), there exists a t-exact equivalence of categories between Whit(D-modκ(FlG)) and
Repmxd

q (Ǧ). Furthermore, both Repmxd
q (Ǧ) and Whit(D-modκ(FlG)) acquire structures of highest

weight categories,1 and the equivalence functor preserves highest weight category structure.

1 For a highest weight category structure of a DG-category C, we mean a collection of standard objects {ci} and a
collection of costandard objects {c∨i } with the orthogonality property. Furthermore, we require that {ci} generate
C by colimits, shifts, and extensions.
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However, Theorem 6.4.8, the strong version of the main theorem, proves a more general
statement, where we do not need to assume that the base field of schemes is C and the sheaf
category is the category of D-modules.

Let k denote the base field of schemes, and let e denote the coefficients field of sheaves. Note
that (1.1.2) only makes sense when k = e = C, otherwise we cannot define D-modules and the
mixed quantum group simultaneously. In this case, Repmxd

q (Ǧ) can be realized as the category

of factorization modules [Gai21b] over a factorization algebra ΩL,′
q . Instead of working with

Repmxd
q (Ǧ), we compare Whit(D-modκ(FlG)) with this factorization module category.
The advantage of using factorization modules lies in the fact that the statement involving

factorization modules is geometric (i.e. motivic). Rather than D-modules, we can also consider
factorization modules in the settings of the �-adic sheaves and the constructible sheaves with
arbitrary coefficients e.

Theorem 6.4.8 claims that there is a t-exact equivalence of highest weight categories

Whitq(FlG) � ΩL,′
q -FactMod. (1.2.1)

In the above formula:

– Whitq(FlG) is the category of twisted Whittaker sheaves on FlG;
– ΩL,′

q -FactMod is the category of factorization modules over ΩL,′
q .

This theorem holds in a greater generality: in addition to D-modules, it is true for all the
sheaves contexts listed in § 1.6.1 and any q.

1.3 Other motivations
In this section, we provide motivations for Theorem 3.3.2 other than those coming from the work
of [AB09]. We assume k = e = C in this section.

1.3.1 Fundamental local equivalence. Another main idea that motivates this work comes from
the quantum local Langlands conjecture. We explain it in this section.

In [Gai18b], Gaitsgory proposed a very general conjecture of the quantum Langlands
program.

Consider the category D-modκ(G(K)) of κ-twisted D-modules on the loop group G(K). The
group structure on G(K) induces a monoidal structure on this category. We denote by G(K)-modκ

the 2-category of module categories over this monoidal category. The quantum local Langlands
conjecture asserts the following equivalences.

Conjecture 1.

(1) There is an equivalence of categories,

G(K)-mod−κ � Ǧ(K)-modκ̌. (1.3.1)

Here κ̌ denotes the dual level of κ (see [GL19, 0.1.1]).
(2) If C ∈ G(K)-mod−κ goes to Č ∈ Ǧ(K)-modκ̌ under the equivalence (1.3.1), then their Iwahori

strong invariants [Ber17, § 4] are equivalent

CI � ČǏ . (1.3.2)
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Namely, the category of D-mod−κ(G(K))-equivariant functors from D-mod−κ(FlG)) to
C, is equivalent to the category of D-modκ̌(Ǧ(K))-equivariant functors from D-modκ̌(FlǦ)
to Č.

Conjectural 1 is supposed to be characterized by the property that it intertwines the
Whittaker model and the Kac–Moody model. The functor sending C ∈ G(K)-mod−κ to its
Whittaker model is co-represented by D-mod−κ(G(K)/N(K), χ). The functor sending
Č ∈ Ǧ(K)-modκ̌ to its Kac–Moody model is co-represented by the category of Kac–Moody
representations ˆ̌gκ̌-mod. Hence,

D-mod−κ(G(K)/N(K), χ) �→ ˆ̌gκ̌-mod (1.3.3)

under the equivalence (1.3.1).
By applying property (2) of Conjecture 1 to (1.3.3), we arrive the following conjectural

equivalence,2 which was proposed by Gaitsgory and Lurie [Gai16, Conjecture 3.11].

Conjecture 2 (Iwahori fundamental local equivalence). There is an equivalence of categories

Whit(D-modκ(FlG)) � ˆ̌gκ̌-modǏ (1.3.4)

Here ˆ̌gκ̌-modǏ denotes the category of Iwahori-integrable Kac–Moody representations.

In the upcoming paper [CF21] of Chen and Fu, the authors prove that Repmxd
q (Ǧ)

is equivalent to ˆ̌gκ̌-modǏ . Hence, the combination of our papers provides a new proof of
Conjecture 2.

1.3.2 Relation with Kazhdan–Lusztig. By [KL93, KL94], Repq(Ǧ), the category of repre-
sentations of the quantum group, is equivalent to the category of Ǧ(O)-integrable Kac–Moody
representations. Furthermore, by [CDR21], the latter is equivalent to the twisted Whittaker
category on the affine Grassmannian GrG := G(K)/G(O). Hence, there is an equivalence of
categories

Whit(D-modκ(GrG)) := D-modκ(N(K), χ\GrG) � Repq(Ǧ). (1.3.5)

Theorem 3.3.2 provides a tamely ramified version of the above equivalence of categories.

1.3.3 BGG Category O. When q is generic, the Lusztig quantum group UL
q (ň−) is nat-

urally isomorphic to the De Concini–Kac quantum group UDK
q (ň−). In particular, the

category Repmxd
q (Ǧ) is equivalent to the quantum category O in [BGG71] when q is

generic. Thus, in this case, Theorem 3.3.2 gives a geometric realization of the quantum
category O.

In the case of root of unity, the category Repmxd
q (Ǧ) is different from the quantum

category O. For example, the standard objects (i.e. Verma modules) and costandard objects
(i.e. co-Verma modules) of Repmxd

q (Ǧ) are no longer of finite length. Nevertheless, Repmxd
q (Ǧ)

is still a highest weight category. The comparison of the highest weight category structures of
Repmxd

q (Ǧ) and Whit(D-modκ(FlG)) plays an important role in our proof.

1.3.4 Casselman–Shalika theorem. The original Casselman–Shalika theorem interprets the
values of the spherical Whittaker function as characters of the irreducible representations of the
Langlands dual group.

2 It was proved in a recent paper [CDR21] by Campbell, Dhillon, and Raskin using Soergel module techniques.
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Let BunN be the algebraic stack classifying principal N -bundles on a smooth con-
nected projective curve X. In [FGV01], the authors proved a generalization of the geometric
Casselman–Shalika formula. It interprets the category of representations of the Langlands dual
group as Whittaker D-modules (equivalently, �-adic sheaves) on (Bunωρ

N )∞·x, where the algebraic
stack (Bunωρ

N )∞·x denotes the Drinfeld compactification of BunN with a possible pole at a fixed
point x (see § 7.1 for definition).

By a local–global comparison, [FGV01] actually proves that (1.3.5) is an equivalence when
q = 1.

The geometric Casselman–Shalika formula gives us a hint of how to construct a functor to
relate the category of Whittaker sheaves to the category of representations. Namely, the ‘inte-
gration’ of a Whittaker D-module along G(O)-orbits (or N−(K)-orbits) encodes representation-
theoretic information. The construction of the functor FL (see § 6.4 for a definition) is inspired
by this idea and Raskin’s thesis [Ras14].

1.3.5 Small quantum groups. In [GL19], a geometric realization of the category of rep-
resentations of the small quantum groups was studied. In [GL19], it was proved that
the category of Hecke-eigensheaves of the twisted Whittaker categories on GrG, is equiv-
alent to the same category of representations of the small quantum groups. Our work
has adopted the strategy developed in [GL19]. This method originated from [Gai08,
BFS98, FGV01], and has proven to be a powerful method in geometric representation
theory. The recent work of Braverman, Finkelberg, and Travkin on the Gaiotto conjec-
ture for GL(N − 1 |N) (see [BFT21]), the work of Travkin and the present author on
the Gaiotto conjecture for GL(M |N), and the Iwahori Gaiotto conjecture also use this
strategy.

The small quantum group is very similar to the mixed quantum group: both of the categories
of their representations Repsmall

q (Ǧ) and Repmxd
q (Ǧ) can be realized as categories of factoriza-

tion modules. In particular, the method used in [GL19] indicates to us a strategy to prove
Theorem 3.3.2 and offers us models for the constructions of the functors and stacks used in our
paper. For example, the key step of the proof of our main theorem is to use the local–global
equivalence of Whittaker categories and then prove the theorem in the global case. This idea
comes from [GL19].

In our case, there are some technical difficulties caused by the additional Iwahori structure.
For example, in [GL19], standard objects of Whitq(GrG) are defined as !-pushforward of the
unique irreducible twisted Whittaker sheaf supported on a single relevant N(K)-orbit and
costandard objects are ∗-pushforward of that irreducible Whittaker sheaf. In our case, since
co-Verma modules of Repmxd

q (Ǧ) are not compact, it is impossible to define standard objects
and costandard objects similar to [GL19] such that they match Verma modules and co-Verma
modules in Repmxd

q (Ǧ). Instead, we define standard objects by !-Whittaker averaging of ‘Waki-
moto sheaves’ which are twisted and Iwahori equivariant against a character. However, this
definition does not make sense because (classical) Wakimoto sheaves are Iwahori-equivariant
and only defined in the non-twisted case. We need to extend the definition of Wakimoto
sheaves to the twisted and (I, bλ)-equivariant case. Here bλ is a character of the Iwahori
subgroup.

1.4 Strategy of the proof
The idea of proving Theorem 3.3.2 is to compare both sides with a factorization category.
In [Gai20], the author proved that Repmxd

q (Ǧ) can be realized as the category of factorization
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modules on the configuration space over a factorization algebra ΩL
q (see Definition 4.2.2) in the

D-module setting. Therefore, we need to construct an equivalence between Whit(D-modκ(FlG))
and ΩL

q -FactMod.
A naive attempt is to use the pullback–pushforward functor FDK,3 namely, we !-pullback

Whittaker D-modules on FlG to an Iwahori version Zastava space and then take ∗-pushforward
to the configuration space. However, the image of FDK does not have a ΩL

q -factorization module
structure (except when κ is generic). For a coweight λ, the λ-component of this functor is
given by

H(FlG, F
!⊗ j∗(ωS−,λ

Fl,x
)).

Here j∗(ωS−,λ
Fl,x

) denotes the ∗-extension of the dualizing D-module on the N−(K)-orbit of

tλ ∈ FlG.
The functor FL used in this paper is a modification of FDK. The λ-component of FL is

given by

H(FlG, F
!⊗ j!(ωS−,λ

Fl,x
)).

Here j!(ωS−,λ
Fl,x

) denotes the !-extension of the dualizing D-module on the N−(K)-orbit of tλ ∈ FlG.

We show that FL factors through ΩL,′
q -FactMod (Proposition 6.4.7), and there is ΩL,′

q � ΩL
q

if q avoids small torsion. Theorem 6.4.8 claims that FL induces an equivalence between the
Whittaker category on FlG and the category of factorization modules over ΩL,′

q .
To prove that FL is an equivalence, we use some tautological arguments about highest weight

categories. That is to say, we construct standards and costandards of both sides, prove that FL

preserves them and induces an isomorphism of Hom spaces.
The compatibility of costandards is more or less trivial. It follows by a direct calculation

of !-stalks of FL (Corollary 6.5.5). The claim of fully faithfulness of FL follows from a cal-
culation of Hom spaces, and the latter reduces to the problem of compatibility of standards
(Proposition 6.6.2). However, since the calculation of ∗-stalks is difficult (seems impossible), the
proof of the compatibility of standards is not tautological at all. It is the main difficulty of the
proof.

The method to overcome this difficulty is to define a duality functor to transfer the calculation
of ∗-stalks to a calculation of !-stalks. This duality functor is not tautological. Since the Whittaker
category used in this paper is defined as a category of invariants, its dual category is a category of
coinvariants in nature. By a theorem of Raskin (see [Ras21, Theorem 2.1.1]), we can identify the
invariant-Whittaker category as the coinvariant-Whittaker category. Hence, this duality functor
can be defined.

We need to prove that this duality functor intertwines FL and FDK. Following [Gai20], we
can identify the (local) Whittaker category with the global Whittaker category. By translat-
ing the problem into the global Whittaker category defined on a Drinfeld compactification, we
need to prove that the Verdier duality functor intertwines the global functors corresponding to
FL and FDK (Theorem 8.2.2). According to the constructions, we need to compare a !-tensor
product and a ∗-tensor product. We solve this problem by using a universally locally acyclic
property.

3 The superscript DK means De Concini–Kac, the reason is that this functor induces a functor to the category of
representations of a group whose positive part is the De Concini–Kac quantum group.
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1.5 Organization of the paper
(1) In § 2, we introduce some prestacks and gerbes used in this paper.
(2) In § 3, we explain the definitions of the Whittaker category on FlG and Repmxd

q (Ǧ). Then
we state Theorem 3.3.2.

(3) In § 4, we review factorization algebras and factorization modules. We replace Theorem 3.3.2
by an equivalent statement: Theorem 4.3.1.

(4) In § 5, we study standards and duality functor of the Whittaker category, and show that
standards compactly generate the Whittaker category.

(5) In § 6, we construct a functor FL which goes from the Whittaker side to the factorization
side. We show that FL is an equivalence functor modulo Proposition 6.6.2 which is about
the comparison of standards.

(6) In § 7, the global Whittaker category is defined. By using the global Whittaker category, we
reduce Proposition 6.6.2 to 7.6.6 where we can use a universally locally acyclic property.

(7) In § 8, we prove Proposition 7.6.6.

1.6 Generality of our results
1.6.1 Sheaf theories. Let k, e be algebraically closed fields, and char(e) = 0. The strong

version of our main result (Theorem 6.4.8) is true for any of the sheaf theories listed in [GL19,
§ 0.8.8].

(1) (de Rham) Schemes are defined over k (assume char(k) = 0 here) and the sheaf category is
the category of D-modules, or the ind-completion of the category of holonomic D-modules,
or the ind-completion of the category of regular holonomic D-modules.

(2) (Betti) Schemes are defined over C and the sheaf category is the ind-completion of the
category of constructible sheaves with respect to the classical topology with coefficients e.

(3) (�-adic) Schemes are defined over k and the sheaf category is the ind-completion of the
category of constructible Q̄�-adic sheaves. Here e = Q̄�.

We denote by Shv any sheaf theory listed above.
Note that the Whittaker category is not always well-defined for the sheaf theories above, such

as the Betti setting and the �-adic setting on schemes defined over a field k of characteristic 0. In
these cases, neither the exponential D-module nor the Artin–Schreier sheaf makes sense, so we
are not allowed to talk about (N(K), χ)-equivariant sheaves. We need to replace the Whittaker
category by the Kirillov model [Gai21a, Appendix A] in Theorem 6.4.8. However, applying the
Lefschetz principle and Riemann–Hilbert correspondence, the proof for these cases can be easily
reduced to the setting of regular holonomic D-modules. In order to simplify the notation and
not get distracted, we only focus on the sheaf theories such that the Whittaker category makes
sense.

1.6.2 Deformation parameters. In the general case, we need to use gerbes to twist a sheaf
category. Given a gerbe G with respect to the multiplicative group e×, one can twist a sheaf
category with coefficients in e. We refer the reader to [GL18, § 1.7] for the definition of the
category of G-twisted sheaves.

Let us be more precise about which kind of gerbes are used in different sheaf theories. In
the Betti setting and �-adic setting, we use the gerbes with respect to the torsion multiplicative
group etorsion,× (see [GL18, § 1.3]). In the D-module setting, we use the tame gerbes [Zha20, § 3.3].

If readers are not familiar with how to twist a sheaf category with a gerbe, we advise to
think about the case of D-modules, and G is a simple and simply connected group over C.
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In this case, the twisting parameter q is just a non-zero complex number. Twisted D-modules on
FlG are those D-modules on the canonical line bundle of FlG which are Gm-monodromic along
the fiber with the monodromy q2. This restriction of generality does not mean we lose the main
interest of this paper.

1.7 Conventions and notation
In the main body of the paper, to simplify, we assume that G is a reductive group defined
over any algebraically closed field k, and the derived subgroup [G, G] is simply connected. Let
T := B− ∩B be the Cartan subgroup of G.

We denote by Λ the coweight lattice of G and by Λ̌ the weight lattice. Let Λneg be the semi-
group spanned by negative simple coroots. Its inverse is denoted by Λpos. Set Λ+ (respectively,
Λ̌+) the semi-group of dominant coweights (respectively, dominant weights), Δ the root system
of Ǧ, and α1, α2, . . . , αr the simple coroots. Let W denote the finite Weyl group and W ext denote
the extended affine Weyl group.

The theory of sheaves ‘Shv’ on infinite-dimensional schemes (also prestacks) used in this
paper is developed in [Ber17], [GR17a], [GR17b], [Ras], etc. When we talk about the Whittaker
category, we assume that we are in the D-module setting or the �-adic setting.

In this paper, the categories considered are cocomplete e-linear DG-categories (see [GR17a,
Chapter 1, § 10]). We need the theory of higher categories developed in [Lur17] and [Lur09] in
this paper.

Let Vect be the (∞, 1)-category of complexes of vector spaces over e. Given a category C

and c1, c2 ∈ C, we denote by HomC(c1, c2) ∈ Vect the Hom space of c1 and c2, and denote by
HomC(c1, c2) := H0(HomC(c1, c2)).

2. Geometric preparation

In this section, we define some basic geometric objects used in this paper. First of all, we recall the
definitions of Ran space and Configuration space (§§ 2.1 and 2.2), and then review the definitions
of Ran-ified (or Beilinson–Drinfeld) affine flags and affine Grassmannian in § 2.3. In § 2.4, we
explain the gerbes used in this paper.

2.1 Ran space
The Ran space is important for us, since it is naturally factorizable. We need factorization
prestacks over Ran to perform our construction of the equivalence in Theorem 3.3.2.

Let X be a smooth connected projective curve defined over k.

Definition 2.1.1. The Ran space Ran := RanX is defined as the prestack whose S-points
classify non-empty finite sets I of Maps(S, X) for any affine scheme S over k.

We denote by (Ran× Ran)disj the open sub-prestack of Ran× Ran with disjoint support
condition.

The Ran space admits a (non-unital) semi-group structure by taking union

∪ : Ran× Ran→ Ran

I1, I2 �→ I1 ∪ I2. (2.1.1)

Let DI be the formal completion of S ×X along the graph of I, and denote by
◦
DI the open

subscheme of DI obtained by removing the graph of I.
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Definition 2.1.2. For any affine scheme S, the S-points of GrT,Ran classify the triples (I, PT , α),
where I ∈ Ran(S), PT is a T -bundle on DI, α is an isomorphism of PT with the trivial T -bundle

P0
T on

◦
DI.

The prestack GrT,Ran is called the Beilinson–Drinfeld (i.e. Ran-ified) affine Grassmannian
[BD96, § 5.3.11].

Remark 2.1.3. By the Beauville–Laszlo theorem [BL95], we can require that PT is a T -bundle
on S ×X, and α is an isomorphism of PT with P0

T on the complement of the graph of I. The
resulting prestack is the same.

The important note here is that GrT,Ran is factorizable over Ran. Namely, we have an
isomorphism

GrT,Ran ×
Ran

(Ran× Ran)disj � GrT,Ran � GrT,Ran ×
Ran×Ran

(Ran× Ran)disj, (2.1.2)

with higher homotopy coherence (see [GL19, § 5.1.2]).
Inside GrT,Ran, there is a closed factorization sub-prestack denoted by Grneg

T,Ran (see [GL19,
4.6.2]).

Definition 2.1.4. If G is semi-simple and simply connected, then a S-point (I, PT , α) of GrT,Ran

is in Grneg
T,Ran if

– for any dominant weight λ̌ ∈ Λ̌+, the meromorphic map of the line bundles on S ×X

λ̌(PT )→ λ̌(P0
T ) (2.1.3)

induced by α, is regular;
– for any point s ∈ S and any element i ∈ I, there exists at least one λ̌ ∈ Λ̌+, such that (2.1.3)

has a zero at the point s→ S
i→ X.

For general reductive group G, we define Grneg
T,Ran as Grneg

T sc,Ran, where T sc is the Cartan
subgroup of the simply connected cover of [G, G].

2.1.5 We also need the Ran space with a marked point.

Definition 2.1.6. Fix x ∈ X. We denote by Ranx := RanX,x the prestack whose S-points clas-
sify non-empty sets I of Maps(S, X) with a distinguished element x̃, where x̃ denotes the constant
map x̃ : S → x→ X.

Taking union defines a map

∪x : Ran× Ranx → Ranx. (2.1.4)

It equips Ranx with a structure of module space over Ran.
Let GrT,Ranx be Ranx ×

Ran
GrT,Ran. It has a closed sub-prestack (Grneg

T,Ranx
)∞·x.

Definition 2.1.7. For any affine scheme S, a S-point (I, PT , α) of GrT,Ranx belongs to the
sub-prestack (Grneg

T,Ranx
)∞·x, if there exists a T -bundle PT,1 on S ×X and an isomorphism

α′ : PT,1|S×(X\x) � PT |S×(X\x),

such that the resulting point (I, PT,1, α ◦ α′) of GrT,Ranx belongs to Ranx×Ran Grneg
T,Ran.
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2.2 Configuration spaces
Definition 2.2.1. The configuration space Conf := Conf(X, Λneg) is defined as the scheme
classifying colored divisors of X with coefficients in Λneg \ {0}, i.e. it classifies

D =
∑

k

λk · xk, λk ∈ Λneg \ {0}. (2.2.1)

2.2.2 Connected components. Connected components of Conf are indexed by Λneg \ {0},
Conf =

⊔
Λneg\{0}

Confλ.

Here Confλ denotes the subscheme of Conf where we require the total degree of D in (2.2.1) (i.e.∑
k λk) to be λ. If λ = −∑

i ni · αi, then Confλ is isomorphic to
∏

i X
(ni), where X(ni) classifies

unordered ni points in X.
Similar to the Ran space, Conf is equipped with a structure of non-unital commutative

semi-group. There is a map

addConf : Conf × Conf → Conf

D1, D2 �→ D1 + D2. (2.2.2)

If we restrict this map to the open subscheme (Conf × Conf)disj with disjoint support condition,
then it is étale.

Configuration space is essentially the same as Grneg
T,Ran. The following lemma is from [GL19,

Lemma 4.6.4].

Lemma 2.2.3. Evaluation on fundamental weights gives rise to a morphism

Grneg
T,Ran → Conf. (2.2.3)

It induces an isomorphism of the sheafifications in the topology generated by finite surjective
maps.

In particular, (2.2.3) induces an equivalence between categories of gerbes on Grneg
T,Ran and

Conf. Furthermore, it induces an equivalence of corresponding categories of twisted sheaves.

2.2.4 Similarly, we define the configuration space with a marked point.

Definition 2.2.5. Fix x ∈ X. We denote by Conf∞·x the ind-scheme classifying the colored
divisors on X with Λ-coefficient

D = λx · x +
∑

k

λk · xk, (2.2.4)

such that λk ∈ Λneg, λx ∈ Λ and xk �= x.

Regard Conf as a (non-unital) algebra in the category of prestacks, the addition map

addConfx : Conf × Conf∞·x → Conf∞·x (2.2.5)

gives Conf∞·x a module structure over Conf.
If we restrict addConfx to (Conf × Conf∞·x)disj, the open ind-scheme with disjoint support

condition, then it is étale. In particular, add!
Confx

� add∗
Confx

on (Conf × Conf∞·x)disj.
Similar to (2.2.3), there is a map of prestacks

(Grneg
T,Ran)∞·x → Conf∞·x. (2.2.6)
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Lemma 2.2.6 [GL19, 4.6.7]. The morphism (2.2.6) induces an isomorphism of the sheafifica-
tions in the topology generated by finite surjective maps.

2.3 Ran-ified Fl and Gr
The Beilinson–Drinfeld affine Grassmannian GrG,Ran is similarly defined as GrT,Ran (only replace
T -bundles by G-bundles in the definition). By adding an Iwahori structure at x, we arrive the
definition of the Beilinson–Drinfeld affine flags.

Definition 2.3.1. We define FlG,Ranx as the prestack whose S-points classify the quadruples
(I, PG, α, ε), where (I, PG, α) ∈ GrG,Ran(S), and ε is a B-reduction of PG over S × x.

An important feature of GrG,Ran is that it is factorizable over Ran. That is to say, we have
an isomorphism

GrG,Ran ×
Ran

(Ran× Ran)disj � GrG,Ran � GrG,Ran ×
Ran×Ran

(Ran× Ran)disj, (2.3.1)

with higher homotopy coherence.
Here FlG,Ranx is a factorization module space over GrG,Ran, i.e. for any non-empty set with

a distinguished point (∗ ∈ I), there is an isomorphism

FlG,Ranx ×
Ranx

(Ran× Ranx)disj � GrG,Ran � FlG,Ranx ×
Ran×Ranx

(Ran× Ranx)disj, (2.3.2)

with higher homotopy coherence.

2.4 Gerbes used in this paper
In the Betti setting and the �-adic setting, we let GG be a factorization etorsion,×-gerbe on GrG,Ran,
which is compatible with the factorization structure on GrG,Ran (see (2.3.1)). It is defined in
[GL18, § 2.4], and is called metaplectic parameter. In the D-module setting, we should require
GG to be a tame factorization gerbe on GrG,Ran defined in [Zha20, § 3.3]. In this section, we
explain how to get gerbes on some prestacks from GG on GrG,Ran.

2.4.1 Gerbe on the Hecke prestack. We denote by HeckeG the Hecke prestack which classifies
the data: (PG,1, PG,2, α), where PG,1 and PG,2 are G-bundles on X and α is an isomorphism of
PG,1 and PG,2 over X \ x, α : PG,1|X\x � PG,2|X\x. Then by the G(O)-equivariance of GG (see
[GL18, § 7.3]), GG gives rise to a gerbe on the Hecke prestack. We denote the descent gerbe on
HeckeG by GG

Hecke .

2.4.2 ωρ-twisted prestacks. Fix a square root of the canonical line bundle ω on X and denote
it by ω⊗ 1

2 . We define ωρ as the T -bundle induced from ω⊗ 1
2 by the morphism of group schemes

2ρ : Gm → T. (2.4.1)

Here ρ is the sum of all fundamental coweights.

If we replace the trivial G-bundle P0
G by the G-bundle Pω

G := ωρ
T×G in the definition of

GrG,Ran, we will obtain the ωρ-twisted Beilinson–Drinfeld affine Grassmannian. Let us denote it
by Grωρ

G,Ran. It is still a factorization prestack over Ran. Similarly, we can also define Flω
ρ

G,Ranx
,

Grωρ

G , Flω
ρ

G , G(K)ωρ
, N(K)ωρ

, Grωρ

T,Ran, (Grωρ

T,Ran)
neg, (Grωρ

T,Ranx
)neg
∞·x, etc. Similar to the classical

affine flags and affine Grassmannian, we have

Flω
ρ

G � G(K)ωρ
/Iωρ

,

1360

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007139


Twisted Whittaker sheaves on affine flags

and

Grωρ

G � G(K)ωρ
/G(O)ωρ

.

Here Iωρ
and G(O)ωρ

are ωρ-twisted version of I and G(O), respectively.

2.4.3 Gerbes on Flω
ρ

G and Grωρ

G . By definition, taking PG,2 to be Pω
G defines a map Grωρ

G,Ran →
HeckeG. The pullback of GG

Hecke along this map is a factorization gerbe on Grωρ

G,Ran. With some
abuse of notation, we denote it by GG. Its pullback to Flω

ρ

G,Ranx
(respectively, Flω

ρ

G , Grωρ

G , G(K)ωρ
,

etc.) is also denoted by GG.
By [GL18, Proposition 7.2.5], the pullback of GG along G(K)ωρ → Flω

ρ

G,Ranx
is a multiplicative

gerbe, i.e.

m!(GG) � GG � GG.

Here m denotes the multiplication map

G(K)ωρ ×G(K)ωρ → G(K)ωρ
.

In particular, the gerbes GG on Flω
ρ

G and Grωρ

G are equivariant with respect to the action of
G(K)ωρ

against the gerbe GG.

2.4.4 Gerbe on Conf. Replace G by B in the definition of Grωρ

G,Ran, one can define a
factorization prestack Grωρ

B,Ran. Consider the following diagram of prestacks.

Grωρ

B,Ran

Grωρ

T,RanGrωρ

G,Ran

(2.4.2)

The pullback of GG on Grωρ

G,Ran along the left morphism gives a factorization gerbe on Grωρ

B,Ran.
By [GL18, § 5.1], this factorization gerbe descends to a factorization gerbe on Grωρ

T,Ran. We denote
the resulting gerbe by GT .

By constructions similar to (2.2.3) and (2.2.6), we have maps

(Grωρ

T,Ran)
neg → Conf, (2.4.3)

and

(Grωρ

T,Ranx
)neg
∞·x → Conf∞·x. (2.4.4)

By (a tiny modification of) Lemmas 2.2.3 and 2.2.6, (2.4.3) and (2.4.4) induce equivalences of
gerbes on the Beilinson–Drinfeld affine Grassmannians and Configuration spaces. Hence, we can
descend the factorization gerbe GT on (Grωρ

T,Ran)
neg (respectively, (Grωρ

T,Ranx
)neg
∞·x) to a gerbe GΛ

on Conf (respectively, Conf∞·x). Note that the above maps are compatible with the factorization
structures, the gerbes on Conf and Conf∞·x are factorizable.

Following [GL18, § 4.2], we can get a quadratic form

q : Λ→ k/Z (2.4.5)

from a factorization gerbe GΛ on Conf in the D-module setting. In the Betti setting and the
�-adic setting, q takes value in etorsion,×(−1) := colimnHom(μn, etorsion,×).
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2.4.5 Gerbe on BunG. Let BunG denote the algebraic stack classifying principal G-bundles
on X. It is shown in [GL18] that any factorization gerbe on GrG,Ran descends to a gerbe on
BunG. We also denote the resulting gerbe on BunG by GG.

Remark 2.4.6. The pullback of GG on BunG along

Grωρ

G,Ran → BunG (2.4.6)

is the gerbe GG defined in § 2.4.3 tensored with the fiber GG|ωρ∈BunG
.

3. Statement of the main theorem

In this section, we introduce two sides of Theorem 3.3.2 explicitly:

(1) the category of Whittaker sheaves on affine flags (§ 3.1);
(2) the category of representations of the mixed quantum group (§ 3.2).

3.1 Definition of Whittaker category (through invariants)
In § 2.4.2, we have already defined ωρ-twisted prestacks. These objects have an advantage over the
non-twisted prestacks: we can define the non-degenerate character χ of N(K)ωρ

and Whittaker
sheaves on Flω

ρ

G canonically. In the rest of this paper, we consider the ωρ-twisted affine flags
Flω

ρ

G and related geometric objects. One can show that the Whittaker category on FlG and the
corresponding category on Flω

ρ

G are equivalent.
Consider a non-degenerate character of N(K)ωρ

,

χ : N(K)ωρ projection−→ N(K)ωρ
/[N(K)ωρ

, N(K)ωρ
] ∼−→ ω(K)r add−→ ω(K) residue−→ Ga. (3.1.1)

The pullback of the exponential D-module along χ is a character D-module, we denote this
character D-module by the same notation χ. In the �-adic case, we use the Artin–Schreier sheaf
instead of the exponential D-module here.

Definition 3.1.1. We define the Whittaker category on affine flags as

Whitq(Flω
ρ

G ) := ShvGG(Flω
ρ

G )N(K)ωρ
,χ = ShvGG(N(K)ωρ

, χ\Flω
ρ

G ). (3.1.2)

Here q is the quadratic form associated with GG (see (2.4.5)).

3.1.2 We note that Definition 3.1.1 involves taking invariants with respect to an ind-pro-
group scheme, we need to be more precise about this definition.

Write N(K)ωρ
as

N(K)ωρ
=

⋃
k≥0

Nk, (3.1.3)

where Nk := Adt−kρN(O)ωρ
.

First, by [Ber17, § 4.4.3], we have

Whitq(Flω
ρ

G ) = ShvGG(Flω
ρ

G )N(K)ωρ
,χ � lim

k,oblv
ShvGG(Flω

ρ

G )Nk,χ. (3.1.4)

Fix a natural number k ≥ 0. By (3.1.4), we only need to define ShvGG(Flω
ρ

G )Nk,χ.
Since Flω

ρ

G is an ind-scheme, we can write Flω
ρ

G as a colimit of finite-dimensional schemes Yi.
Furthermore, we can assume that each Yi is Nk-invariants. Then by

ShvGG(Flω
ρ

G ) � lim
i,!−pullback

ShvGG(Yi),
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we have

ShvGG(Flω
ρ

G )Nk,χ � lim
i,!−pullback

ShvGG(Yi)Nk,χ. (3.1.5)

We note that Nk is a pro-scheme of finite type, we can write it as

Nk = lim
l

N l
k,

such that each N l
k is a finite-dimensional unipotent group scheme and the action of Nk on Yi

factors through N l
k. Finally, we define

ShvGG(Yi)Nk,χ := ShvGG(Yi)N l
k,χ. (3.1.6)

Since for any l′ ≥ l, the kernel of N l′
k → N l

k is unipotent, the above definition is independent of
the choice of N l

k.

3.1.3 Averaging functors. Denote by

oblvN(K)ωρ
,χ : Whitq(Flω

ρ

G )→ ShvGG(Flω
ρ

G ) (3.1.7)

the fully faithful forgetful functor.

It admits a (partially defined) left adjoint functor AvN(K)ωρ
,χ

! . Since AvN(K)ωρ
,χ

! is a (partially
defined) left adjoint functor, it commutes with filtered colimits. In contrast, the right adjoint

functor AvN(K)ωρ
,χ

∗ of oblvN(K)ωρ
,χ is discontinuous.

With the ind-pro-group scheme presentation (3.1.3) of N(K)ωρ
, we may write AvN(K)ωρ

,χ
!

more precisely,

AvN(K)ωρ
,χ

! = colim
k,!−averaging

AvNk,χ
! . (3.1.8)

If AvNk,χ
! (F) can be defined for any k, then AvN(K)ωρ

,χ
! (F) can be defined by taking colimit. In

particular, AvN(K)ωρ
,χ

! can be defined in the �-adic setting and for ind-holonomic D-modules in
the D-module setting.

3.2 Mixed quantum groups
The quantum group used in this paper is not the classical quantum group. It is neither the
Lusztig quantum group nor its graded dual. It is a combination of these two quantum groups:
the positive part is the Lusztig quantum group UL

q (ň) and the negative part is the graded dual
of it (i.e. the De Concini–Kac quantum group UDK

q (ň−)).

3.2.1 Mixed representation category. Let VectΛq denote Repq(Ť ), the braided monoidal
category of e-representations of the quantum torus Ť . We denote by UL

q (ň)-modloc.nil the
ind-completion of the derived category of finite-dimensional UL

q (ň)-modules in VectΛq .

Definition 3.2.2. The category Repmxd
q (Ǧ) is defined as ZDr,VectΛq

(UL
q (ň)-modloc.nil), which is

the relative Drinfeld center of UL
q (ň)-modloc.nil with respect to VectΛq (see [GL19, 27.2]).

Remark 3.2.3. At abelian category level, an object in Repmxd
q (Ǧ) is a Λ-graded vector space with

actions of UL
q (ň) (with the locally nilpotent condition) and UDK

q (ň−).
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3.2.4 Verma modules. We denote by indL→Dr the left adjoint functor of the forgetful functor
from Repmxd

q (Ǧ) to UL
q (ň)-modloc.nil, and by coindDK→Dr the right adjoint functor of the forgetful

functor from Repmxd
q (Ǧ) to UDK

q (ň−)-mod. For λ ∈ Λ, we define Verma modules and co-Verma
modules in Repmxd

q (Ǧ) as

V mxd
λ := indL→Dr(eλ), (3.2.1)

V mxd,∨
λ := coindDK→Dr(eλ). (3.2.2)

Here eλ denotes the one-dimensional representation of UL
q (ň) (or UDK

q (ň−)) in VectΛq , where the
action of the torus corresponds to λ and the action of the unipotent group is trivial.

Following [Gai21a, 5.3.2], we have

HomRepmxd
q (Ǧ)(V

mxd
λ , V mxd,∨

μ ) =

{
e, if λ = μ,

0, if λ �= μ.

Furthermore, by construction, the objects V mxd
λ are compact and compactly generate Repmxd

q (Ǧ).
Thus, there is a highest weight structure of Repmxd

q (Ǧ) with standard objects V mxd
λ and

costandard objects V mxd,∨
μ .

3.3 Statement of Theorem 3.3.2
3.3.1 Avoid small torsion. A quadratic form q avoids small torsion ([Gai21b, 1.1.5], [Lus10,

35.1.2 (a)]) if for any long coroot αl of a simple factor of G, there is

ord(q(αl)) ≥ dG + 1,

where dG = 1, 2, 3 is the lacing number (i.e. the maximal number of edges in the Dynkin
diagram).

Theorem 3.3.2. In the setting of D-modules, when q avoids small torsion, there exists a t-exact
equivalence of highest weight categories

Whitq(Flω
ρ

G ) � Repmxd
q (Ǧ). (3.3.1)

3.3.3 Highest weight category structure. In § 5.5, we define a collection of standard objects Δλ

in Whitq(Flω
ρ

G ) indexed by Λ. They are given by !-averaging the Wakimoto sheaves. In addition,
we define a collection of costandard objects ∇λ ∈Whitq(Flω

ρ

G ). We show that Verma modules
V mxd

λ and Δλ match under the equivalence (3.3.1) and similarly for costandards.

3.3.4 t-structure. The equivalence (3.3.1) is an equivalence at the derived level. We define
a t-structure on Whitq(Flω

ρ

G ) in § 5.6 (see Definition 5.6.2) using Δλ, and we show that it is
compatible with the tautological t-structure on Repmxd

q (Ǧ) under the equivalence.

4. Factorization algebra and factorization module

Since [BFS98], it is known that the category of modules over a Hopf algebra can be realized as the
category of factorization modules over a factorization algebra. In this section, we review factor-
ization modules and factorization algebras, and give an equivalent expression of Theorem 3.3.2
with factorization modules.
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4.1 Factorization algebras and factorization modules
Definition 4.1.1. We call a twisted sheaf Ω ∈ ShvGΛ(Conf) factorization algebra on Conf if it
is compatible with the factorization property of Conf, i.e. there is an isomorphism

add!
Conf(Ω)|(Conf×Conf)disj

� Ω � Ω|(Conf×Conf)disj
, (4.1.1)

with higher homotopy coherence.

The above definition makes sense in the GΛ-twisted case because

add!
Conf(G

Λ)|(Conf×Conf)disj
� GΛ � GΛ|(Conf×Conf)disj

.

It is easy to see that the Verdier dual of a factorization algebra is also a factorization algebra.

4.1.2 Given a factorization algebra Ω on Conf, we can consider its module category on
Conf∞·x.

Definition 4.1.3. We call a twisted sheaf M ∈ ShvGΛ(Conf∞·x) factorization module over Ω if
it is compatible with the factorization structure of Ω, i.e. there is an isomorphism

add!
Confx

(M)|(Conf×Conf∞·x)disj
� Ω � M|(Conf×Conf∞·x)disj

, (4.1.2)

with higher homotopy coherence.

We denote by Ω-FactMod the category of factorization modules over Ω.

4.1.4 Structure of Ω-FactMod. Given λ ∈ Λ, let Conf=λ·x be the locally closed subscheme of
Conf∞·x consisting of the points D = λ · x +

∑
λi · xi such that λi ∈ Λneg and xi �= x ∀i.

The restriction of (2.2.5) to Conf × Conf=λ·x induces a map

addConfx : (Conf × Conf=λ·x)disj −→ Conf=λ·x.

We call M̌ ∈ ShvGΛ(Conf=λ·x) a factorization module over Ω, if there is

add!
Confx

(M)|(Conf×Conf=λ·x)disj
� Ω � M|(Conf×Conf=λ·x)disj

.

We denote by Ω-FactMod=λ the category of factorization modules on Conf=λ·x over Ω.
Let GΛ|λ·x be the fiber of GΛ at λ · x. The following lemma is from [GL19, Lemma 5.3.5].

Lemma 4.1.5. Taking !-stalks at λ · x defines a t-exact equivalence

i!λ : Ω-FactMod=λ � VectGΛ|λ·x . (4.1.3)

Here VectGΛ|λ·x denotes the category of G|λ·x-twisted vector spaces.

Definition 4.1.6. Assume that Ω is in the heart of ShvGΛ(Conf). Consider the perverse4 gener-
ator of Ω-FactMod=λ, and we denote its ∗ (respectively, !)-pushforward along the locally closed
embedding

Conf=λ·x → Conf∞·x

by ∇λ,Ω (respectively, Δλ,Ω).
Here ∇λ,Ω is called the costandard object of Ω-FactMod and Δλ,Ω is called the standard

object.

By definition, standard objects Δλ,Ω are compact and generate Ω-FactMod. Standard objects
Δλ,Ω and costandard objects ∇λ,Ω are perverse.

4 Here ‘perverse’ means this object is concentrated in degree 0.

1365

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007139


R. Yang

4.1.7 The Verdier duality functor is well-defined for both Δλ,Ω and ∇λ,Ω. Furthermore, we
have

DVerdier(Δλ,Ω) � ∇λ,DVerdier(Ω) ∀λ ∈ Λ. (4.1.4)

Here Δλ,Ω ∈ ShvGΛ(Conf∞·x) and ∇λ,DVerdier(Ω) ∈ Shv(GΛ)−1(Conf∞·x).
By definition, Δλ,Ω and ∇μ,Ω satisfy the following orthogonality property.

Lemma 4.1.8. For λ, μ ∈ Λ, we have

HomΩ-FactMod(Δλ,Ω,∇μ,Ω) =

{
e, if λ = μ,

0, if λ �= μ.

Proof. It follows from the adjointness of !-pushforward and !-pullback along the locally closed
embedding Conf=λ·x → Conf∞·x, and Lemma 4.1.5. �

4.1.9 The tautological t-structure on ShvGΛ(Conf∞·x) gives a t-structure on Ω-FactMod. In
fact, by [GL19, Proposition 5.4.2], we can describe this t-structure on Ω-FactMod by Δλ,Ω. To
be more precise, an Ω-factorization module M is coconnective as a twisted sheaf if and only if
for any λ ∈ Λ,

HomΩ-FactMod(Δλ,Ω[k], M) = 0, if k > 0. (4.1.5)

4.2 An explicit description of ΩL
q

In this section, we recall the factorization algebra ΩL
q given in [Gai21b, § 2.3]. It is the category

of modules over this factorization algebra that is expected to be equivalent to the Whittaker
category on affine flags.

Here Conf has an open subscheme
◦

Conf removing all diagonals. A point D =
∑

k λk · xk

belongs to
◦

Conf if and only if the coefficient of any point xk is a negative coroot. If λ = −∑
i ni ·

αi, then the λ connected component
◦

Confλ is isomorphic to
∏

i

◦
X(ni). Here

◦
X(ni) classifies

unordered ni different points in X.
Following [GL19, § 17.1.2], GΛ| ◦

Conf
is canonically trivialized. In particular,

ShvGΛ(
◦

Conf) � Shv(
◦

Conf). (4.2.1)

The product of sign local systems on each
◦

X(ni) gives rise to a factorization algebra on
◦

Conf.

Under the equivalence (4.2.1), it can be regarded as a twisted factorization algebra on
◦

Conf. We

denote it by
◦
Ωq, where q is the quadratic form in (2.4.5).

4.2.1 By factorization (i.e. (4.1.1)), we only need to indicate how to extend ΩL
q from its

restriction on Confλ \X to Confλ, for any λ ∈ Λneg \ {0}. Here X embeds into Confλ by assigning
x to λ · x.

We denote by jλ the open embedding from Confλ \X to Confλ and by l the length function
of the Weyl group.

Definition 4.2.2. The factorization algebra ΩL
q is defined inductively as follows.

(1) If λ = w(ρ)− ρ and l(w) = 2, then

jλ,! ◦ j!λ(ΩL
q ) ∼−→ ΩL

q .
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(2) If λ = w(ρ)− ρ and l(w) ≤ 3,
H0(jλ,! ◦ j!λ(ΩL

q )) � ΩL
q .

(3) If λ is not of the form w(ρ)− ρ, then

ΩL
q � jλ,!∗ ◦ j!λ(ΩL

q ).

The following lemma is indicated in [GL19, § 29], see [CF21, Theorem 1.2.1] for a precise
statement and proof.

Lemma 4.2.3. In the D-module setting and the Betti setting, there is

Repmxd
q (Ǧ) := ZDr,VectΛq

(UL
q (ň)-modloc.nil) � ΩL

q -FactMod. (4.2.2)

Furthermore, under the above equivalence, V mxd
λ (respectively, V mxd,∨

λ ) corresponds to Δλ,ΩL
q

(respectively, ∇λ,ΩL
q
).

Proof. By Lefschetz principle and Riemann–Hilbert correspondence, we only need to prove the
claim in the setting of constructible sheaves with coefficients in C in classical topology.

Following [GL19, § 29.5.1], one can associate a factorization algebra with a Hopf algebra A.
Furthermore, the relative Drinfeld center of A-mod is equivalent to the category of factoriza-
tion modules over the corresponding factorization algebra. Applying it to our case, there is an
equivalence of categories

Repmxd
q (Ǧ) � ΩL

q,quant-FactMod. (4.2.3)

Here ΩL
q,quant denotes the GΛ-twisted factorization algebra associated with UL

q (ň) for a certain
factorization algebra.

However, by the Verdier dual of [Gai21b, § 2.3.8, Theorem 3.6.2], there is ΩL
q,quant � ΩL

q . �

4.3 Restatement of Theorem 3.3.2
The following theorem is equivalent to Theorem 3.3.2.

Theorem 4.3.1. In the setting of D-modules, when q avoids small torsion, there is a functor FL

which establishes a t-exact5 equivalence

FL : Whitq(Flω
ρ

G ) ∼−→ ΩL
q -FactMod,

and preserves standard objects and costandard objects.

Remark 4.3.2. The above theorem holds in the Betti setting if we replace the Whittaker category
by the Kirillov model.

5. Standard object and duality of Whittaker category

The principal goal of this section is to construct standard objects of Whitq(Flω
ρ

G ) (§ 5.5) and
define the duality functor of Whitq(Flω

ρ

G ) using a lemma from [Ras21] (§ 5.7). They play an
important role in the proof of our main theorem.

5.1 Relevant orbits
To study Whitq(Flω

ρ

G ), we should first study when a N(K)ωρ
-orbit admits non-zero Whittaker

sheaves support on it.

5 The t-structure on Whitq(Flω
ρ

G ) is given in § 5.6.
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It is known that the N(K)ωρ
-orbits in Flω

ρ

G are indexed by the extended affine Weyl group
W ext := W � Λ. For any w̃ ∈W ext, we denote by Sw̃

Fl the N(K)ωρ
-orbit in Flω

ρ

G of w̃ · Iωρ
/Iωρ

.
Let S

w̃
Fl denote the closure of Sw̃

Fl in Flω
ρ

G .
The orbits which admit non-zero GG-twisted Whittaker sheaves are called relevant orbits.

Since N(K)ωρ
is ind-pro-unipotent and GG on Flω

ρ

G is GG-equivariant with respect to the action
of G(K)ωρ

, the gerbe GG on any single N(K)ωρ
-orbit admits a N(K)ωρ

-equivariant trivialization.
As a result, the necessary and sufficient condition for a N(K)ωρ

-orbit Sw̃
Fl to be relevant is that

it is relevant in the non-twisted case. Namely,

StabN(K)ωρ (w̃Iωρ
/Iωρ

) ⊂ Ker(χ). (5.1.1)

Definition 5.1.1. Given an element w̃ ∈W ext, we denote by l(w̃) the dimension of its Iwahori
orbit in the affine flags (or the length of w̃). To be more precise, if w̃ = tλw, then

l(w̃) =
∑

α̌∈Δ̌+,w−1(α̌)>0

|〈α̌, λ〉|+
∑

α̌∈Δ̌+,w−1(α̌)<0

|〈α̌, λ〉+ 1|. (5.1.2)

Proposition 5.1.2. A N(K)ωρ
-orbit Sw̃

Fl ⊂ Flω
ρ

G is relevant if and only if tρw̃ is the maximal
length element in the left coset Wtρw̃ ⊂W ext.

In particular, for any dominant coweight λ ∈ Λ+, tλ ∈W ext is relevant.

Proof. Denote by

˜̌Δ+
= {α̌ + nδ| α̌ ∈ Δ̌, n ≥ 0 if α̌ is positive, and n ≥ 1if α̌ is negative} ∪ {nδ |n ≥ 0}

the set of the roots of G(K)ωρ
corresponding to Iωρ

. Here δ is the positive imaginary root
generator. We denote by Δ̌+ (respectively, Π̌+) the set of positive (respectively, positive simple)
roots of G.

If the N(K)ωρ
-orbit of w̃ · Iωρ

/Iωρ ∈ Flω
ρ

G is relevant, we need the formula (5.1.1) to hold.
By a straightforward calculation

StabN(K)ωρ (w̃ · Iωρ
/Iωρ

) = w̃Iωρ
w̃−1 ∩N(K)ωρ ⊂ Ker(χ)

⇔ w̃( ˜̌Δ+
) ∩ (Π̌+ − δ) = ∅

⇔ w̃( ˜̌Δ+
) ∩ t−ρ(Π̌+) = ∅

⇔ tρw̃( ˜̌Δ+
) ∩ Π̌+ = ∅

⇔ −{Π̌+} ⊂ tρw̃( ˜̌Δ+
)

⇔ w̃−1t−ρ(Δ̌+) < 0. (5.1.3)

According to [Kac90, Lemma 3.11 a.], it means that for any simple reflection ri of W , there is
l(w̃−1t−ρri) ≤ l(w̃−1t−ρ). We conclude that for any simple reflection ri of W , there is l(rit

ρw̃) ≤
l(tρw̃). It means tρw̃ is the unique maximal length element in Wtρw̃ ⊂W ext. �

Remark 5.1.3. Relevant orbits of FlG are naturally indexed Λ. One can check that

φ : W ext →W ext

w̃ �→ t−ρw̃l,
(5.1.4)
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induces a bijection between Λ and the set {w̃, w̃ is relevant}. Here w̃l denotes the unique maximal
length element in the left coset Ww̃. For example, if w̃ = t0, then φ(w̃) = t−ρw0; if w̃ = tρ+λ and
λ is dominant, then φ(w̃) = tλ.

Proposition 5.1.4. The category of twisted Whittaker sheaves on Sw̃
Fl is equivalent to Vect or

0 depends on if w̃ is relevant or not, i.e.

Whitq(Sw̃
Fl) �

{
Vect, if w̃ is relevant,
0, otherwise.

Proof. There is a N(K)ωρ
-equivariant trivialization of GG on Sw̃

Fl, we have Whitq(Sw̃
Fl) �

Whit(Sw̃
Fl). Since StabN(K)ωρ (w̃ · Iωρ

/Iωρ
) is a connected pro-unipotent group, Whit(Sw̃

Fl) is a

full subcategory of ShvN(K)ωρ
,χ(N(K)ωρ

). The latter category is equivalent to Vect, we only
need to show that the fully faithful embedding

Whit(Sw̃
Fl)→ ShvN(K)ωρ

,χ(N(K)ωρ
)

is actually an equivalence if w̃ is relevant and is 0 otherwise.
If w̃ is relevant, StabN(K)ωρ (w̃ · Iωρ

/Iωρ
) ⊂ Ker(χ), so any Whittaker sheaf on N(K)ωρ

descends to a Whittaker sheaf on Sw̃
Fl � N(K)ωρ

/StabN(K)ωρ (w̃ · Iωρ
/Iωρ

). If w̃ is not relevant,
we should prove that for any F ∈Whit(Sw̃

Fl), there is F = 0. Since the action of N(K)ωρ
is transi-

tive, we only need to show that the stalk of F is 0 at w̃ · Iωρ
/Iωρ

. It follows immediately from the
fact that this fiber is equivariant with respect to StabN(K)ωρ (w̃ · Iωρ

/Iωρ
) against a non-trivial

character. �

Definition 5.1.5. Assume that w̃ is relevant, we define

Δver
w̃ := AvN(K)ωρ

,χ
! (δw̃)[−l(w0t

ρw̃) + l(t−ρw0)],

and
∇ver

w̃ := j̄w̃,Fl,∗ ◦ j̄!
w̃,Fl(Δ

ver
w̃ ),

where jw̃,Fl is the locally closed embedding

jw̃,Fl : Sw̃
Fl → Flω

ρ

G .

They are defined up to tensoring by a line, i.e. depending on the trivialization of GG at w̃ ∈ Flω
ρ

G .

Remark 5.1.6. Here the superscript ‘ver’ means Verma. We expect, under Conjecture 2, {Δver
w̃ }

correspond to Verma modules in the category of modules over Kac–Moody Lie algebra.

The object Δver
w̃ is the !-pushforward of the generator of Whitq(Sw̃

Fl), and ∇ver
w̃ is the

∗-pushforward of the generator of Whitq(Sw̃
Fl). They have the following properties.

Proposition 5.1.7. We have:

(1) {Δver
w̃ , w̃ is relevant} (respectively, {∇ver

w̃ , w̃ is relevant}) compactly generate Whitq(Flω
ρ

G );
(2)

HomWhitq(Flω
ρ

G )(Δ
ver
w̃ ,∇ver

w̃′ ) �
{

0, if w̃ �= w̃′,

e, if w̃ = w̃′.

Proof. Since jw̃,Fl,! is the left adjoint functor of a continuous functor (i.e. j!
w̃,Fl), it preserves com-

pactness. In particular, Δver
w̃ is compact. Note that for F ∈Whitq(FlG), HomWhitq(Flω

ρ
G )(Δ

ver
w̃ , F)
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is isomorphic to the !-stalks of F at w̃ up to a shift. Hence, if HomWhitq(Flω
ρ

G )(Δ
ver
w̃ , F) = 0 for

any relevant w̃, then F = 0.
To show the claim for {∇ver

w̃ , w̃ is relevant}, note that the closure of any N(K)ωρ
-orbit in

Flω
ρ

G only contains finite many relevant orbits. Hence, any ∇ver
w̃ is a finite extension of objects

in {Δver
w̃ [k], w̃ is relevant, k ∈ Z}. In particular, ∇ver

w̃ is compact. Similarly, any Δver
w̃ is a finite

extension of objects in {∇ver
w̃ [k], w̃ is relevant, k ∈ Z}. Hence, the objects∇ver

w̃ compactly generate
Whitq(Flω

ρ

G ) as the objects Δver
w̃ do.

Claim (2) directly follows from the adjointness of !-pushforward and !-pullback, and
Proposition 5.1.4. �

As a corollary, an object F ∈Whitq(Flω
ρ

G ) is compact if and only if F is supported on finitely
many Sw̃

Fl, and its restriction is compact in Whitq(Sw̃
Fl), for any w̃.

Remark 5.1.8. We can define a highest weight category structure on Whitq(Flω
ρ

G ) with standards
{Δver

w̃ } and costandards {∇ver
w̃ }. It is the highest weight category structure in [CDR21]. However,

it is different from that used in this paper. For generic q, we expect that they are essentially the
same (up to a convolution).

5.2 Right equivariant sheaf
Recall the main theorem of [AB09],

Whit(FlG) � QCoh(ň/B̌) � Repmxd(Ǧ).

It is not only an equivalence of plain categories, but also compatible with highest weight category
structures on both sides. The standard objects in Repmxd(Ǧ) are Verma modules V mxd

λ and
the standard objects in Whit(FlG) are given by the !-averaging of the BMW6 sheaves Jλ (i.e.
Wakimoto sheaves). Hence, in the twisted case, we need to define the twisted BMW sheaves Jλ

and use them to define standard objects Δλ in Whitq(Flω
ρ

G ) by !-averaging.

5.2.1 Let I0 be the unipotent radical of the ωρ-twisted Iwahori subgroup Iωρ
, and let Tωρ

be Iωρ
/I0. When there is no twisting, Jλ is Iwahori-equivariant. However, there are ‘much fewer’

Iwahori-equivariant objects in the twisted case.
Indeed, since I0 is pro-unipotent, there is a unique (up to a non-canonical isomorphism)

I0-equivariant trivialization of the gerbe GG on any Iwahori orbit

Flw̃G := Iωρ · w̃ · Iωρ
/Iωρ

of Flω
ρ

G . In the twisted case, the I0-equivariant trivialization of GG on Flw̃G is not necessarily
Iwahori-equivariant. Instead, it is equivariant with respect to a certain character of Tωρ

. For
example, when the quadratic form q is generic, there is no Iωρ

-equivariant sheaf on Flt
λw

G unless
λ = 0.

The solution to fix this problem is to consider I0-equivariant sheaves on F̃l := G(K)ωρ
/I0,

rather than Iwahori-equivariant sheaves on FlG.

5.2.2 The exact sequence

1→ I0 → Iωρ → Tωρ → 1

is split. Hence, we may consider the right action of Tωρ
on F̃l := G(K)ωρ

/I0. In order to
define BMW sheaves in the twisted case, we need to consider sheaves on F̃l which are right
Tωρ

-equivariant against a character. This idea appears in [Bez16] and [LY20].

6 BMW denotes Bezrukavnikov–Mirković–Wakimoto.
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Let b(−,−) be the symmetric bilinear form associated with the quadratic form q, i.e. in the
D-module setting,

b(λ1, λ2) := q(λ1 + λ2)− q(λ1)− q(λ2); (5.2.1)

in the Betti setting and the �-adic setting,

b(λ1, λ2) := q(λ1 + λ2) · q(λ1)−1 · q(λ2)−1. (5.2.2)

In the D-module setting (respectively, Betti setting and �-adic setting), we denote by

bλ := b(λ,−) : Λ→ k/Z (respectively, etorsion,×(−1)), (5.2.3)

the associated character of Tωρ
. With some abuse of notation, we denote by bλ the associated

Kummer sheaf on Tωρ
. Its pullback to Iωρ

is also denoted by bλ.

Definition 5.2.3. We define

ShvGG(F̃l)I,λ
μ := ShvGG(Iωρ

, bλ\F̃l/Tωρ
, bμ)

as the category of left (Iωρ
, bλ)-equivariant and right (Tωρ

, bμ)-equivariant twisted sheaves on F̃l.
Similarly, we define

ShvGG(F̃l)I0

μ := ShvGG(I0\F̃l/Tωρ
, bμ)

as the category of left I0-equivariant and right (Tωρ
, bμ)-equivariant twisted sheaves on F̃l.

When μ = 0, we omit μ in the notation. In this case, we can realize right Tωρ
-equivariant

objects on F̃l as objects on Flω
ρ

G .

Let F̃l
w̃

be the preimage of Flw̃G in F̃l. We have equivalences

ShvGG(F̃l
w̃
)I0

μ � ShvGG((w̃Iωρ
/I0)/Tωρ

, bμ) � ShvGG(w̃Iωρ
/Iωρ

, bμ)

� ShvGG(w̃T (O)ωρ
/T (O)ωρ

, bμ).

Given an identification of ShvGG(w̃T (O)ωρ
/T (O)ωρ

, bμ) with Vect which preserves the cohomo-

logical degree of !-fiber, we denote by (cw̃)μ the twisted sheaf on F̃l
w̃

corresponding to e ∈ Vect.
Different identifications will change the resulting twisted sheaf (cw̃)μ by tensoring by a line in
cohomological degree 0, so we can regard (cw̃)μ as an object defined up to tensoring by a line.

Remark 5.2.4. In the case μ = 0, ShvGG(F̃l
w̃
)I0

μ � ShvGG(Flw̃G)I0 � Shv(Flw̃G)I0
, and (cw̃)μ = cw̃

is just the (twisted) dualizing sheaf on Flw̃G with respect to the unique (up to a non-canonical
isomorphism) I0-equivariant trivialization on Flw̃G.

Definition 5.2.5. Let (Jw̃,!)μ (respectively, (Jw̃,∗)μ) be the ! (respectively, *)-extension of
(cw̃)μ[−l(w̃)] along the locally closed embedding

F̃l
w̃ → F̃l.

5.3 Convolution product
Denote by

π̃ : G(K)ωρ → G(K)ωρ
/I0 � F̃l (5.3.1)

the natural projection from G(K)ωρ
to F̃l.
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For a right (Iωρ
, bλ)-equivariant sheaf F1 ∈ ShvGG(F̃l)λ and a left (Iωρ

, bλ)-equivariant and
right (Iωρ

, bη)-equivariant sheaf F2 ∈ ShvGG(F̃l)I,λ
η . Consider the following diagram.

· · · ��
���� G(K)ωρ × Iωρ × F̃l ���� G(K)ωρ × F̃l ��π �� G(K)ωρ ×Iωρ

F̃l

Since the equivariant conditions translate to the descent condition, the external product π̃!(F1) �
F2 on G(K)ωρ × F̃l descends to a twisted sheaf π̃!(F1)�̃F2 on G(K)ωρ ×I F̃l, such that

π!(π̃!(F1)�̃F2) � π̃!(F1) � F2.

By the multiplicative property of GG, the pullback of GG along the multiplication map

m : G(K)ωρ ×G(K)ωρ
/I0 → G(K)ωρ

/I0

is GG � GG. In particular, the pushforward of a GG � GG-twisted sheaf along the multiplication
map is GG-twisted.

Definition 5.3.1. Set

F1 � F2 := m∗((π̃!(F1)�̃F2)) ∈ ShvGG(F̃l)η. (5.3.2)

Remark 5.3.2. Since m is (ind-)proper, it does not matter whether we consider !- or
∗-pushforward of m.

We denote by w̃ the image of w̃ under the first projection W ext = Λ � W → Λ. For w̃ =
tλw ∈W ext, w̃ = λ.

Remark 5.3.3. We have that (Jw̃,?)μ (? = ! or *) is left (Iωρ
, bw̃tμ)-equivariant and right (Tωρ

, bμ)-
equivariant.

In order to define the twisted BMW sheaf for any coweight λ ∈ Λ, we need the following
lemma which is an analog of [AB09, Lemma 8] and [LY20, Lemmas 3.4 and 3.5].

Lemma 5.3.4. For w̃, w̃′ ∈W ext and μ ∈ Λ, if l(w̃w̃′) = l(w̃) + l(w̃′), then:

(1)

(Jw̃,!)w̃′tμ � (Jw̃′,!)μ � (Jw̃w̃′,!)μ,

(Jw̃,∗)w̃′tμ � (Jw̃′,∗)μ � (Jw̃w̃′,∗)μ;

(2) (Jw̃,!)w̃−1μ
� (Jw̃−1,∗)μ � (J0)μ � (Jw̃,∗)w̃−1μ

� (Jw̃−1,!)μ.

Proof. The proof is similar to the non-twisted case. Here we sketch the proof.
For part (1), we only prove the first claim, the second one follows from the same argument.
By the Cartan decomposition of G(K)ωρ

by the Iwahori subgroup Iωρ
, the multiplication

map

G(K)ωρ Iωρ

× G(K)ωρ
/I0 → G(K)ωρ

/I0 (5.3.3)

is an isomorphism after restricting to Iωρ
w̃Iωρ ×Iωρ

Iωρ
w̃′Iωρ

/I0 → Iωρ
w̃w̃′Iωρ

/I0. Note that the
trivializations of gerbes on both sides are compatible. Now the first assertion follows from the
fact that both (Jw̃,!)w̃′tμ � (Jw̃′,!)μ and (Jw̃w̃′,!)μ have zero ∗-stalks outside Iωρ

w̃w̃′Iωρ
/Iωρ ⊂ Flω

ρ

G .
To prove part (2), by part (1), we can reduce the question to the case when w̃ is a simple

reflection. In this case, Iωρw̃Iωρ/Iωρ ⊂ Flω
ρ

G is isomorphic to P1.
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The support of (Jw̃,!)w̃−1μ
� (Jw̃−1,∗)μ is contained in Iωρw̃Iωρ · Iωρw̃−1Iωρ/I0, which is

equal to the disjoint union Iωρ
w̃Iωρ

/I0 � Iωρ
/I0. By the equivariance property of (Jw̃,!)w̃−1μ

�

(Jw̃−1,∗)μ, we should prove that the !-stalks of (Jw̃,!)w̃−1μ
� (Jw̃−1,∗)μ is zero at w̃ and is e at 1.

For g0 ∈ G(K)ωρ
, taking pushforward along the map G(K)ωρ → G(K)ωρ

: g �→ g0g
−1 induces

a functor
ιg0 : ShvGG(F̃l)I,λ → Shv(GG)−1⊗GG

g0
(F̃l)−λ, (5.3.4)

where GG
g0

denotes the fiber of GG at g0.
Note that (Jw̃,!)w̃−1μ

⊗! ιg0((Jw̃−1,∗)μ) is right Tωρ
-equivariant, so it descends to a twisted

sheaf on Flω
ρ

G . We denote the resulting sheaf by the same notation.
The projection of g0 in G(K)ωρ

/I0 is denoted by ḡ0. The preimage of ḡ0 along (5.3.3) is iden-
tified with Flω

ρ

G via the composition of the first projection map p1 : G(K)ωρ ×Iωρ

G(K)ωρ
/I0 →

G(K)ωρ
/I0 and G(K)ωρ

/I0 → G(K)ωρ
/Iωρ

.
Under this identification, the !-restriction of (Jw̃,!)w̃−1μ

� (Jw̃−1,∗)μ to the preimage of ḡ0 is
identified with

(Jw̃,!)w̃−1μ

!⊗ ιg0((Jw̃−1,∗)μ) ∈ ShvGG
g0

(Flω
ρ

G ).

By the base change theorem, the !-stalks of (Jw̃,!)w̃−1μ
� (Jw̃−1,∗)μ at the point ḡ0 is

isomorphic to

H(Flω
ρ

G , (Jw̃, !)
w̃−1μ

!⊗ ιg0((Jw̃−1,∗)μ)) ∈ VectGG
g0

.

In particular, the !-stalks of (Jw̃,!)w̃−1μ
� (Jw̃−1,∗)μ at w̃ is isomorphic to

H(Flω
ρ

G , (Jw̃,!)w̃−1μ

!⊗ ιw̃((Jw̃−1,∗)μ)).

Under the identification Iωρw̃Iωρ/Iωρ � P1, (Jw̃,!)w̃−1μ
⊗! ιw̃((Jw̃−1,∗)μ) is identified with the

∗-extension from a Gm-equivariant (with respect to certain Kummer sheaf) sheaf on Gm :=
P1 \ {0,∞} to A1 := P1 \ {∞}, and then !-pushforward to P1. By Braden’s theorem (see [DG14,
Proposition 3.2.2]), its cohomology equals its ∗-stalks at ∞, which equals zero.

Over the point 1 ∈ Flω
ρ

G , the !-stalks can be calculated by

H(Flω
ρ

G , (Jw̃,!)w̃−1μ

!⊗ ι1((Jw̃−1,∗)μ)).

Note that the restriction of (Jw̃,!)w̃−1μ
⊗! ι1((Jw̃−1,∗)μ) to A1 is isomorphic to the constant object.

By the projection formula, (Jw̃,!)w̃−1μ
⊗! ιw̃((Jw̃−1,∗)μ) is the ∗-pushforward of the constant sheaf

on A1, and its cohomology is e. �

5.4 Twisted BMW sheaf
With the preparation given in the last several sections, finally, we can construct the BMW
sheaves in the twisted cases.

Definition 5.4.1. Given λ ∈ Λ, such that λ = λ1 − λ2, λ1, λ2 ∈ Λ+. We define the twisted BMW
sheaf (Jλ)μ ∈ ShvGG(F̃l)μ as

(Jλ)μ := (Jλ1,!)−λ2+μ � (J−λ2,∗)μ. (5.4.1)

Similarly, we define the dual BMW sheaf as

(JD

λ )μ := (Jλ1,∗)−λ2+μ � (J−λ2,!
)μ. (5.4.2)
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They are well-defined up to tensoring by a line in degree 0, and according to Lemma 5.3.4,
the definitions are independent of choices of λ1, λ2.

Remark 5.4.2. To be more precise, they are determined by ShvGG(tλT (O)ωρ
/T (O)ωρ

, bμ) � Vect
(equivalently, an identification ShvGG(tλ1T (O)ωρ

/T (O)ωρ
, b−λ2+μ)⊗ ShvGG(t−λ2T (O)ωρ

/T (O)ωρ
,

bμ) � Vect), since there is a canonical equivalence

ShvGG(tλ1T (O)ωρ
/T (O)ωρ

, b−λ2+μ)⊗ ShvGG(t−λ2T (O)ωρ
/T (O)ωρ

, bμ)

� ShvGG(tλT (O)ωρ
/T (O)ωρ

, bμ).

The identification determines the right-hand side of (5.4.1) (respectively, (5.4.2)), and there are
canonical isomorphisms between (Jλ1,!)−λ2+μ � (J−λ2,∗)μ (respectively, (Jλ1,∗)−λ2+μ � (J−λ2,!

)μ)
for different λ1, λ2.

When μ = 0, we omit the subscript μ in (Jλ)μ and (JD

λ )μ.
By Lemma 5.3.4, twisted BMW sheaves admit a convolution product

(Jη)λ+μ �(Jλ)μ � (Jη+λ)μ ∈ ShvGG(F̃l)I,bλ+μ+η
μ . (5.4.3)

5.5 Standards and costandards
Definition 5.5.1. Given an identification ShvGG(tλT (O)ωρ

/T (O)ωρ
) � Vect as before, i.e. a

trivialization of GG|tλ∈Fl, we define

Δλ = AvN(K)ωρ
,χ

! (Jλ), (5.5.1)

and

∇λ = Avren
∗

(
colim

μ,μ−λ∈Λ+
(Jμ,∗)λ−μ � Jλ−μ,∗

)
, (5.5.2)

where Avren
∗ is the renormalized averaging functor

Avren
∗ := colim

k
AvNk,χ

∗ ⊗l0,k, (5.5.3)

AvNk,χ
∗ is the ∗-averaging functor with respect to (Nk, χ) (see § 3.1.2) and lk,k′ is the line of ∗-fiber

of the dualizing sheaf of Nk′/Nk at 1 for k′ ≥ k. Furthermore, up to a shift, (Jμ,∗)λ−μ � Jλ−μ,∗ is
the (N(O)ωρ

, ∗)-averaging of the ∗-extension of the twisted dualizing sheaf on AdμIωρ
tλIωρ

/Iωρ

with respect to the unique AdμI0-equivariant trivialization. If we further require μ2 − μ1 ∈ Λ+,
we have Adμ1I

ωρ
tλIωρ

/Iωρ ⊂ Adμ2I
ωρ

tλIωρ
/Iωρ

. The transition maps between (Jμ,∗)λ−μ � Jλ−μ,∗
are obtained from natural maps between the dualizing sheaves.

Similar to twisted BMW sheaves, we also regard Δλ and ∇λ as objects which are well-
defined up to tensoring by a line in degree 0, i.e. depend on the choice of identifications. We call
{Δλ, λ ∈ Λ} standard objects of Whitq(Flω

ρ

G ) and {∇λ, λ ∈ Λ} costandard objects.

Proposition 5.5.2. The standard objects {Δλ, λ ∈ Λ} are a collection of compact generators
of Whitq(Flω

ρ

G ).

Proof. Taking convolution with BMW sheaf is invertible, in particular, it preserves

compactness. Since Δλ � AvN(K)ωρ
,χ

! (Jλ) � AvN(K)ωρ
,χ

! ((J0)λ) � Jλ and AvN(K)ωρ
,χ

! ((J0)λ) is
compact, the standard object Δλ is compact.
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By an analysis of the support of the convolution product, one proves that supp(Δλ) =
S

φ(ρ+λ)
Fl . According to [Bez06, Lemma 11], we have

Δλ|Sφ(ρ+λ)
Fl

� AvN(K)ωρ
,χ

! (Jλ,!)|Sφ(ρ+λ)
Fl

� Δver
φ(ρ+λ)|Sφ(ρ+λ)

Fl

.

Now the proposition directly follows from the fact that rank(Δver
φ(ρ+λ)|Sφ(ρ+λ)

Fl

) = 1 (i.e.

Δver
φ(ρ+λ)|Sφ(ρ+λ)

Fl

is the generator of Whitq(S
φ(ρ+λ)
Fl ) � Vect). �

The standards Δλ and costandards ∇μ satisfy the orthogonality property.

Proposition 5.5.3. We have

HomWhitq(Flω
ρ

G )(Δλ,∇μ) �
{

0, if λ �= μ,

e, if λ = μ.
(5.5.4)

Proof. We have

HomWhitq(Flω
ρ

G )(Δλ,∇μ)

� HomWhitq(Flω
ρ

G )(AvN(K)ωρ
,χ

! (Jλ), Avren
∗ colim

α,α−μ∈Λ+
((Jα,∗)μ−α � Jμ−α,∗))

� colim
α,α−μ∈Λ+

HomWhitq(Flω
ρ

G )(AvN(K)ωρ
,χ

! (Jλ), Avren
∗ ((Jα,∗)μ−α � Jμ−α,∗))

� colim
α,α−μ∈Λ+

Hom
Whitq(F̃l)μ−α

(AvN(K)ωρ
,χ

! (Jλ � (Jα−μ,!)μ−α), Avren
∗ ((Jα,∗)μ−α,

� Jμ−α,∗ � (Jα−μ,!)μ−α)

� colim
α,α−μ∈Λ+

Hom
Whitq(F̃l)μ−α

(AvN(K)ωρ
,χ

! ((Jλ+α−μ,!)μ−α), Avren
∗ ((Jα,∗)μ−α)) (5.5.5)

By the following lemma (Lemma 5.5.4), the above colimit is isomorphic to

colim
α,α−μ∈Λ+

Hom
Whitq(F̃l)μ−α

(AvN(K)ωρ
,χ

! (δλ+α−μ)μ−α[〈μ− λ− α, 2ρ̌〉], Avren
∗ (δα)μ−α[〈α, 2ρ̌〉]).

Up to tensoring by a line, we denote by (δλ+α−μ)μ−α ∈ ShvGG(F̃l)μ−α (respectively, (δα)μ−α ∈
ShvGG(F̃l)μ−α) the ! (equivalently, ∗)-extension of the Kummer sheaf corresponding to μ− α on
F̃l×FlG tλ+α−μ (respectively, F̃l×FlG tα) to F̃l.

Here AvN(K)ωρ
,χ

! (δλ+α−μ)μ−α[〈μ− λ− α, 2ρ̌〉] is the !-extension of the generator of
Whitq(S

λ+α−μ

F̃l
)μ−α to F̃l, and Avren

∗ (δα)μ−α[〈α, 2ρ̌〉] is the ∗-extension of the generator of

Whitq(S
λ+α−μ

F̃l
)μ−α to F̃l. Hence, by adjointness, we have (5.5.5) is e if λ = μ and is 0

otherwise. �

Lemma 5.5.4. For λ ∈ Λ+, μ ∈ Λ, we have:

(1)

Avren
∗ ((δλ)μ)[〈λ, 2ρ̌〉] � Avren

∗ ((Jλ,∗)μ);

(2)

AvN(K)ωρ
,χ

! ((δλ)μ)[−〈λ, 2ρ̌〉] � AvN(K)ωρ
,χ

! ((Jλ,!)μ).
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Proof. For part (1), note that if λ is dominant, then N(K)ωρ
tλIωρ

= N(K)ωρ
Iωρ

tλIωρ
. Hence,

both sheaves in (1) are ∗-extensions from their restrictions on Sλ
F̃l
⊂ F̃l. As they are (N(K)ωρ

, χ)-

equivariant, we only need to prove that their !-stalks at any lift of tλ ∈ F̃l coincide. It follows
from the constructions that the !-stalks of both sides are isomorphic to e[−〈λ, 2ρ̌〉].

The proof of the second claim is absolutely similar. �
Remark 5.5.5. In particular, if λ is dominant, there is an isomorphism

Δλ � Δver
λ

(5.1.5)
:= AvN(K),χ

! (δλ)[−〈λ, 2ρ̌〉].

5.6 t-structure on Whittaker category
Recall the following lemma in [BR07].

Lemma 5.6.1. Let C be a compactly generated category with compact generators {ci}, then
there is a t-structure given by

C≥0 := {c| HomC(ci[k], c) = 0 ∀λ ∈ Λ and k > 0}.
In particular, we define a new t-structure (different from that from the tautological t-structure

on ShvGG(Flω
ρ

G )) on Whitq(Flω
ρ

G ) by the compact generators Δλ, i.e. we have the following.

Definition 5.6.2. We have F ∈Whitq(Flω
ρ

G )≥0 if and only if

HomWhitq(Flω
ρ

G )(Δλ[k], F) = 0 ∀λ ∈ Λ and k > 0.

After we have proved our main theorem, we show that Δλ and ∇λ are in the heart of this
t-structure (see Corollary 6.6.3). Furthermore, Δλ and ∇λ are of finite length for all λ ∈ Λ if and
only if q is generic. When q is a root of unity, costandard objects and irreducible objects are not
even compact, but standard objects are still compact.

5.7 Coinvariants
By considering the coinvariant-Whittaker category, we can obtain the definition of the Verdier
duality functor for Whitq(Flω

ρ

G ).

Definition 5.7.1. We define Whitq(Flω
ρ

G )co as the quotient DG-category of ShvGG(Flω
ρ

G ) by the
full subcategory generated by

Fib(AvNk,χ
∗ (F)→ F) (5.7.1)

for all F ∈ ShvGG(Flω
ρ

G ) and k ∈ Z.

5.7.2 The functor Avren
∗ (see (5.5.3)) maps all morphisms of the form (5.7.1) to

isomorphisms. In particular, it induces a functor Avren
∗ from Whitq(Flω

ρ

G )co to Whitq(Flω
ρ

G ).
The following lemma is proved in [Ras21, Theorem 2.1.1].

Lemma 5.7.3. The functor

Avren
∗ : Whitq(Flω

ρ

G )co →Whitq(Flω
ρ

G ) (5.7.2)

is an equivalence of categories.

5.7.4 For a DG-category C, we denote by C∨ the dual category of C if it is dualizable.
By definition, it is given by the DG-category of functors Funct(C, Vect). Since Whitq(Flω

ρ

G )
is compactly generated and any compactly generated category is dualizable, Whitq(Flω

ρ

G ) is
dualizable. By Lemma 5.7.3, Whitq(Flω

ρ

G )co is also dualizable.
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By definition, Whitq(Flω
ρ

G )∨co is the full subcategory of ShvGG(Flω
ρ

G )∨ spanned by the functors

ShvGG(Flω
ρ

G )→ Vect

F �→ 〈F, F0〉, (5.7.3)

such that for any F ∈ ShvGG(Flω
ρ

G ) and k,

〈AvNk,χ
∗ (F), F0〉 ∼−→ 〈F, F0〉,

that is,

〈F, AvNk,χ
∗ (F0)〉 ∼−→ 〈F, F0〉.

In other words, we require AvNk,χ
∗ (F0) � F0 for any k. Hence, the duality functor

Shv(GG)−1(Flω
ρ

G ) � ShvGG(Flω
ρ

G )∨,

F0 �→ (F �→ 〈F, F0〉).
(5.7.4)

induces an equivalence of full subcategories

Whitq(Flω
ρ

G )∨co �Whitq−1(Flω
ρ

G ). (5.7.5)

Definition 5.7.5. The Verdier duality functor for Whittaker sheaves is defined as the
composition of functors

DVerdier : Whitq(Flω
ρ

G )∨ ∼−→
(Avren∗ )∨

Whitq(Flω
ρ

G )∨co
∼−→

(5.7.5)
Whitq−1(Flω

ρ

G ). (5.7.6)

In particular, it defines an equivalence of subcategories generated by compact objects.

DVerdier : (Whitq(Flω
ρ

G )c)op ∼−→Whitq−1(Flω
ρ

G )c. (5.7.7)

The dual of the standard object Δλ can be described by the dual BMW sheaf JD

λ .

Proposition 5.7.6. For any λ ∈ Λ, Δλ ∈Whitq(Flω
ρ

G ), we have

DVerdier(Δλ) � Avren
∗ (JD

λ ). (5.7.8)

Proof. The object Δλ corresponds to the functor

Whitq(Flω
ρ

G )→ Vect

F �→ HomWhitq(Flω
ρ

G )(Δλ, F)
(5.7.9)

in Whitq(Flω
ρ

G )∨. By definition, its image under (Avren
∗ )∨ is the functor

Whitq(Flω
ρ

G )co → Vect

F′ �→ HomWhitq(Flω
ρ

G )(Δλ, Avren
∗ (F′)).

(5.7.10)

Using the adjointness, there is

HomWhitq(Flω
ρ

G )(Δλ, Avren
∗ (F′)) � HomShv

GG (Flω
ρ

G )(Jλ, Avren
∗ (F′)).

Note that Jλ goes to JD

λ under the equivalence (ShvGG(Flω
ρ

G ))∨ � Shv(GG)−1(Flω
ρ

G ), we have
HomShv

GG (Flω
ρ

G )(Jλ, Avren
∗ (F′)) � 〈Avren

∗ (F′), JD

λ 〉.
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Thus, by regarding Whitq(Flω
ρ

G )∨co as a subcategory of ShvGG(Flω
ρ

G )∨, the image of Δλ in
ShvGG(Flω

ρ

G )∨ can be realized as

ShvGG(Flω
ρ

G )→ Vect

F �→ 〈Avren
∗ (F), JD

λ 〉.
(5.7.11)

Since there is an isomorphism

〈Avren
∗ (F), JD

λ 〉 � 〈F, Avren
∗ (JD

λ )〉,
(Avren

∗ )∨(Δλ) is the functor

ShvGG(Flω
ρ

G )→ Vect

F �→ 〈F, Avren
∗ (JD

λ )〉.
(5.7.12)

By the construction of (5.7.5), the image of (Avren
∗ )∨(Δλ) under (5.7.5) is Avren

∗ (JD

λ ). �

6. The functor to the category of factorization modules

In this section, we will construct the functor from the twisted Whittaker category to ΩL
q -FactMod

mimicking the constructions in [GL19]. That is to say, [GL19] uses the Jacquet functor, which
is the pullback–pushforward functor along GrG ←− GrB− −→ GrT .7 We construct an Iwahori
Jacquet functor.

In brief, our Iwahori Jacquet functor is an adaptation of the pullback–pushforward functor
Whit(FlG) −→ Shv(GrT ) of the following diagram.

Fl1B− ��

��

FlG

GrT

Here, Fl1B− is substack of
FlB− := GrB− ×

pt/G
pt/B

where we require the B−-bundle and the Iwahori structure to be transversal at x. The

λ-component of this functor is H(FlG, j∗(ωS−,λ
Fl

)
!⊗−). In fact, the λ-component of functor

constructed in this section is H(FlG, j!(ωS−,λ
Fl

)
!⊗−).

The organization of this section is as follows.
In § 6.1, we will construct a closed sub-prestack (Sw0

Fl,Ranx
)∞·x of the Beilinson–Drinfeld affine

flags Flω
ρ

G,Ranx
. Lemma 6.1.12 ensures that we can regard a Whittaker sheaf on Flω

ρ

G as a Whittaker
sheaf on (Sw0

Fl,Ranx
)∞·x with factorization property.

In § 6.2, we introduce the configuration version affine flags which is important for the
construction of the functor.

In § 6.4, we construct the functor FL that appeared in Theorem 4.3.1. We also construct
another closely related functor FDK in this section.

In § 6.5, we describe the functors defined in the previous section by calculating the !-stalks
of FL and FDK at λ · x ∈ Conf∞·x.

7 The Jacquet functor is also the functor needed for geometric Satake equivalence.
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In § 6.6, we prove the main theorem of this paper modulo Proposition 6.6.2.

6.1 Whittaker category on Flω
ρ

G,Ranx

6.1.1 Recall that we defined the Beilinson–Drinfeld affine flags Flω
ρ

G,Ranx
in §§ 2.3 and 2.4.2.

The idea of the construction of the functor FL is to regard a twisted Whittaker sheaf on Flω
ρ

G as a
twisted Whittaker sheaf on Flω

ρ

G,Ranx
(and Flω

ρ

G,Conf∞·x), and then pushforward along the projection
to Conf∞·x. Let us start by explaining the definition of Whittaker sheaves on Flω

ρ

G,Ranx
.

Let N(K)ωρ

Ran (respectively, N(O)ωρ

Ran) be Ran-ified loop group of N . It is the prestack classi-

fying the data (I, α), where I ∈ Ran(S) and α is an automorphism of ωρ
T×B on

◦
DI (respectively,

DI), which is compatible with the identification of ωρ. Similarly, one can define N(K)ωρ

Ranx
and

N(O)ωρ

Ranx
.

We define a character

χRanx : N(K)ωρ

Ranx
→ N(K)ωρ

Ranx
/[N(K)ωρ

Ranx
, N(K)ωρ

Ranx
]→ ωr

Ranx
(K)

sum−→ ωRanx(K) residue−→ Ga (6.1.1)

of N(K)ωρ

Ranx
. Similarly, we can define a character

χRan : N(K)ωρ

Ran → Ga (6.1.2)

of N(K)ωρ

Ran.
For x̄ = {x1, x2, . . . , xn} ∈ Ran, we denote by χx̄ the restriction of χRan to N(K)ωρ

x̄ :=
N(K)ωρ

Ran ×
Ran
{x̄}. Note that the character χ of N(K)ωρ

x in (3.1.1) equals χx here.

6.1.2 Left multiplication gives an action of N(K)ωρ

Ran on Grωρ

G,Ran, and an action of N(K)ωρ

Ranx

on Flω
ρ

G,Ranx
. Following [GL18, Proposition 7.2.5], the pullback of GG on Flω

ρ

G,Ranx
(see § 2.4) to

N(K)ωρ

Ranx
is a multiplicative gerbe, in particular, the gerbe GG on Flω

ρ

G,Ranx
is equivariant with

respect to N(K)ωρ

Ranx
against GG. Since N is unipotent, N(K)ωρ

Ranx
is an ind-pro-affine space over

Ranx. There is a canonical trivialization of GG on N(K)ωρ

Ranx
. Hence, the gerbe GG on Flω

ρ

G,Ranx
is

equivariant with respect to the action of N(K)ωρ

Ranx
. In particular, we may consider the category

of (N(K)ωρ

Ranx
, χRanx)-equivariant sheaves.

Definition 6.1.3. We define

Whitq(Flω
ρ

G,Ranx
) := ShvGG(Flω

ρ

G,Ranx
)N(K)ωρ

Ranx
,χRanx .

6.1.4 Now we define a closed N(K)ωρ

Ranx
-invariant subspace (Sw0

Fl,Ranx
)∞·x ⊂ Flω

ρ

G,Ranx
.

Definition 6.1.5. A point (I, PG, α, ε) ∈ Flω
ρ

G,Ranx
belongs to (Sw0

Fl,Ranx
)∞·x if and only if for any

dominant weight λ̌ ∈ Λ̌+, the composite meromorphic map

κλ̌ : (ω1/2)〈λ̌,2ρ〉 → Vλ̌
Pω

G
→ Vλ̌

PG
(∞ · x) (6.1.3)

is regular on X \ x. Here Vλ̌
PG

(respectively, Vλ̌
Pω

G
) is defined as the vector bundle associated

with PG (respectively, Pω
G := ωρ

T×G) with fiber the Weyl module Vλ̌
G. The first map is the map

mapping to the highest weight vector, and the second map is induced by α.
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Definition 6.1.6. A point (I, PG, α) ∈ Grωρ

G,Ran belongs to S
0
Gr,Ran, if for any dominant weight

λ̌ ∈ Λ̌+, the composite meromorphic map

κλ̌ : (ω1/2)〈λ̌,2ρ〉 → Vλ̌
Pω

G
→ Vλ̌

PG
(6.1.4)

is regular on X.
If we require that κλ̌ in (6.1.4) is injective on X for any λ̌ ∈ Λ̌+, the resulting prestack S0

Gr,Ran

is the unique open dense N(K)ωρ

Ran-orbit in S
0
Gr,Ran.

6.1.7 Factorization property. Following the argument in the proof of [BFGM02,
Proposition 2.4], we can prove that the prestacks defined above satisfy the following factorization
property.

Lemma 6.1.8. We have that:

(1) S
0
Gr,Ran is a factorization prestack, i.e. there is a canonical isomorphism of prestacks

S
0
Gr,Ran ×

Ran
(Ran× Ran)disj � S

0
Gr,Ran × S

0
Gr,Ran ×

Ran×Ran
(Ran× Ran)disj; (6.1.5)

(2) (Sw0

Fl,Ranx
)∞·x factorizes with respect to S

0
Gr,Ran, i.e. there is a canonical isomorphism of

prestacks

(Sw0

Fl,Ranx
)∞·x ×

Ranx

(Ran×Ranx)disj

�
S

0
Gr,Ran × (Sw0

Fl,Ranx
)∞·x ×

Ran×Ranx

(Ran× Ranx)disj.

(6.1.6)

6.1.9 Let Flω
ρ

G,x (respectively, Grωρ

G,xi
) denote the fiber of Flω

ρ

G,Ranx
(respectively, Grωρ

G,Ran)
over x (respectively, xi), it is isomorphic to Flω

ρ

G (respectively, Grωρ

G ) by choosing a uniformizer.
Denote by S

0
Gr,xi

the closure of the N(K)ωρ

xi
-orbit of t0 ∈ Grωρ

G,xi
.

By definition, the fiber of (Sw0

Fl,Ranx
)∞·x over the point I = {x, x1, x2, . . . , xk} ∈ Ranx is

isomorphic to the product Flω
ρ

G,x ×
∏k

i=1 S
0
Gr,xi

, and the fiber of S
0
Ran,Gr over the point I =

{x1, x2, . . . , xk} ∈ Ran is isomorphic to
∏k

i=1 S
0
Gr,xi

.

6.1.10 Relation with Whitq(Flω
ρ

G ). Consider the product space Ranx × Flω
ρ

G,x. The N(K)ωρ

x

action on the second factor gives a N(K)ωρ

x -action on Ranx × Flω
ρ

G,x. The pullback of the gerbe
GG on Flω

ρ

G,x to Ranx × Flω
ρ

G,x is still N(K)ωρ

x -equivariant, hence we can consider the Whittaker
category on Ranx × Flω

ρ

G,x,

Whitq(Ranx × Flω
ρ

G,x) := ShvGG(Ranx × Flω
ρ

G,Ranx
)N(K)ωρ

x ,χ. (6.1.7)

There is a closed embedding

unit : Ranx × Flω
ρ

G,x → (Sw0

Fl,Ranx
)∞·x, (6.1.8)

which sends I ∈ Ranx, (PG, α, ε) ∈ Flω
ρ

G,x to (I, PG, α, ε) ∈ (Sw0

Fl,Ranx
)∞·x. Similarly, we have

unitGr : Ran× S
0
Gr → S

0
Gr,Ran. (6.1.9)

The !-pullback along the projection

prRanx
: Ranx × Flω

ρ

G,x → Flω
ρ

G,x
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gives rise to a functor

pr!Ranx
: ShvGG(Flω

ρ

G,x)→ ShvGG(Ranx × Flω
ρ

G,x). (6.1.10)

By definition, prRanx
commutes with N(K)ωρ

x -actions, so pr!Ranx
induces a functor between

the corresponding Whittaker categories

Whitq(Flω
ρ

G,x)→Whitq(Ranx × Flω
ρ

G,x). (6.1.11)

6.1.11 Consider the pullback functor along (6.1.8)

unit! : ShvGG((Sw0

Fl,Ranx
)∞·x)→ ShvGG(Ranx × Flω

ρ

G,x).

We claim that this map induces a functor between the corresponding Whittaker categories

unit! : Whitq((S
w0

Fl,Ranx
)∞·x)→Whitq(Ranx × Flω

ρ

G,x). (6.1.12)

Indeed, consider the closed subgroup N ′ in N(K)ωρ

Ranx
whose fiber over a point

{x, x1, x2, . . . , xk} ∈ Ranx is given by N(K)ωρ

x ×
∏k

i=1 N(O)ωρ

xi
. Restriction to x gives a projection

N ′ → N(K)ωρ

x . (6.1.13)

The map (6.1.8) is compatible with N ′-action, where the action of N ′ on Ranx × Flω
ρ

G,x is given
by the projection (6.1.13) and the action of N(K)ωρ

x on Flω
ρ

G,x. Since the kernel of the projection
(6.1.13) is pro-unipotent, the forgetful functor

ShvGG(Ranx × Flω
ρ

G,x)N ′,χ→ShvGG(Ranx × Flω
ρ

G,x)N(K)ωρ
x ,χ

is an equivalence. Hence, unit! induces a functor

ShvGG((Sw0

Fl,Ranx
)∞·x)N(K)ωρ

Ranx
,χRanx → ShvGG(Ranx × Flω

ρ

G,x)N ′,χ

� ShvGG(Ranx × Flω
ρ

G,x)N(K)ωρ
x ,χ, (6.1.14)

that is,

unit! : Whitq((S
w0

Fl,Ranx
)∞·x)→Whitq(Ranx × Flω

ρ

G,x). (6.1.15)

Similarly, we can define

unit!Gr : Whitq(S
0
Gr,Ran)→Whitq(Ran× S

0
Gr). (6.1.16)

According to [Gai20, Theorem 6.2.5], the functor (6.1.16) is an equivalence. By an argument
similar to [Gai20, §§ 6.2–6.6], we can prove the following lemma.

Lemma 6.1.12. The functor (6.1.15) is an equivalence.

Proof. We only sketch the proof.
Given a finite set I with a distinguished point, let XI

x be the subspace of XI such that
the coordinate indexed by the distinguished point is x. Note that Ranx = colimXI

x , and we can
define Whitq((S

w0

Fl,XI
x
)∞·x) and Whitq(XI

x × Flω
ρ

G,x) similarly.
It is sufficient to show that unit!I : Whitq((S

w0

Fl,XI
x
)∞·x)→Whitq(XI

x × Flω
ρ

G,x) is an equiva-
lence for any finite set I with a distinguished point, then the desired property follows by taking
limit. For any such I, one can give XI

x a stratification {XB
x } according to the collision of points.

Note that there is (Sw0

Fl,XB
x
)∞·x � (((X − x)k −Diag) ×

Ran
S

0
Gr,Ran)× Flω

ρ

G,x, where k is the number
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of different elements in B without the element containing the distinguished point. Thus, we have

Whitq((S
w0

Fl,XB
x
)∞·x) � ShvGG((((X − x)k −Diag) ×

Ran
S

0
Gr,Ran)× Flω

ρ

G,x)
N(K)ωρ

XB
x

,χB

� ShvGG((((X − x)k −Diag) ×
Ran

S0
Gr,Ran)× Flω

ρ

G,x)
N(K)ωρ

XB
x

,χB

� ShvGG((((X − x)k −Diag))× Flω
ρ

G,x)N(K)ωρ
x ,χx �Whitq(XB

x × Flω
ρ

G,x).
(6.1.17)

Here, the second equivalence follows from the fact that S
0
Gr,Ran\S0

Gr,Ran does not carry non-
zero Whittaker sheaf, and the third equivalence follows from N(K)ωρ

XB
x
� (((X − x)k −Diag) ×

Ran

N(K)ωρ

Ran)×N(K)ωρ

x . It implies that the restriction unit!B : Whitq((S
w0

Fl,XB
x
)∞·x)→Whitq(XB

x ×
Flω

ρ

G,x) is an equivalence.
In particular, unit!I is conservative, and we only need to construct the left adjoint functor

(unit!I)
L such that Id→ unit!I ◦(unit!I)

L is an isomorphism.
For n ≥ 0, let In := Ad−nρ(G(O)ωρ ×

G(O/tnO)ωρ
N(O/tnO)ωρ

). There is a canonical way to

extend the character χ|In∩N(K)ωρ to In such that it is trivial on the negative part (i.e.
B−(O) ∩ In), we still use the same notation χ.

A quite non-trivial result of [Ras, Theorem 2.7.1] says that the left adjoint AvN(K)ωρ
,χx

! is well-

defined for any (In, χx)-equivariant sheaf. With the same proof, one can show that AvN(K)ωρ

I ,χI

!

is well-defined for any (I ′n, χx)-equivariant sheaf on Flω
ρ

G,XI
x
. Here, I ′n ⊂ G(K)ωρ

I is the subgroup
whose fiber over {x, x1, x2, . . . , xn} is In ×

∏n
i=1 G(O)ωρ

xi
, and χI is the character given by the

map I ′n → In
χ→ Ga.

To construct the left adjoint functor (unit!I)
L of unit!I, we should prove that AvN(K)ωρ

I ,χI

! is
well-defined on the image of the composition

Whitq(XI
x × Flω

ρ

G ) oblvN(K)ω
ρ

,χx−→ ShvGG(XI
x × Flω

ρ

G ) unit!−→ ShvGG((Sw0

Fl,XI
x
)∞·x).

Then, (unit!I)
L is given by the composition of the above functor and AvN(K)ωρ

I ,χI

! .

Note that the category Whitq(XI
x × Flω

ρ

G ) is generated by applying AvN(K)ωρ
,χx

! to (In, χx)-

equivariant objects on XI
x × Flω

ρ

G . Thus, we only need to show that AvN(K)ωρ

I ,χI

! is well-defined
on the image of

ShvGG(XI
x × Flω

ρ

G )In,χx oblvIn,χx−→ ShvGG(XI
x × Flω

ρ

G ) unit!−→ ShvGG((Sw0

Fl,XI
x
)∞·x). (6.1.18)

Furthermore, note that unitI : XI
x × Flω

ρ

G,x → (Sw0

Fl,XI
x
)∞·x is I ′n-invariant, where I ′n acts

on XI
x × Flω

ρ

G via I ′n → In. In particular, the image of (6.1.18) is (I ′n, χx)-equivariant, and

AvN(K)ωρ

I ,χI

! is well-defined for those equivariant sheaves.
Finally, by repeating the same argument as in [Gai20, § 6.5] we can prove that the functor

(unit!I)
L satisfies the desired property, i.e. Id→ unit!I ◦(unit!I)

L is an isomorphism. �

Definition 6.1.13. For F ∈Whitq(Flω
ρ

G ), we denote by sprdFl,Ranx
(F) the Whittaker sheaf on

(Sw0

Fl,Ranx
)∞·x corresponding to pr!Ranx

(F) under the equivalence (6.1.15).
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Using the fiber description of (S0
Fl,Ranx

)∞·x in § 6.1.9, we can describe sprdFl,Ranx
(F) more

explicitly. Namely, the restriction of sprdFl,Ranx
(F) to Flω

ρ

G,x is F, and its restriction to S
0
Gr,xi

is

the generator of Whitq(S
0
Gr,xi

).

Definition 6.1.14. Let Vac denote the Whittaker sheaf on S
0
Gr,Ran which is uniquely charac-

terized by the property that its !-pullback to Ran via the canonical section

sRan : Ran→ S
0
Gr,Ran

I �→ (I, Pω
G, id)

(6.1.19)

is the dualizing sheaf on Ran, i.e. s!
Ran(Vac) � ωRan.

It is important that Vac and sprdFl,Ranx
(F) satisfy the following factorization properties:

Corollary 6.1.15.

(1) Vac is a factorization algebra on S
0
Gr,Ran, i.e. there is a canonical isomorphism

Vac � Vac|
(S

0
Gr,Ran×S

0
Gr,Ran)disj

� Vac|
S

0
Gr,Ran ×

Ran
(Ran×Ran)disj

,

which is compatible with (6.1.5);
(2) sprdFl,Ranx

(F) ∈Whitq((S
w0

Fl,Ranx
)∞·x) is a factorization module over Vac, i.e. there is a

canonical isomorphism

Vac � sprdFl,Ranx
(F)|

(S
0
Gr,Ran×(S

w0
Fl,Ranx

)∞·x)disj

�
sprdFl,Ranx

(F)|(Sw0
Fl,Ranx

)∞·x) ×
Ranx

(Ran×Ranx)disj
,

which is compatible with (6.1.6).

Proof. Part (1) is [GL19, Theorem 8.4.6 (a)]. We only show part (2).
It is known that for any x ∈ S

0
Gr,Ran \ S0

Gr,Ran, we have

StabN(K)ωρ
Ran

(x) � Ker(χRan).

It implies Whitq(S
0
Gr,Ran \ S0

Gr,Ran) = 0. In particular,

Whitq(S
0
Gr,Ran) �Whitq(S0

Gr,Ran).

Since N(K)ωρ

Ran acts transitively on S0
Gr,Ran over Ran and N(K)ωρ

Ran is ind-pro-unipotent, taking
!-stalks along sRan induces an equivalence of categories

Whitq(S0
Gr,Ran) � Shv(Ran).

Consider the following commutative diagram.

Ranx × Flω
ρ

G,x

unit �� (Sw0

Fl,Ranx
)∞·x

(Ran× Ranx × Flω
ρ

G,x)disj

∪x×id

��

sRan×unit
�� (S0

Gr,Ran × (Sw0

Fl,Ranx
)∞·x)disj

��
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By Lemma 6.1.12, we need to prove

(∪x × id)! ◦ unit!(sprdFl,Ranx
(F)) � ωRan � unit!(sprdFl,Ranx

(F))|disj,

which follows from the facts that unit!(sprdFl,Ranx
(F)) � ωRanx � F, and the (twisted) sheaf

ωRanx on Ranx factorizes with respect to ωRan, i.e. we have

∪!
x(ωRanx)|disj � ωRan � ωRanx |disj. �

6.2 Configuration version of Grωρ

G and Flω
ρ

G

The most important prestacks in this paper are constructed in this section. They are analogs
of the constructions in [GL19]. The target of the functor FL lives on Conf∞·x. Hence, it is
convenient to consider prestacks over the configuration space. In this section, we explain the
configuration version Grωρ

G and Flω
ρ

G and related factorization prestacks.

Definition 6.2.1. Let Grωρ

G,Conf (respectively, Flω
ρ

G,Conf∞·x) be the prestack over Conf (respec-
tively, Conf∞·x) which classifies the data (D, PG, α) (respectively, (D, PG, α, ε)), here D ∈ Conf
(respectively, Conf∞·x), PG ∈ BunG, α : PG|X\supp(D) � Pω

G|X\supp(D), and ε is a B-reduction of
PG at x.

Similarly, we can define the configuration analog of N(K)ωρ

Ran, N(O)ωρ

Ran, N(K)ωρ

Ranx
, N(O)ωρ

Ranx
,

etc. We denote the resulting prestacks by N(K)ωρ

Conf , N(O)ωρ

Conf , N(K)ωρ

Conf∞·x , and N(O)ωρ

Conf∞·x ,
respectively.

6.2.2 Note that

Grωρ

G,Ran ×
Ran

(Grωρ

T,Ran)
neg � Grωρ

G,Conf ×
Conf

(Grωρ

T,Ran)
neg.

As a result, the gerbe GG on Grωρ

G,Ran gives a gerbe on Grωρ

G,Conf ×Conf(Grωρ

T,Ran)
neg. By

Lemma 2.2.3, it descends to a gerbe on Grωρ

G,Conf . We still denote it by GG. Similarly, we can
define gerbes on other prestacks in Definition 6.2.1.

To define the functor FL, we need to define two sub-prestacks of Flω
ρ

G,Conf∞·x : one carries
Whittaker sheaves, and the other one carries the kernel. The former space is given by
(Sw0

Fl,Conf∞·x)∞·x, and the latter is S−,Conf∞·x
Fl,Conf∞·x .

Definition 6.2.3. Denote by S
0
Gr,Conf the closed sub-prestack of Grωρ

G,Conf such that the maps
κλ̌ in (6.1.4) extend to regular maps on X and satisfy the Plücker relations.

We denote by (Sw0

Fl,Conf∞·x)∞·x the closed sub-prestack of Flω
ρ

G,Conf∞·x such that the maps κλ̌

in (6.1.3) are regular on X \ x and satisfy Plücker relations.

Definition 6.2.4. Let S−,Conf
Gr,Conf (respectively, S

−,Conf
Gr,Conf) denote the prestack classifying the data

(D, PG, α), such that for any λ̌ dominant, the induced map

κ−,λ̌ : ′Vλ̌
PG
→′ Vλ̌

Pω
G
→ (ω1/2)〈λ̌,2ρ〉(〈λ̌,−D〉), (6.2.1)

which is a priori defined on X \ supp(D), extends to a surjective (respectively, regular) map on
the whole curve X and satisfies the Plücker relations. Here ′Vλ̌

PG
(respectively, ′Vλ̌

Pω
G
) is the vector

bundle associated with PG (respectively, Pω
G = ωρ

T×G) with fiber the dual Weyl module ′Vλ̌
G.

The first map is induced by α and the second map is the map mapping to the highest weight
vector.
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Let S−,Conf∞·x
Fl,Conf∞·x (respectively, S

−,Conf∞·x
Fl,Conf∞·x) denote the prestack classifying the data from

S−,Conf
Gr,Conf (respectively, S

−,Conf
Gr,Conf) plus a B-reduction of PG at x.

The fiber of Flω
ρ

G,Conf∞·x (respectively, Grωρ

G,Conf) over the point (2.2.4) (respectively, (2.2.1))
is canonically isomorphic to

Flω
ρ

G,x ×
∏

1≤i≤k

Grωρ

G,xi
. (6.2.2)

(
respectively,

∏
1≤i≤k

Grωρ

G,xi

)
(6.2.3)

6.2.5 Factorization property. Similar to Lemma 6.1.8, S
0
Gr,Conf and (Sw0

Fl,Conf∞·x)∞·x are
factorizable. That is to say,

S
0
Gr,Conf ×

Conf
(Conf × Conf)disj

�
S

0
Gr,Conf × S

0
Gr,Conf ×

Conf×Conf
(Conf × Conf)disj,

(6.2.4)

and
(Sw0

Fl,Conf∞·x)∞·x ×
Conf∞·x

(Conf ×Confx)disj

�
S

0
Gr,Conf × (Sw0

Fl,Conf∞·x)∞·x ×
Conf×Conf∞·x

(Conf × Confx)disj.

(6.2.5)

Furthermore, S−,Conf
Gr,Conf is a factorization prestack, S−,Conf∞·x

Fl,Conf∞·x is factorizable with respect to

S−,Conf
Gr,Conf .

6.2.6 Relative position. The prestack S−,Conf∞·x
Fl,Conf∞·x admits a stratification given by the relative

position of the B-reduction given by ε and the B−-reduction given by the morphisms {κ−,λ̌}.
To be more precise, the morphisms {κ−,λ̌} are surjective, so they induce a B−-reduction of PG

at x, i.e. we have a map
S−,Conf∞·x

Fl,Conf∞·x → BunG ×
pt/G

pt/B− (6.2.6)

given by sending a point (D, PG, α, ε) of S−,Conf∞·x
Fl,Conf∞·x to PG and its B−-reduction at x induced by

{κ−,λ̌}. In addition, ε also gives a map

S−,Conf∞·x
Fl,Conf∞·x → BunG ×

pt/G
pt/B. (6.2.7)

Note that their compositions with the functors of inductions to G-bundles coincide, so we
have a map of relative position

rp : S−,Conf∞·x
Fl,Conf∞·x → BunG ×

pt/G
pt/B ×

pt/G
pt/B− � BunG ×

pt/G
B−\G/B. (6.2.8)

The Bruhat decomposition gives a double coset decomposition of (B−, B) in G and it induces
a stratification of B−\G/B. We denote by Brw ⊂ B−\G/B the Bruhat cell corresponding to
B−wB.
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Definition 6.2.7. For w ∈W , let us denote by S−,w,Conf∞·x
Fl,Conf∞·x the preimage of Brw in S−,Conf∞·x

Fl,Conf∞·x .

In particular, S−,1,Conf∞·x
Fl,Conf∞·x is open dense in S−,Conf∞·x

Fl,Conf∞·x .

Similar to Lemma 6.1.8, the prestacks S−,w,Conf∞·x
Fl,Conf∞·x and S−,Conf∞·x

Fl,Conf∞·x (and their closures in

Flω
ρ

G,Conf∞·x) factorize with respect to S−,Conf
Gr,Conf (respectively, S

−,Conf
Gr,Conf), i.e.

S−,w,Conf∞·x
Fl,Conf∞·x ×

Conf∞·x
(Conf × Conf∞·x)disj

�
S−,Conf

Gr,Conf × S−,w,Conf∞·x
Fl,Conf∞·x ×

Conf×Conf∞·x
(Conf × Conf∞·x)disj

(6.2.9)

(respectively, S
−,w,Conf∞·x
Fl,Conf∞·x ×

Conf∞·x
(Conf × Conf∞·x)disj

�
S
−,Conf
Gr,Conf × S

−,w,Conf∞·x
Fl,Conf∞·x ×

Conf×Conf∞·x
(Conf × Conf∞·x)disj).

(6.2.10)

6.2.8 Description of fibers. The fiber of S−,w,Conf∞·x
Fl,Conf∞·x over the point D = λx · x +

∑
i λi · xi ∈

Conf∞·x is canonically isomorphic to

S−,tλxw
Fl,x ×

∏
i

S−,λi

Gr,xi
. (6.2.11)

Here S−,tλxw
Fl,x ⊂ Flω

ρ

G,x denotes the N−(K)ωρ
-orbit of tλxw ∈ Flω

ρ

G,x, and S−,λi

Gr,xi
⊂ Grωρ

G,x denotes
the N−(K)ωρ

-orbit of tλi ∈ Grωρ

G,xi
.

Remark 6.2.9. The above identification of the fiber is compatible with that given in (6.2.2).

6.3 Semi-infinite sheaf on S−,Conf∞·x
Fl,Conf∞·x

In Appendix A, we review the theory of semi-infinite sheaves on affine flags. In this section, we
use it to define the !-extension semi-infinite sheaf on S−,w,Conf∞·x

Fl,Conf∞·x .

Consider the sub-prestack S
−,1
Fl,Ranx

of Flω
ρ

G,Ranx
, which classifies the data (I, PG, α, ε), such

that for any λ̌ dominant, the induced map

κ−,λ̌ : ′Vλ̌
PG
→′ Vλ̌

Pω
G
→ (ω1/2)〈λ̌,2ρ〉, (6.3.1)

which is a priori defined on X − I, extends to a regular map on the whole curve X and satisfies
the Plücker relations. We let S−,1

Fl,Ranx
be the substack where we require that the extended map

κ−,λ̌ to be surjective and the induced B−-bundle and ε to be transversal at x.
The restriction of (GG)−1 to S−,1

Fl,Ranx
is canonically trivialized, we denote by ω

S−,1
Fl,Ranx

the

(GG)−1-twisted dualizing sheaf on S−,1
Fl,Ranx

. According to Proposition A.1.5, the !-extension is
well-defined for ω

S−,1
Fl,Ranx

, and we denote it by j!(ωS−,1
Fl,Ranx

).

6.3.1 The twisted dualizing sheaf ω
S−,1

Fl,Ranx

and its !-extension j!(ωS−,1
Fl,Ranx

) naturally acquire

T (O)ωρ

Ranx
-equivariant structures, and (GG)−1 is T (O)ωρ

Ranx
-equivariant, we can think j!(ωS−,1

Fl,Ranx

)

as a sheaf on T (O)ωρ

Ranx
\S−,1

Fl,Ranx
. In particular, the construction of j!(ωS−,1

Fl,Ranx

) admits a T -twisted
construction.
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That is to say, given a prestack Y with a map Y −→ T (O)ωρ

Ranx
\Ranx, we consider the fiber

product

YFl := Y ×
T (O)ω

Ranx
\Ranx

T (O)ωρ

Ranx
\Flω

ρ

G,Ranx
.

We let (YGG)−1 be the pullback of the descent gerbe on T (O)ωρ

Ranx
\Flω

ρ

G,Ranx
and Yj!(ωS−,1

Fl,Ranx

) be

the !-pullback of j!(ωS−,1
Fl,Ranx

) along the projection

YFl −→ T (O)ωρ

Ranx
\Flω

ρ

G,Ranx
. (6.3.2)

6.3.2 Let Y = (Grωρ

T,Ranx
)neg
∞·x, we have the following identification

YFl = Flω
ρ

G,Ranx
×

Ranx

(Grωρ

T,Ranx
)neg
∞·x � Flω

ρ

G,Conf∞·x ×
Conf∞·x

(Grωρ

T,Ranx
)neg
∞·x. (6.3.3)

Under the above identification, the preimage of T (O)ωρ

Ranx
\S−,1

Fl,Ranx
under (6.3.2) is iden-

tified with the product S−,1,Conf∞·x
Fl,Conf∞·x ×Conf∞·x(Grωρ

T,Ranx
)neg
∞·x. In addition, the gerbe (YGG)−1 on

Flω
ρ

G,Conf∞·x ×Conf∞·x(Grωρ

T,Ranx
)neg
∞·x is identified with the ratio gerbe

GG,T,ratio = (GG)−1 ⊗ GΛ. (6.3.4)

Since (Grωρ

T,Ranx
)neg
∞·x −→ Conf∞·x is an isomorphism in h-topology, the gerbes and the

corresponding categories of twisted sheaves on YFl and Flω
ρ

G,Conf∞·x are the same.

Definition 6.3.3. We denote the sheaf corresponding to Yj!(ωS−,1
Fl,Ranx

) by j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

) ∈
ShvGG,T,ratio(Flω

ρ

G,Conf∞·x). Its restriction to S−,1,Conf∞·x
Fl,Conf∞·x is the dualizing sheaf under the canonical

trivialization of GG,T,ratio|
S−,1,Conf∞·x

Fl,Conf∞·x
.

6.3.4 The above constructions also work for affine Grassmannian. To be more precise, let
j!(ωS−,0

Gr,Ran
) ∈ Shv(GG)−1(S

−,0
Gr,Ran) be the !-extension of the dualizing sheaf on S−,0

Gr,Ran (which is

defined similarly as S−,1
Fl,Ranx

, but without the Iwahori structure). Given Y := (Grωρ

T,Ran)
neg −→

T (O)ωρ

Ran\Grωρ

G,Ran, we can also define a twisted sheaf j!(ωS−,Conf
Gr,Conf

) ∈ ShvGG,T,ratio(Grωρ

G,Conf) which

corresponds to Yj!(ωS−,0
Gr,Ran

).

Using the fact that j!(ωS−,1
Fl,Ranx

) is factorizable with respect to j!(ωS−,0
Gr,Ran

), and pulling-

back along YFl −→ T (O)ωρ

Ranx
\Flω

ρ

G,Ranx
and YGr −→ T (O)ωρ

Ran\Grωρ

G,Ran preserve factorization
structures, we conclude that j!(ωS−,Conf

Gr,Conf
) and j!(ωS−,1,Conf∞·x

Fl,Conf∞·x
) satisfy the factorization properties.

That is to say, j!(S
−,Conf
Gr,Conf) is a factorization algebra,

j!(ωS−,Conf
Gr,Conf

)|
S
−,Conf
Gr,Conf ×Conf (Conf×Conf)disj

� j!(ωS−,Conf
Gr,Conf

) � j!(ωS−,Conf
Gr,Conf

)|
S
−,Conf
Gr,Conf×S

−,Conf
Gr,Conf ×Conf×Conf(Conf×Conf)disj

, (6.3.5)

and j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

) factorizes with respect to j!(ωS−,Conf
Gr,Conf

), i.e.

j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

)|
S
−,1,Conf∞·x
Fl,Conf∞·x ×Conf∞·x (Conf×Conf∞·x)disj

� j!(ωS−,Conf
Gr,Conf

) � j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

)|
S
−,Conf
Gr,Conf×S

−,1,Conf∞·x
Fl,Conf∞·x ×Conf×Conf∞·x (Conf×Conf∞·x)disj

. (6.3.6)
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6.4 Constructions of functors
In this section, we define the functor FL : Whitq(Flω

ρ

G )→ ShvGΛ(Conf∞·x), which is used in
Theorem 4.3.1.

To start with, let us summarize the prestacks defined in previous sections of this paper in
the following diagram.

Flω
ρ

G,Conf∞·x

(Sw0

Fl,Conf∞·x)∞·x

��

��

S
−,Conf∞·x
Fl,Conf∞·x

�������������������

Ranx × Flω
ρ

G,x

prRanx

��

unit �� (Sw0

Fl,Ranx
)∞·x (Sw0

Fl,Conf∞·x)∞·x ∩ S
−,Conf∞·x
Fl,Conf∞·x

vConf∞·x

��

�����������������

��

Flω
ρ

G,x

Conf∞·x

(6.4.1)

The morphism unit : Ranx × Flω
ρ

G,x → (Sw0

Fl,Ranx
)∞·x is given by (6.1.8).

6.4.1 Construction of FL. We can construct FL via the following steps.

(1) Given a twisted Whittaker sheaf F ∈Whitq(Flω
ρ

G,x), first of all, we !-pullback it to Ranx ×
Flω

ρ

G,x along the morphism prRanx
. By Lemma 6.1.12, it gives rise to a twisted Whittaker

sheaf sprdFl,Ranx
(F) on (Sw0

Fl,Ranx
)∞·x.

(2) Consider the image of sprdFl,Ranx
(F) under the following functor

ShvGG((Sw0

Fl,Ranx
)∞·x)→ ShvGG((Sw0

Fl,Ranx
)∞·x ×

Ranx

(Grωρ

T,Ranx
)neg
∞·x)

� ShvGG((Sw0

Fl,Conf∞·x)∞·x ×
Conf∞·x

(Grωρ

T,Ranx
)neg
∞·x) � ShvGG((Sw0

Fl,Conf∞·x)∞·x).

The first functor above is given by !-pullback. The second follows from the isomorphism

(Sw0

Fl,Ranx
)∞·x ×

Ranx

(Grωρ

T,Ranx
)neg
∞·x � (Sw0

Fl,Conf∞·x)∞·x ×
Conf∞·x

(Grωρ

T,Ranx
)neg
∞·x.

The third is given by Lemma 2.2.6. We denote the resulting sheaf by sprdFl(F).

sprdFl : Whitq(Flω
ρ

G )→ ShvGG((Sw0

Fl,Conf∞·x)∞·x). (6.4.2)

(3) Take !-tensor product of sprdFl(F) with the semi-infinite !-extension sheaf j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

)

defined in § 6.2.
(4) Then take ! (or, equivalently, take ∗)-pushforward along the projection vConf∞·x with

cohomology shift 〈λ, 2ρ̌〉 on the connected component Confλ∞·x of Conf∞·x.
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Definition 6.4.2. To summarize, the functor

FL : Whitq(Flω
ρ

G,x)→ ShvGΛ(Conf∞·x)

is defined as

F �→ vConf∞·x,∗(sprdFl(F)
!⊗ j!(ωS−,1,Conf∞·x

Fl,Conf∞·x
)|

(S
w0
Fl,Conf∞·x)∞·x∩S

−,Conf∞·x
Fl,Conf∞·x

)[deg], (6.4.3)

where the shift [deg] equals 〈λ, 2ρ̌〉 on the connected component Confλ∞·x.

Remark 6.4.3. The resulting sheaf FL(F) is GΛ-twisted. Indeed, sprdFl(F) ∈ ShvGG((Sw0

Fl,Ranx
)∞·x)

and j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

) ∈ ShvGG,T,ratio(S
−,Conf∞·x
Fl,Conf∞·x). Note that GG,T,ratio is the quotient of GG by GΛ.

Hence, the tensor product of the sheaf sprdFl(F) ∈ ShvGG((Sw0

Fl,Ranx
)∞·x) and the sheaf

j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

) ∈ ShvGG,T,ratio(S
−,Conf∞·x
Fl,Conf∞·x) is GΛ-twisted.

6.4.4 Construction of FL
Gr. Similarly, we consider the following diagram.

Grωρ

G,Conf

S
0
Gr,Conf

��

��

S
−,Conf
Gr,Conf

���������������

Ran× S
0
Gr

prRan

��

unitGr �� (S0
Gr,Ran) (S0

Gr,Conf) ∩ S
−,Conf
Gr,Conf

vConf

��

��������������

��

S
0
Gr

Conf

(6.4.4)

By applying the same steps (1) and (2) as in the above construction (with a tiny modification:
replace affine flags by the affine Grassmannian), we get a functor

sprdGr : Whitq(S
0
Gr)→ ShvGG(S0

Gr,Conf). (6.4.5)

Definition 6.4.5. The functor

FL
Gr : Whitq(S

0
Gr)→ ShvGΛ(Conf)

is defined as

F �→ vGr,∗(sprdGr(F)|
(S

0
Gr,Conf)

!⊗ j!(ωS−,Conf
Gr,Conf

)|
(S

0
Gr,Conf)∩S

−,Conf
Gr,Conf

)[deg]. (6.4.6)

Recall that Whitq(S
0
Gr) �Whitq(S0

Gr) � Vect, hence, there exists a unique irreducible
Whittaker sheaf on S

0
Gr. We denote it by F0. Set ΩL,′

q := FL
Gr(F0). The following lemma is proved

in [Gai21b, Theorem 6.2.5].
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Lemma 6.4.6. In the setting of D-modules, when q avoids small torsion, there is an isomorphism
of factorization algebras ΩL,′

q � ΩL
q .

Proposition 6.4.7. Given any F ∈Whitq(Flω
ρ

G ), FL(F) has a naturally defined

ΩL,′
q -factorization module structure.

Proof. By the factorization property of S
0
Gr,Conf , S

−,Conf
Gr,Conf , (Sw0

Fl,Conf∞·x)∞·x, and S
−,Conf∞·x
Fl,Conf∞·x (see

(6.2.4), (6.2.5), (6.2.9), and (6.2.10)), we obtain that the prestack S
0
Gr,Conf ∩ S

−,Conf
Gr,Conf is fac-

torizable, and the prestack (Sw0

Fl,Conf∞·x)∞·x ∩ S
−,Conf∞·x
Fl,Conf∞·x is a factorization module space with

respect to S
0
Gr,Conf ∩ S

−,Conf
Gr,Conf . Note that vConf and vConf∞·x are compatible with the factoriza-

tion structures on S
0
Gr,Conf ∩ S

−,Conf
Gr,Conf and (Sw0

Fl,Conf∞·x)∞·x ∩ S
−,Conf∞·x
Fl,Conf∞·x , hence, it suffices to show

that

sprdFl(F)|((Sw0
Fl,Conf∞·x)∞·x)

!⊗ j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

)

factorizes with respect to sprdGr(F0)|(S0
Gr,Conf )

!⊗ j!(ωS−,Conf
Gr,Conf

).

According to Corollary 6.1.15, the Whittaker sheaf sprdFl,Ranx
(F) on (Sw0

Fl,Ranx
)∞·x factor-

izes with respect to the factorization algebra Vac. Since the !-pullback from (Sw0

Fl,Ranx
)∞·x to

(Sw0

Fl,Conf∞·x)∞·x is compatible with the factorization structure and sprdGr(F0) is exactly the
pullback of Vac, we obtain that sprdFl(F) is a factorization module over sprdGr(F0).

By (6.3.6), j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

) factorizes with respect to j!(ωS−,Conf
Gr,Conf

).

Now Proposition 6.4.7 follows from the fact that the tensor product of factorization modules
is a factorization module over the tensor product of the corresponding factorization algebras. �

The functor FL defined in (6.4.3) factors through ΩL,′
q -FactMod. We also denote by FL the

resulting functor
FL : Whitq(Flω

ρ

G )→ ΩL,′
q -FactMod. (6.4.7)

Of course, Theorem 4.3.1 can be deduced from the following stronger statement.

Theorem 6.4.8. For any q, the functor FL in (6.4.7) is a t-exact equivalence that preserves
standards and costandards.

6.4.9 By constructions similar to FL and FL
Gr, if we replace the semi-infinite !-extension

sheaves j!(ωS−,Conf
Gr,Conf

) and j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

) by the semi-infinite ∗-extension sheaves, then we can

define the following functors.

Definition 6.4.10. We have
FDK : Whitq(Flω

ρ

G,x)→ ShvGΛ(Conf∞·x)

F → vConf∞·x,∗(sprdFl(F)|(Sw0
Fl,Ranx

)∞·x

!⊗ j∗(ωS−,1,Conf∞·x
Fl,Conf∞·x

))[deg],
(6.4.8)

FDK
Gr : Whitq(S

0
Gr)→ ShvGΛ(Conf)

F → vGr,∗(sprdGr(F)|
(S

0
Gr,Conf)

!⊗ j∗(ωS−,Conf
Gr,Conf

))[deg].
(6.4.9)

Similarly, we define ΩDK,′
q := FDK

Gr (F0). When q avoids small torsion, we have ΩDK,′
q � ΩDK

q

(see [Gai21b, Theorem 3.6.2]). By the same proof as that of Proposition 6.4.7, we have the
following result.
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Proposition 6.4.11. FDK factors through ΩDK,′
q -FactMod, i.e. it gives rise to a functor

FDK : Whitq(Flω
ρ

G,x)→ ΩDK,′
q -FactMod. (6.4.10)

6.5 Calculation of the !-stalks of F L and F DK

By Lemma 4.1.5, in the category of Ω-FactMod, the standard object Δλ,Ω is always uniquely
characterized by the requirement that its ∗-stalks at μ · x, μ ∈ Λ is e if λ = μ and 0 otherwise,
and the costandard object ∇λ,Ω is uniquely characterized by the requirement that its !-stalks
at μ · x, μ ∈ Λ is e if λ = μ and 0 otherwise. Hence, in order to prove that FL sends standard
objects to standard objects, costandard objects to costandard objects, we only need to find an
explicit expression of the !-stalks and ∗-stalks of the image of FL.

The theory of sheaves on prestack is friendly with taking !-stalks. There are two reasons for
this: the first is that the !-pullback functor is always well-defined, the second is that we have a
base change theorem for !-pullback (see [GR17b, Corollary 3.1.4]), hence, the calculation will be
much easier than the calculation of ∗-stalks.

In this section, we give an explicit formula (Proposition 6.5.2) for the !-stalks of FL and FDK

at λ · x.

6.5.1 Consider the following Cartesian diagram.

S
−,λ
Fl,x

��

��

S
−,Conf∞·x
Fl,Conf∞·x ∩ (Sw0

Fl,Conf∞·x)∞·x

vConf∞·x
��

λ · x
iλ �� Conf∞·x

(6.5.1)

Choosing a trivialization of the fiber of GΛ at λ · x. By the base change theorem [GR17b,
Corollary 3.1.4], we have

i!λ(FL(F)) � i!λ ◦ vConf∞·x,∗(sprdFl(F)|((Sw0
Fl,Conf∞·x )∞·x)

!⊗ j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

))[〈λ, 2ρ̌〉]

� H(Flω
ρ

G,x, i!λ,Conf∞·x(sprdFl(F))
!⊗ i−,Conf∞·x,!

λ,Conf∞·x (j!(ωS−,1,Conf∞·x
Fl,Conf∞·x

))[〈λ, 2ρ̌〉]). (6.5.2)

In the above formula:

– i−,Conf∞·x
λ,Conf∞·x denotes the embedding of S

−,λ
Fl,x into S

−,Conf∞·x
Fl,Conf∞·x ;

– iλ,Conf∞·x denotes the embedding of Flω
ρ

G,x into S
−,Conf∞·x
Fl,Conf∞·x .

First, by the construction (6.4.2), there is

i!λ,Conf∞·x(sprdFl(F)) � F ∀λ ∈ Λ and F ∈Whitq(Flω
ρ

G,x).

Second, by Corollary A.2.9, we have a base change theorem for !-pushforward and !-pullback for
semi-infinite sheaves. Namely, there is an isomorphism

i−,Conf∞·x,!
λ,Conf∞·x (j!(ωS−,1,Conf∞·x

Fl,Conf∞·x
)) � j!(ωS−,λ

Fl,x
) ∀λ ∈ Λ.

Here, ω
S−,λ

Fl,x
denotes the (GG)−1 ⊗ GΛ|λ·x- twisted dualizing sheaf on S−,λ

Fl,x and j!(ωS−,λ
Fl,x

) denotes

its !-pushforward to S
−,λ
Fl,x. By choosing a trivialization of the fiber GΛ|λ·x (which is equivalent

to choosing a trivialization of GG|tλ∈Fl), we can think j!(ωS−,λ
Fl,x

) as the !-extension of the

(GG)−1- twisted dualizing sheaf on S−,λ
Fl,x under the unique N−(K)ωρ

x -equivariant trivialization.
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From the above observations, we deduce the following proposition.

Proposition 6.5.2. Choosing a trivialization of GΛ|λ·x, there exists an isomorphism

i!λ(FL(F)) � H(Flω
ρ

G,x, F
!⊗ j!(ωS−,λ

Fl,x
)[〈λ, 2ρ̌〉]). (6.5.3)

Similarly, we have the following proposition.

Proposition 6.5.3. Choosing a trivialization of GΛ|λ·x, there exists an isomorphism

i!λ(FDK(F)) � H(Flω
ρ

G,x, F
!⊗ j∗(ωS−,λ

Fl,x
)[〈λ, 2ρ̌〉]). (6.5.4)

6.5.4 The following corollary relates the functor i!λ(FL) with the standard objects that we
constructed in Definition 5.5.1.

Corollary 6.5.5. Given λ ∈ Λ and a trivialization of GΛ|λ·x, there exists an isomorphism

i!λ(FL(F)) � HomWhitq(Flω
ρ

G )(Δλ, F). (6.5.5)

Proof. According to Proposition 6.5.2, we have to prove

H(Flω
ρ

G,x, F
!⊗ j!(ωS−,λ

Fl,x
)[〈λ, 2ρ̌〉]) � HomWhitq(Flω

ρ
G )(Δλ, F).

By the assumption, F is (N(K)ωρ

x , χ)-equivariant. In particular, it is (N(O)ωρ

x , χ)-equivariant.
Note that χ|N(O)ωρ

x
is trivial, we have

H(Flω
ρ

G,x, F
!⊗ j!(ωS−,λ

Fl,x
)[〈λ, 2ρ̌〉]) = H(Flω

ρ

G,x, F
!⊗AvN(O)ωρ

∗ (j!(ωS−,λ
Fl,x

)[〈λ, 2ρ̌〉])).
By Proposition 6.5.6, we have

H(Flω
ρ

G,x, F
!⊗AvN(O)ωρ

∗ (j!(ωS−,λ
Fl,x

)[〈λ, 2ρ̌〉])) � H(Flω
ρ

G,x, F
!⊗ JD

λ )

According to the construction of the convolution product in § 5.3, it is isomorphic to the !-stalks
of the convolution product F � (J−λ)λ at t0 ∈ F̃l. Furthermore, there exist isomorphisms

Hom
Shv

GG (F̃l)λ
((δ0)λ, F � (J−λ)λ)

� Hom
Whitq(F̃l)λ

(AvN(K),χ
! ((δ0)λ), F � (J−λ)λ)

� Hom
Whitq(F̃l)λ

(AvN(K),χ
! ((J0)λ), F � (J−λ)λ)

� HomWhitq(Flω
ρ

G )(AvN(K),χ
! ((J0)λ) � Jλ, F)

� HomWhitq(Flω
ρ

G )(AvN(K),χ
! (Jλ), F)

� HomWhitq(Flω
ρ

G )(Δλ, F). �

Proposition 6.5.6. Given λ ∈ Λ, there is an isomorphism

AvN(O)ωρ

∗ (j!(ωS−,λ
Fl,x

)[〈λ, 2ρ̌〉]) � JD

λ . (6.5.6)

Proof. We regard j!(ωS−,λ
Fl,x

) as a (GG)−1-twisted sheaf. Thus, it is the !-extension of the

(GG)−1-twisted dualizing sheaf on S−,λ
Fl,x under the unique (up to a choice of trivialization of

(GG)−1|tλ∈Fl) N−(K)ωρ

x -equivariant trivialization.
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Assuming α to be very dominant, we have tαIωρ
t−α+λIωρ

/Iωρ ⊂ N−(K)ωρ
tλIωρ

/Iωρ
, and

tαIωρ
t−α+λIωρ

/Iωρ
= tαN−(tO)ωρ

t−α+λIωρ
/Iωρ

. Here, N−(tO)ωρ
denotes the negative part

of Iωρ
.

Since I0 is pro-unipotent, the twisting (GG)−1 on Iωρ
t−α+λIωρ

/Iωρ
= I0t−α+λIωρ

/Iωρ
has

a unique (up to a choice of trivialization of (GG)−1|t−α+λ∈Fl) I0-equivariant trivialization.
By definition, J−α+λ,! is the !-extension of the (GG)−1-twisted constant perverse sheaf on
Iωρ

t−α+λIωρ
/Iωρ

with respect to this trivialization.
Given an element g ∈ G(K)ωρ

and a trivialization of (GG)−1|g, we can define the left transition
functor g · − : Shv(GG)−1(Flω

ρ

G )→ Shv(GG)−1(Flω
ρ

G ). Now, we choose a trivialization of (GG)−1 at
tα ∈ Tωρ

(K) such that it matches the chosen trivializations (GG)−1|t−α+λ∈Fl and (GG)−1|tλ∈Fl

under the isomorphism (GG)−1|tα∈G(K) ⊗ (GG)−1|t−α+λ∈Fl � (GG)−1|tλ∈Fl.
Left-multiplying with tα, the I0-equivariant trivialization on Iωρ

t−α+λIωρ
/Iωρ

becomes the
unique AdαI0-equivariant trivialization on tαIωρ

t−α+λIωρ
/Iωρ

.8 It coincides with the restriction
of the unique N−(K)ωρ

-equivariant trivialization on N−(K)ωρ
tλIωρ

/Iωρ
(since different trivi-

alizations differ by a tame local system on the affine space tαIωρ
t−α+λIωρ

/Iωρ
, which has to

be trivial). In particular, tαJ−α+λ,! exactly coincides with the !-extension of the !-restriction of
j!(ωS−,λ

Fl,x
) on tαIωρ

t−α+λIωρ
/Iωρ

up to a shift by 〈α− λ, 2ρ̌〉. The adjointness of !-pushforward

and !-pullback gives rise to transition maps between tαJ−α+λ,![〈α− λ, 2ρ̌〉].
Now we write j!(ωS−,λ

Fl,x
)[〈λ, 2ρ̌〉] as colimα,α−λ∈Λ+ tαJ−α+λ,![〈α, 2ρ̌〉]. Note that J−α+λ,! is

I0-equivariant and T -equivariant with respect to a character b−λ+α. For such a sheaf F, we
have

AvN(O)ωρ

∗ (tα · F)[〈α, 2ρ̌〉] � (Jα,∗)−λ+α�F.

Indeed, for any such a (GG)−1-twisted sheaf F, taking ∗-averaging of tα · F with respect to N(O)ωρ

is given by taking the convolution of F with the ∗-extension of the twisted constant sheaf on
N(O)ωρ

tα. Since F is (Iωρ
, b−λ+α)-equivariant, we can first take right (Iωρ

, b−λ+α)-averaging
of the constant sheaf on N(O)ωρ

tα and then take the convolution with F after descending

along G(K)ωρ × Flω
ρ

G −→ G(K)ωρ Iωρ

× Flω
ρ

G . Up to a shift, the right (Iωρ
, b−λ+α)-averaging of the

constant sheaf on N(O)ωρ
tα is isomorphic to the pullback of (Jα,∗)−λ+α.

Thus, there is

AvN(O)ωρ

∗ ( colim
α,α−λ∈Λ+

tαJ−α+λ,![〈α, 2ρ̌〉]) � colim
α,α−λ∈Λ+

(Jα,∗)−λ+α � J−α+λ,! � JD

λ . (6.5.7)

Here we use the fact that AvN(O)ωρ

∗ commutes with colimits. �
Similarly, we can calculate N(O)ωρ

-averaging of j∗(ωS−,λ
Fl,x

).

Proposition 6.5.7. For λ ∈ Λ, we have

AvN(O)ωρ

∗ (j∗(ωS−,λ
Fl,x

)[〈λ, 2ρ̌〉]) = colim
α,α−λ∈Λ+

(Jα,∗)λ−α � J−α+λ,∗.

6.6 Proof of Theorem 3.3.2 modulo Proposition 6.6.2
This section is devoted to the proof of Theorem 4.3.1 using Proposition 6.6.2.

First of all, let us check the compatibility of costandard objects under FL.

8 However, conjugating the canonical trivialization of GG on T (O)ωρ

by tα will change the trivialization by the
character sheaf bα. Thus, left-transition will change the T (O)ωρ

-equivariant structure.
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Proposition 6.6.1. For any λ ∈ Λ, there is an isomorphism

FL(∇λ) � ∇
λ,ΩL,′

q
. (6.6.1)

Proof. By the isomorphism (6.5.5), there is

i!μ(FL(∇λ)) � HomWhitq(Flω
ρ

G )(Δμ,∇λ).

Now the claim follows from Proposition 5.5.3. �
Then we prove Theorem 6.4.8 with the help of the following proposition. In particular, by

Lemma 6.4.6, we actually prove Theorem 4.3.1 (= Theorem 3.3.2).

Proposition 6.6.2. For λ ∈ Λ, the functor

FL : Whitq(Flω
ρ

G,x)→ ΩL,′
q -FactMod

sends standards to standards, i.e.

FL(Δλ) = Δ
λ,ΩL,′

q
.

Proof of Theorem 6.4.8. To prove the fully faithfulness of FL, we need to prove that the following
map is an isomorphism

HomWhitq(Flω
ρ

G,x)(F1, F2)
FL−→Hom

ΩL,′
q -FactMod

(FL(F1), FL(F2)),

for any F1, F2 ∈Whitq(Flω
ρ

G,x).
Since the standards {Δλ, λ ∈ Λ} generate the category Whitq(Flω

ρ

G,x) by cohomology shifts,
colimits and extensions, it is sufficient to prove

HomWhitq(Flω
ρ

G,x)(Δλ, F2)
FL

� Hom
ΩL,′

q -FactMod
(FL(Δλ), FL(F2)), (6.6.2)

for any F2 ∈Whitq(Flω
ρ

G,x)
Fix a Δλ. Since both Δλ and FL(Δλ) = Δ

λ,ΩL,′
q

are compact, we only need to construct a

collection of compact generators {Δ′
λ,w̃, w̃ relevant} of Whitq(Flω

ρ

G,x) and prove that FL induces
an isomorphism (6.6.2) if F2 = Δ′

λ,w̃.
Without loss of generality, we can assume that λ is dominant, the construction of Δ′

λ,w̃ for
general λ follows by taking the convolution with twisted BMW sheaf.

In this case, we let Δ′
λ,w̃ = Δλ if w̃ = tλ, and Δ′

λ,w̃ = ∇ver
w̃ if w̃ �= tλ. It is not hard to

see that they form a collection of compact generators. Indeed, according to Proposition 5.1.7,
{∇ver

w̃ , w̃ relevant} is a collection of compact generators. Furthermore, ∇ver
λ is a finite extension

of Δ′
λ,λ = Δλ and ∇ver

w̃ , for w̃ �= tλ.
If w̃ �= tλ, by Corollary 6.5.5 and Proposition 6.6.2, we have HomWhitq(Flω

ρ
G,x)(Δλ, F2) =

i!λ(FL(F2)) = Hom
ΩL,′

q -FactMod
(FL(Δλ), FL(F2)) = 0. The map (6.6.2) has to be 0.

If w̃ = tλ, by Proposition 6.6.2, both sides of (6.6.2) are e, the map (6.6.2) is an isomorphism
since FL sends id to id.

Then, we note that standards {Δ
λ,ΩL,′

q
} generate the category ΩL,′

q -FactMod under cohomol-

ogy shifts, extensions, and colimits, and the functor FL is compatible with cohomology shift,
extensions, and colimits. Hence, FL is essentially surjective by Proposition 6.6.2.

To prove the t-exactness of FL, note that according to (3.3.1) and (4.1.5), t-structures on
both sides are defined by the ’Hom’ with standard objects. According to Proposition 6.6.2, the
functor FL preserves standards. Hence, FL is t-exact. �
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Corollary 6.6.3. The objects Δλ and ∇λ are in the heart of Whitq(Flω
ρ

G ).

Proof. Note that FL preserves standards and costandards, and FL is t-exact, we only need to
prove that Δ

λ,ΩL,′
q

and ∇
λ,ΩL,′

q
are in the heart of the t-structure on ΩL,′

q -FactMod. The later

claim follows from the fact that ΩL
q is perverse, and all standard objects and costandards in

Ω-FactMod are perverse if Ω is perverse. �

The proof of Proposition 6.6.2 is hard. It occupies the rest of the paper and is finally given
in § 8.3.

7. Global Whittaker category

From now on, we focus on the proof of Proposition 6.6.2. As we noted before, it is very hard
to calculate ∗-stalks. Luckily, we can use duality functor to transfer the calculation of ∗-stalks
to a calculation of !-stalks. To make the calculation possible, we introduce the global counter-
parts of the category Whitq(Flω

ρ

G ) and the functor FL. In this section, our aim is to transfer
Proposition 6.6.2 to 7.6.6 by the local–global comparison.

7.1 Drinfeld compactifications
Fix x ∈ X. The Drinfeld compactification is introduced in [BG02, § 1]. In this section, we define
the Whittaker category on the (Iwahori version) Drinfeld compactification.

Definition 7.1.1. Let (Bunωρ

N )′∞·x be the stack classifying the triples (PG, {κλ̌, λ̌ ∈ Λ+}, ε),
where PG ∈ BunG, {κλ̌, λ̌ ∈ Λ+} is a family of morphisms of coherent sheaves

κλ̌ : (ω1/2)〈λ̌,2ρ〉 → Vλ̌
PG

(∞ · x) ∀λ̌ ∈ Λ+,

which satisfy the Plücker relations, such that it is regular over X \ x, and ε is a B-reduction of
PG at x.

If we omit the Iwahori structure (i.e. ε) at x and ask κλ̌ to be defined and regular on the
whole curve X for any dominant weight λ̌, we denote the resulting algebraic stack by Bunωρ

N .

7.1.2 Note that there is a projection map from Flω
ρ

G,x to (Bunωρ

N )′∞·x,

πFl,x : Flω
ρ

G,x → (Bunωρ

N )′∞·x. (7.1.1)

This morphism sends (PG, α, ε) ∈ Flω
ρ

G,x to (PG, {κλ̌, λ̌ ∈ Λ̌+}, ε). Here κλ̌ is induced from α,
i.e. for any dominant weight λ̌,

κλ̌ : (ω1/2)〈λ̌,2ρ̌〉 → Vλ̌
Pω

α−1→ Vλ̌
PG

.

Similarly, by omitting ε, we have a projection map from S
0
Gr to Bunωρ

N ,

πGr,x : S
0
Gr → Bunωρ

N . (7.1.2)

7.1.3 Here (Bunωρ

N )′∞·x and Bunωρ

N project to BunG. By taking the ratio of pullback of GG

on BunG and the fiber GG|Pωρ
G ∈BunG

, we get gerbes on (Bunωρ

N )′∞·x and Bunωρ

N . We denote the
resulting the gerbes by GG. By constructions in § 2.4, their pullbacks along the projections (7.1.1)
and (7.1.2) are isomorphic to the same-named gerbes on Flω

ρ

G and Grωρ

G .
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7.2 Global Whittaker category
In [FGV01], the authors defined the category Whitq(Bunωρ

N ). We can define the twisted Whittaker
category on (Bunωρ

N )′∞·x similarly.
Given a point ȳ = {y1, y2, . . . , yn} in Ran, which is disjoint from x, i.e. x �= yi for any i.

Definition 7.2.1. We define ((Bunωρ

N )′∞·x)good at ȳ as the open substack of (Bunωρ

N )′∞·x, such
that for any dominant weight λ̌, the map κλ̌ is injective on the fiber over any point yi ∈ ȳ.

Since {κλ̌, λ ∈ Λ+} are injective bundle maps near ȳ, they give rise to a Nωρ
-reduction of

PG near ȳ, which means there exists a B-bundle PB on the disk Dȳ, such that

PG|Dȳ � PB|Dȳ

B×G,

and βT
ȳ : PB ×B T � ωρ.

Similar to [Gai08, § 2.3], we construct a N(O)ωρ

ȳ -principal bundle ȳ((Bunωρ

N )′∞·x)good at ȳ over
the stack ((Bunωρ

N )′∞·x)good at ȳ. This bundle classifies data from ((Bunωρ

N )′∞·x)good at ȳ plus a
choice of identification of the B-bundle PB|Dȳ with the B-bundle induced from ωρ, such that it
is compatible with βT

ȳ .
By a standard gluing procedure (see [FGV01, Lemma 3.2.7]), we can extend the N(O)ωρ

ȳ -
action on ȳ((Bunωρ

N )′∞·x)good at ȳ to an action of N(K)ωρ

ȳ .

Definition 7.2.2. A twisted Whittaker sheaf on (Bunωρ

N )′∞·x is a twisted sheaf on (Bunωρ

N )′∞·x
such that its pullback to ȳ((Bunωρ

N )′∞·x)good at ȳ is (N(K)ωρ

ȳ ,−χȳ)-equivariant for any ȳ dis-
joint with x. We denote the category of GG-twisted Whittaker sheaf on (Bunωρ

N )′∞·x by
Whitq((Bunωρ

N )′∞·x).

Applying the method of the proof of [Gai20, Theorem 5.2.2], we have the following.

Lemma 7.2.3. We have:

π!
Fl,x : Whitq((Bunωρ

N )′∞·x)→Whitq(Flω
ρ

G,x)

is an equivalence of categories; and

π!
Gr,x : Whitq(Bunωρ

N )→Whitq(S
0
Gr)

is an equivalence of categories.

We denote by Δλ
glob the twisted sheaf π!

Fl,x(Δλ)[dg], where dg := dim(Bunωρ

N ).

remark 7.2.4. Although the local Whittaker categories are equivalent to the global Whittaker
categories, we have to use both of them in this paper: we use the local Whittaker category
to show the factorization property, and we use the global Whittaker category to show prove
Proposition 6.6.2.

7.2.5 Proof of Lemma 7.2.3. The second claim of Lemma 7.2.3 is the statement of [Gai20,
Theorem 5.2.2]. To be self-contained, we prove the first claim.

First, we give the algebraic ind-stack (Bunωρ

N )′∞·x a stratification. By definition, the algebraic
ind-stack (Bunωρ

N )′∞·x classifies the data of points (PG, σ, ε), where PG is a G-bundle on X, σ

is a section of X − x in T\N\Gaff G× PG which generically lies in T\(N\G)
G× PG, such that the

induced map to T\pt is given by ωρ, and ε is a B-reduction of PG at x.
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According to [Zhu16, Lemma 1.3.7], we can trivialize PG on the formal disc Dx. Furthermore,

we can choose an isomorphism PG|Dx

φ� Pω
G, such that the Iwahori structure ε goes to ωρ

T×B|x
under this isomorphism.

For any geometric point in (Bunωρ

N )′∞·x, taking the restriction of σ to
◦
Dx, we obtain a map

σ| ◦
Dx

:
◦
Dx → T\(N\G)

G× PG � T\(N\G)
G× Pω

G, such that the induced map to T\pt is given by

ωρ. It gives rise to a point in (N\G)ωρ
(K). In addition, different identifications φ preserving the

B-reduction structure at x differ by a multiplication by Iwahori Iωρ
. Hence, for any geometric

point in (Bunωρ

N )′∞·x, we can obtain a point in |(N\G)ωρ
(K)/Iωρ | = |N(K)ωρ\Flω

ρ

G | = W ext.
For any tλw ∈W ext, we denote the corresponding locally closed substack by (Bunωρ

N )w
=λ·x. It

has an open substack (Bunωρ

N )w
=λ·x where we require κλ̌ to be injective on X − x.

The projection πFl,x induces a map for each stratum:

πFl,x : Stλw
Fl,x −→ (Bunωρ

N )w
=λ·x. (7.2.1)

We claim that π!
Fl,x induces a strata-wise equivalence, i.e.

π!
Fl,x : Whitq((Bunωρ

N )w
=λ·x) ∼−→Whitq(Stλw

Fl,x). (7.2.2)

First, using the same proof as [FGV01, Lemma 6.2.8], one can show that (Bunωρ

N )w
=λ·x −

(Bunωρ

N )w
=λ·x does not carry non-zero Whittaker sheaf.

Furthermore, there is an isomorphism of stacks

(Bunωρ

N )w
=λ·x � Nωρ

X−x\Stλw
Fl,x, (7.2.3)

where Nωρ

X−x is the mapping space X − x −→ Nωρ
and the right-hand side of (7.2.3) is understood

as the fpqc (equivalently, étale) sheafification of the prestack quotient.
In addition, for any geometric point ȳ = {y1, y2, . . . , yn} ∈ RanX−x, we have

(Bunωρ

N )w
=λ·x,good at ȳ � (Bunωρ

N )w
=λ·x � Nωρ

X−ȳ−x\
n∏

i=1

S0
Gr,yi

× Stλw
Fl,x, (7.2.4)

where Nωρ

X−ȳ−x acts on
∏n

i=1 S0
Gr,yi

× Stλw
Fl,x diagonally.

It follows immediately that

ȳ(Bunωρ

N )w
=λ·x,good at ȳ � Nωρ

X−ȳ−x\
n∏

i=1

N(K)ωρ

yi
× Stλw

Fl,x, (7.2.5)

and the (N(K)ωρ

ȳ ,−χȳ)-equivariant twisted D-modules on ȳ(Bunωρ

N )w
=λ·x, good at ȳ are exactly

those twisted D-modules on Stλw
Fl,x which are (Nωρ

X−ȳ−x, χx)-equivariant.
Now, the strata-wise equivalence follows from

Whitq((Bunωρ

N )w
=λ·x) �

⋂
Shv

Nωρ

X−ȳ−x,χx

GG (Stλw
Fl,x) �

⋂
ShvN(K)ωρ

x ,χx

GG (Stλw
Fl,x) � ShvN(K)ωρ

x ,χx

GG (Stλw
Fl,x).

(7.2.6)
To prove Lemma 7.2.3, it is sufficient to show that π!

Fl,x induces a functor between the
Whittaker categories and is fully faithful. (Then, the essentially surjective property follows from
Whitq(Flω

ρ

G,x) is generated by ∗-extensions of objects in Whitq(Stλw
Fl,x)).

The functor π!
Fl,x sends any global Whittaker sheaf to local Whittaker sheaf:

Whitq((Bunωρ

N )′∞·x) is generated by ∗-extensions of objects in Whitq(Bunωρ

N )w
=λ·x), and π!

Fl,x
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sends any such sheaf to a local Whittaker sheaf, then using the fact that the local Whittaker
category is a full cocomplete subcategory of ShvGG(Flω

ρ

G,x), we obtain that π!
Fl,x sends any global

Whittaker sheaf to a local Whittaker sheaf.
Consider the following commutative diagram.

RanX,x × Flω
ρ

G,x

unit

��������������

�������������

Flω
ρ

G,x

πFl,x

		�����������
(Sw0

Fl,Ranx
)∞·x

πFl,RanX,x

������������

(Bunωρ

N )′∞·x

Since Ranx is contractible (see [Gai13, Theorem 1.6.5] and [BD04, Proposition 4.3.3]), we only
need to show that the !-pullback along the right-hand side induces a fully faithful embedding:

Whitq((Bunωρ

N )′∞·x) −→Whitq((S
w0

Fl,Ranx
)∞·x) −→Whitq(RanX,x × Flω

ρ

G,x). (7.2.7)

According to Lemma 6.1.12, there is Whitq((S
w0

Fl,Ranx
)∞·x) �Whitq(RanX,x × Flω

ρ

G,x).

Thus, we only need to show πFl,RanX,x
: Whitq((Bunωρ

N )′∞·x)→Whitq((S
w0

Fl,Ranx
)∞·x) is fully

faithful. Note that Whitq((Bunωρ

N )′∞·x) and Whitq((S
w0

Fl,Ranx
)∞·x) are full subcategories of

ShvGG((Bunωρ

N )′∞·x) and ShvGG((Sw0

Fl,Ranx
)∞·x), respectively. We only need to prove πFl,RanX,x

:
ShvGG((Bunωρ

N )′∞·x) −→ ShvGG((Sw0

Fl,Ranx
)∞·x) is fully faithful.

Denote by BunN,gen
G the stack which classifies principal G-bundles on X with a generic

Nωρ
-reduction. Consider the following Cartesian diagram.

(Sw0

Fl,Ranx
)∞·x ��

��

Grωρ

G,Ran

��

(Bunωρ

N )′∞·x
�� BunN,gen

G

(7.2.8)

Now the desired fully faithfulness follows from the fact that Grωρ

G,Ran −→ BunN,gen
G is universally

homologically contractible [Gai22, Theorem A.1.10].

7.3 Global semi-infinite !-extension sheaf
Before we define global functors corresponding to the functors FL and FDK, we should construct
the global analog of the semi-infinite sheaves j!(ωS−,Conf

Gr,Conf
), j!(ωS−,w,Conf∞·x

Fl,Conf∞·x
) defined in § 6.2.

Definition 7.3.1. We denote by Bun′
B− the algebraic stack classifying B−-bundles on X plus

a B-reduction of the induced G-bundle at the point x. In other words, it is the fiber product of
BunB− with the classifying stack of B over the classifying stack of G.

We define Bun′
B− as the Drinfeld compactification of Bun′

B− . It classifies the quadruples
{PT , PG, {κ−,λ̌, λ̌ ∈ Λ+}, ε}, where PT ∈ BunT is a T -bundle on X, PG is a G-bundle on X and

κ−,λ̌ : ′Vλ̌
PG
→ (ω1/2)〈λ̌,2ρ〉 ∀λ̌ ∈ Λ+ (7.3.1)

is a collection of morphisms which are regular on X and satisfy the Plücker relations.
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By omitting the Iwahori structure ε, we get the Drinfeld compactification BunB− of BunB− .

Remark 7.3.2. If we require κ−.λ̌ to be surjective in the definition of Bun′
B− (respectively,

BunB−), the resulting stack is Bun′
B− (respectively, BunB−).

Definition 7.3.3. We define the gerbe G
G,T,ratio
glob on BunB− (respectively, Bun′

B−) as
(GG)−1 ⊗ (GT ).

Here Bun′
B− has a relative position map

Bun′
B− → BunG ×

pt/G
pt/B ×

pt/G
pt/B− � BunG ×

pt/G
B−\G/B. (7.3.2)

We denote the preimage of the Bruhat cell Brw ⊂ B−\G/B in Bun′
B− by Bunw

B− , w ∈W . For
convenience, we denote by Bun′′

B− the stack Bun1
B− .

By the definitions of GG and GT in § 2.4, we see that the gerbe G
G,T,ratio
glob is canonically trivial

on Bun′′
B− ⊂ Bun′

B− and BunB− ⊂ BunB− . Hence, the categories of G
G,T,ratio
glob -twisted sheaves on

Bun′′
B− and BunB− are equivalent to the categories of non-twisted sheaves on the corresponding

stacks. In particular, we can consider the constant sheaf in the twisted case.

Definition 7.3.4. We denote by j−!,glob,Fl (respectively, j−!,glob,Gr) the !-extension of the G
G,T,ratio
glob -

twisted perverse constant sheaf on Bun′′
B− (respectively, BunB−) to Bun′

B− (respectively, BunB−).

7.4 Zastava spaces
Zastava spaces are introduced in [FM99]. They play an important role in our global construction
of the functor. Let us recall the definitions of the Zastava space and related stacks in this section.

Definition 7.4.1. We define the compactified Zastava space Z̄Gr and Zastava space ZGr as

Z̄Gr := Bunωρ

N ×′
BunG

BunB− ,

ZGr := Bunωρ

N ×′
BunG

BunB− ,

where ×′ means the open substack of the fiber product such that the composition of κλ̌ and κ−,λ̌

is non-zero for any dominant weight λ̌.

Definition 7.4.2. Similarly, we define the affine flags version of Zastava spaces as

(Z̄Fl,x)∞·x := (Bunωρ

N )
′
∞·x ×′

Bun′
G

Bun′
B− ,

(ZFl,x)∞·x := (Bunωρ

N )
′
∞·x ×′

Bun′
G

Bun′′
B− .

(7.4.1)

Since we assume that [G, G] is simply-connected, taking zeros of the composition of κλ̌ and
κ−,λ̌ gives ind-proper maps

vFl,glob : (Z̄Fl,x)∞·x → Confx, (7.4.2)

and

vGr,glob : Z̄Gr → Conf. (7.4.3)

By [BFGM02, § 2.3], the Zastava spaces satisfy the factorization property.
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Lemma 7.4.3. There exists isomorphisms

Z̄Gr ×
Conf

(Conf × Conf)disj � (Z̄Gr × Z̄Gr) ×
Conf×Conf

(Conf × Conf)disj, (7.4.4)

and

(Z̄Fl,x)∞·x ×
Conf∞·x

(Conf × Conf∞·x)disj

�
(Z̄Gr × (Z̄Fl,x)∞·x) ×

Conf×Conf∞·x
(Conf × Conf∞·x)disj.

(7.4.5)

7.5 Construction of global functors
Let us consider the following diagram.

(Z̄Fl,x)∞·x

q̄′Z������������

vFl,glob

��

p̄′Z

������������

(Bunωρ

N )′∞·x Bun′
B−

Conf∞·x

(7.5.1)

Definition 7.5.1. We define global functors FL
glob and FDK

glob as

FL
glob : Whitq((Bunωρ

N )′∞·x)→ ShvGΛ(Conf∞·x)

F �→ vFl,glob,!(q̄
′,!
Z (F)

!⊗ p̄
′,!
Z (j−!,glob,Fl[dim Bun′

G])),
(7.5.2)

and
FDK

glob : Whitq((Bunωρ

N )′∞·x)→ ShvGΛ(Conf∞·x)

F �→ vFl,glob,!(q̄
′,!
Z (F)

!⊗ p̄
′,!
Z (j−∗,glob,Fl[dim Bun′

G])).
(7.5.3)

Similarly, we consider the following diagram without the Iwahori structures.

Z̄Gr

q̄Z��								

vGr,glob

��

p̄Z


















Bunωρ

N BunB−

Conf

(7.5.4)

Definition 7.5.2. We define functors FL
glob,Gr and FL

glob,Gr(F) as

FL
glob,Gr : Whitq(Bunωρ

N )→ ShvGΛ(Conf)

F �→ vGr,glob,!(q̄!
Z(F)

!⊗ p̄!
Z(j−!,glob,Gr[dim BunG])),

(7.5.5)
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and
FDK

glob,Gr : Whitq(Bunωρ

N )→ ShvGΛ(Conf)

F �→ vGr,glob,!(q̄!
Z(F)

!⊗ p̄!
Z(j−∗,glob,Gr[dim BunG])).

(7.5.6)

7.6 Comparison between local–global functors
7.6.1 Recall that in § 6.3, we define a Y-parametrized prestack YFl, for any prestack Y with a

map to T (O)ωρ

Ranx
\Ranx. Now, we consider two cases: Y = (Grωρ

T,Ranx
)neg
∞·x and Y = BunT × Ranx.

We denote the resulting prestacks by GrT
Fl and BunT

Fl, respectively.
Note that the restriction of GG on Bun′

B− := BunB− ×
pt/G

pt/B is canonically identi-

fied with GT , which implies that GG,T,ratio on Bun′
B− is canonically trivial. Let j−!,glob,Fl ∈

Shv((G)G,T,ratio)−1(Bun′
B−) be the !-extension of the (twisted) constant perverse on Bun′

B− .
The algebraic stack Bun′

B− is an algebraic stack over BunT and can be regarded as a
T -twisted construction of (Bunωρ

N−)1 (the negative analog of (Bunωρ

N )w0 in § A). In other words,
it is a stack over BunT and the fiber over PT is the PT -twisted (Bunωρ

N−)1. We have a natural
projection

BunT
πFl,Ranx : BunT

S
−,1
Fl,Ranx

−→ Bun′
B− .

A relative version of the proof of Lemma A.2.1 yields the following lemma.

Lemma 7.6.2.

BunT
π!

Fl,Ranx
(j−!,glob,Fl)[dim Bun′

B− ] = BunT
j!(ωS−,1

Fl,Ranx

). (7.6.1)

Furthermore, by definition, the !-pullback of BunT
j!(ωS−,1

Fl,Ranx

) along GrT
Fl −→ BunT

Fl goes to

GrT
j!(ωS−,1

Fl,Ranx

). This implies the following lemma

Lemma 7.6.3.We have

π!
SConf→BunB

(j−!,glob,Fl)[dim Bun′
B− ] � j!(ωS−,1,Conf∞·x

Fl,Conf∞·x
), (7.6.2)

where πSConf→BunB
is the natural projection from S

−,1,Conf∞·x
Fl,Conf∞·x to Bun′

B− .

With the preparations above, we prove the following proposition, which is the analog of
[GL19, Proposition 20.3.4] in the affine flags case.

Lemma 7.6.4.We have

FL
glob � FL ◦ π!

x,Fl[dg],

and

FDK
glob � FDK ◦ π!

x,Fl[dg].

Proof. The Zastava space (Z̄Fl,x)∞·x is isomorphic to (Sw0

Fl,Conf∞·x)∞·x ∩ (S−,Conf∞·x
Fl,Conf∞·x) (see [GL19,

Proposition 20.2.2]). Under this identification, vConf∞·x is identified with vFl,glob.
Now the lemma follows from the following two facts.

– The !-pullback of j−!,glob,Fl[dim Bun′
G] along (Z̄Fl,x)∞·x → Bun′

B− is isomorphic to the sheaf
j!(ωS−,Conf∞·x

Fl,Conf∞·x
)[deg +dg]|(Z̄Fl,x)∞·x .

– The sheaf sprdFl ◦π!
Fl,x(F) is isomorphic to the !-pullback of F along (Sw0

Fl,Conf∞·x)∞·x →
(Bunωρ

N )∞·x.
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The first fact follows from Lemma 7.6.3, and the second follows from Lemma 7.2.3. �
Similarly, by a local–global comparison, one can prove that

ΩL,′
q � vGr,glob,∗(q̄!

Z(F∅)
!⊗ p̄!

Z(j−!,glob,Gr[dim BunG])),

and

ΩDK′
q � vGr,glob,∗(q̄!

Z(F∅)
!⊗ p̄!

Z(j−∗,glob,Gr[dim BunG])).

Here F∅ is the unique irreducible object in Whitq(Bunωρ

N ).

Remark 7.6.5. A priori, it is not easy at all to show that FL
glob factors through a category of

factorization modules and the image of F∅ under FL
glob,Gr admits a factorization algebra structure.

It is the reason why we have to start from the local Whittaker category and construct Ran-ified
affine flags in preceding sections.

By Lemma 7.6.4, to prove Proposition 6.6.2, we only need to prove the following proposition.

Proposition 7.6.6. For any λ ∈ Λ, there exists an isomorphism

FL
glob(Δ

λ
glob) � Δ

λ,ΩL,′
q

. (7.6.3)

8. Proof of Proposition 7.6.6: duality

In this section, we study the relationship between FL
glob and FDK

glob. We want to prove that FL
glob

and FDK
glob are Verdier dual to each other

FL
glob ◦ DVerdier(F) � DVerdier ◦ FDK

glob(F) : Whitq((Bunωρ

N )′∞·x)loc.c → ΩL
q -FactMod.

The method is given by reducing the above isomorphism to some stack where we can apply the
universally locally acyclic property (ULA).

8.1 Universally locally acyclic
In [BG02, § 5], the authors introduced the notion of ULA.9 Roughly speaking, a sheaf is ULA
with respect to a morphism if its singular support over each fiber is the same. The following
lemma (it is straightforward from the definition in [BG02, § 5.1.2]) explains why the notion of
ULA is important.

Lemma 8.1.1. For algebraic stacks X, Y and W, consider the following Cartesian diagram of
algebraic stacks.

X×WY
p1

��

p2

��

X

q2

��
Y

q1
�� W

Given F1 ∈ Shv(X), F2 ∈ Shv(Y). If we assume that F1 is ULA with respect to q2 and W is
smooth and of dimension d, then the following canonical map (see [BG02, § 5.1])

p∗1(F1)
∗⊗ p∗2(F2)[−d] ∼−→ p!

1(F1)
!⊗ p!

2(F2)[d]

is an isomorphism.

9 It is expected to be equivalent to the notion of universally locally acyclic introduced in [Del77].
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8.2 Duality of F L
glob and F DK

glob

We denote by Bun′,λ
B− the substack of Bun′

B− such that the degree of the T -bundle is −λ +

(2g − 2)ρ, and denote by Bun′,λ
B−,≤μ the open substack of Bun′,λ

B− such that the total order of
degeneracy of the generalized B−-reductions is no more than μ.

The following lemma is a tiny modification of [Cam19, Propsoition 4.1.1] (see [Yan21] for a
detailed proof).

Lemma 8.2.1. There exists an integer d which depends only on the genus of X, such that, for
any μ ∈ Λpos, and λ ∈ Λ satisfying the condition (X): for any 0 ≤ μ′ ≤ μ,

〈−λ− μ′, α̌i〉 > d,

the restriction of j−!,glob,Fl to Bun′,λ
B−,≤μ is ULA with respect to the natural projection

Bun′,λ
B−,≤μ → Bun′

G. (8.2.1)

In this section, we prove the following theorem using Lemma 8.2.1.

Theorem 8.2.2. We have that FL
glob and FDK

glob are Verdier dual to each other, i.e.

FL
glob ◦ DVerdier � DVerdier ◦ FDK

glob. (8.2.2)

The proof of Theorem 8.2.2 follows a standard factorization argument that has been used
in various references such as [GN10, § 16.4], [Gai18a, Proof of Proposition 3.6.5], [GL19, § 21.2],
etc.

8.2.3 Step I. We want to prove that the natural transformation

DVerdier(vFl,glob,!(q̄!
Z(F)

!⊗p̄!
Z(j−∗,glob,Fl[dim Bun′

G])))

↓

vFl,glob,!(q̄!
Z(DVerdier(F))

!⊗p̄!
Z(j−!,glob,Fl[dimBun′

G])),

which is obtained in [BG02, § 5.1] is an isomorphism for any locally compact object F ∈
Whitq((Bunωρ

N )′∞·x)loc.c.
By definition, vFl,glob is ind-proper, hence, it suffices to prove

DVerdier(q̄!
Z(F)

!⊗ p̄!
Z(j−∗,glob,Fl[dim Bun′

G])) � q̄!
Z(DVerdier(F))

!⊗ p̄!
Z(j−!,glob,Fl[dim Bun′

G]).

We only need to prove

q̄∗Z(F)
∗⊗ p̄∗Z(DVerdier(j−∗,glob,Fl))[−dim Bun′

G] � q̄!
Z(F)

!⊗ p̄!
Z(j−!,glob,Fl)[dim Bun′

G],

for any F ∈Whitq−1((Bunωρ

N )′∞·x)loc.c. Since j−∗,glob,Fl and j−!,glob,Fl are dual to each other, we
should prove

q̄∗Z(F)
∗⊗ p̄∗Z(j−!,glob,Fl))[−dim Bun′

G] � q̄!
Z(F)

!⊗ p̄!
Z(j−!,glob,Fl)[dim Bun′

G]. (8.2.3)

This indicates to us that we should use Lemma 8.1.1. That is to say, if we can prove
that j−!,glob,Fl is ULA with respect to the projection morphism (8.2.1), then (8.2.3) follows from
Lemma 8.1.1. But, in fact, we do not need such a strong property. We can recover the isomorphism
(8.2.3) by factorization property from its restriction to an open subset.
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Definition 8.2.4. Denote by (Z̄Fl,x)λ,≤μ
∞·x the preimage of Bun′,λ

B−,≤μ in (Z̄Fl,x)∞·x under the
projection morphism (Z̄Fl,x)∞·x → Bun′

B− . Note that (Z̄Fl,x)λ,≤μ
∞·x is open in (Z̄Fl,x)∞·x for any

λ ∈ Λ, μ ∈ Λpos.

Combine Lemma 8.1.1 with Lemma 8.2.1, we obtain the following corollary.

Corollary 8.2.5. If λ, μ satisfy condition (X), then the natural transformation (8.2.3) is an

isomorphism on (Z̄Fl,x)λ,≤μ
∞·x , for any twisted sheaf F ∈ ShvGG((Bunωρ

N )′∞·x).

We set

(Z̄Fl,x)s
∞·x :=

⋃
λ∈Λ,μ∈Λpos, condition(X)

(Z̄Fl,x)λ,≤μ
∞·x , (8.2.4)

then by the corollary above, (8.2.3) is an isomorphism on (Z̄Fl,x)s∞·x.

8.2.6 Step II. Now we want to extend this isomorphism to the whole affine flags Zastava
space (Z̄Fl,x)∞·x via the factorization properties.

We denote by Z̄λ
Gr the fiber product

Z̄Gr ×
Conf

Confλ.

Similarly, we denote by (Z̄Fl,x)λ∞·x the fiber product (Z̄Fl,x)∞·x×Conf∞·x Confλ∞·x.
By Proposition 7.4.3, the affine flags Zastava space (Z̄Fl,x)∞·x is a factorization module space

with respect to Z̄Gr. Note that the factorization structure is compatible with degree, i.e.

Z̄λ1
Gr×(Z̄Fl,x)λ2∞·x ×

Confλ1×Conf
λ2∞·x

(Confλ1 × Confλ2∞·x)disj

�
(Z̄Fl,x)λ1+λ2∞·x ×

Conf
λ1+λ2∞·x

(Confλ1 × Confλ2∞·x)disj.

(8.2.5)

Denote by Z◦
Gr := Bunωρ

N ×′ BunB− . Taking the restriction of (8.2.5), we get the following map

Z◦,λ1

Gr ×(Z̄Fl,x)λ2∞·x ×
Confλ1×Conf

λ2∞·x

(Confλ1 × Confλ2∞·x)disj

↓
(Z̄Fl,x)λ1+λ2∞·x ×

Conf
λ1+λ2∞·x

(Confλ1 × Confλ2∞·x)disj.

(8.2.6)

We note that for any point in Z◦,λ1

Gr , the B−-structure is genuine (non-degenerate). As a result,
given an arbitrary point z2 ∈ (Z̄Fl,x)λ2∞·x and arbitrary point z1 in Z◦,λ1

Gr , the corresponding object
on the right-hand side of (8.2.6) has the same order of degeneracy of generalized B−-bundle
as z2.

8.2.7 Here Z◦,λ1

Gr ×(Z̄Fl,x)λ2∞·x×Confλ1×Conf
λ2∞·x

(Confλ1 × Confλ2∞·x)disj admits two smooth
morphisms to (Z̄Fl,x)∞·x:

– one is given by the projection to (Z̄Fl,x)λ2∞·x

rλ1
1 : Z◦,λ1

Gr ×(Z̄Fl,x)λ2∞·x ×
Confλ1×Conf

λ2∞·x

(Confλ1 × Confλ2∞·x)disj → (Z̄Fl,x)λ2∞·x; (8.2.7)
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– another one is given by the factorization map (8.2.6) composed with the projection to
(Z̄Fl,x)∞·x

rλ1
2 : Z◦,λ1

Gr ×(Z̄Fl,x)λ2∞·x ×
Confλ1×Conf

λ2∞·x

(Confλ1 × Confλ2∞·x)disj

(8.2.6)−→ (Z̄Fl,x)λ1+λ2∞·x ×
Conf

λ1+λ2∞·x

(Confλ1 × Confλ2∞·x)disj

→ (Z̄Fl,x)λ1+λ2∞·x . (8.2.8)

The key observation for the proof of Theorem 8.2.2 is

– for any μ ∈ Λpos, λ1 ∈ Λneg, and λ2 ∈ Λ, we can take an open subset (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ

of Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x whose image under rλ1
2 lies in (Z̄Fl,x)s∞·x, and if we let λ1 and μ vary,

the collection of stacks {(Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ, μ ∈ Λpos, λ1 ∈ Λneg} gives a smooth cover of
(Z̄Fl,x)λ2∞·x by the map rλ1

1 .

Now let us explain the construction of (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ.

Definition 8.2.8. Given μ ∈ Λpos, λ1 ∈ Λneg, and λ2 ∈ Λ, a point of (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)disj

belongs to (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ if and only if:

(1) the order of degeneracy of the generalized B−-structure is no more than μ;
(2) λ := λ1 + λ2 and μ satisfy condition (X).

If we allow λ1 and μ to vary, the collection of (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ forms a smooth cover of
(Z̄Fl,x)λ2∞·x by rλ1

1 . The claim (8.2.3) is local in smooth topology, so we only need to prove that
the !-pullback of the morphism (8.2.3) to (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ along rλ1
1 is an isomorphism.

By the same argument as [Gai18a, § 3.9], we can see that the pullbacks of the morphism
(8.2.3) along rλ1

1 and rλ1
2 differ by a lisse local system. To be more precise, by factorization

property, the !-pullback of the restriction of (8.2.3) on (Z̄Fl,x)λ1+λ2∞·x along rλ1
2 is given by the

restriction of the external product of q̄!
Z(F∅)⊗! p̄!

Z(j−!,glob,Gr[dim BunG]) and (8.2.3). On the other
hand, the !-pullback of (8.2.3) along rλ1

1 is given by the restriction of the external product of the
dualizing sheaf on Z◦,λ1

Gr and (8.2.3).
Hence, we only need to prove that the pullback of (8.2.3) along rλ1

2 is an isomorphism when
restricted to (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ.
By Corollary 8.2.5, we know that our claim is true on

(Z̄Fl,x)s,λ1+λ2∞·x := (Z̄Fl,x)s
∞·x ∩ (Z̄Fl,x)λ1+λ2∞·x .

Hence, the pullback of the morphism (8.2.3) to the open subset (rλ1
2 )−1((Z̄Fl,x)s,λ1+λ2∞·x ) in Z◦,λ1

Gr ×
(Z̄Fl,x)λ2∞·x is still an isomorphism. Now the claim follows from the fact that (Z◦,λ1

Gr × (Z̄Fl,x)λ2∞·x)μ

is contained in (rλ1
2 )−1((Z̄Fl,x)s,λ1+λ2∞·x ) by our choice of λ1, λ2 and μ.

Thus, we have proved Theorem 8.2.2.

8.3 Proof of Proposition 7.6.6
We define ∇̃λ,glob to be the Verdier dual of Δλ,glob.

Proposition 8.3.1. There is an isomorphism

FDK
glob(∇̃λ,glob) � ∇λ,ΩDK,′

q
.
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Proof. In order to simplify the notation, we omit the twisting notation here.
According to Lemma 7.6.4, we have FDK � FDK

glob ◦ πFl,x[dg]. Furthermore, since the Verdier
duality functor commutes with πFl,x[dg], we only need to prove that the image of ∇̃λ :=
DVerdier(Δλ) under the functor FDK is isomorphic to ∇

λ,ΩDK,′
q

.

Proposition 5.7.6 asserts that the twisted sheaf ∇̃λ � DVerdier(Δλ) is isomorphic to Avren
∗ (JD

λ ).
By Corollary 6.5.3, in order to show the proposition, it suffices to show

H(Flω
ρ

G,x, Avren
∗ (JD

λ )
!⊗ j∗(ωS−,μ

Fl,x
)[〈μ, 2ρ̌〉]) = 0

if λ �= μ, and

H(Flω
ρ

G,x, Avren
∗ (JD

λ )
!⊗ j∗(ωS−,μ

Fl,x
)[〈μ, 2ρ̌〉]) = e

if λ = μ.
Note that Avren

∗ (JD

λ ) is compact, so it is supported on finitely many N(K)ωρ
-orbits in

Flω
ρ

G,x. Furthermore, the intersection Stλw
Fl,x ∩ S−,μ

Fl,x is of finite type for any tλw and μ (since it
is the central fiber of a finite type scheme (Bunωρ

N )w
=λ·x ×′

Bun′
G

Bun′′,μ
B− over μ · x ∈ Confμ≤λ·x). This

implies that there exists a very dominant η such that supp(Avren
∗ (JD

λ )) ∩ tηIωρ
t−η+μIωρ

/Iωρ
=

supp(Avren
∗ (JD

λ )) ∩ S−,μ
Fl,x. Let tηFl−η+μ := tηIωρ

t−η+μIωρ
/Iωρ

, and denote j∗(ωtηFl−η+μ) as the
∗-extension of the twisted dualizing sheaf on tηFl−η+μ.

Since Avren
∗ (JD

λ ) is N(O)ωρ
-equivariant, we have

H(Flω
ρ

G,x, Avren
∗ (JD

λ )
!⊗ j∗(ωS−,μ

Fl,x
)[〈μ, 2ρ̌〉])

� H(Flω
ρ

G,x, Avren
∗ (JD

λ )
!⊗ j∗(ωtηFl−η+μ)[〈μ, 2ρ̌〉])

� H(Flω
ρ

G,x, Avren
∗ (JD

λ )
!⊗AvN(O)ωρ

∗ (j∗(ωtηFl−η+μ)[〈μ, 2ρ̌〉]))

� H(Flω
ρ

G,x, Avren
∗ (JD

λ )
!⊗ Jη,∗ � J−η+μ,∗)

� HomShv
GG (Flω

ρ
G,x)(δ0, Avren

∗ (JD

λ ) � Jη−μ,∗ � J−η,∗)

� HomShv
GG (Flω

ρ
G,x)(Jη,!, Avren

∗ (JD

λ ) � Jη−μ,∗)

� HomWhitq(Flω
ρ

G,x)(AvN(K)ωρ
,χ

! (Jη,!), Avren
∗ (JD

λ ) � Jη−μ,∗)

� HomWhitq(Flω
ρ

G,x)(AvN(K)ωρ
,χ

! (Jη,!), Avren
∗ (JD

λ+η−μ))

� HomWhitq(Flω
ρ

G,x)(AvN(K)ωρ
,χ

! (δη,!)[−〈η, 2ρ̌〉], Avren
∗ (δλ+η−μ)[〈λ + η − μ, 2ρ̌〉]). (8.3.1)

And the latter space is 0 if λ �= μ and is e if λ = μ. �

Combining Proposition 8.3.1 with (4.1.4), there is an isomorphism

∇
λ,ΩDK,′

q−1
� DVerdier(Δλ,ΩL

q
).

Now Proposition 7.6.6 follows directly.
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Proof of Proposition 7.6.6. According to Theorem 8.2.2, there is

FL
glob(Δλ,glob) � FL

glob(D
Verdier(∇̃λ,glob))

� DVerdierFDK
glob(∇̃λ,glob)

� DVerdier(∇
λ,ΩDK,′

q−1
)

� Δ
λ,ΩL,′

q
. �
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Appendix A. Semi-infinite sheaves on affine flags

To be self-contained, we review the theory of semi-infinite sheaves developed in [Gai18a] and
[Gai22] and provide additional details. Our goal is to supply the necessary materials for the
!-extension semi-infinite sheaves j!(ωS−,Conf

Gr,Conf
) and j!(ωS−,w,Conf∞·x

Fl,Conf∞·x
) in § 6.2.

To simplify the notation, we consider the semi-infinite sheaves on N(K)-orbit, whereas in
the main content, we consider semi-infinite sheaves on N−(K)-orbit.

A.1 Existence of !-extension semi-infinite sheaf
Recall the prestack S0

Gr,Ran defined in Definition 6.1.6. Since κλ̌ is injective for any λ̌, the

collection of maps {κλ̌} determines a Nωρ
-reduction (in particular, a B-reduction) of PG

at x ∈ X. The fiber product SFl,Ranx := S0
Gr,Ran ×

pt/G
pt/B admits a relative position map to

pt/B ×
pt/G

pt/B � B\G/B. For any w ∈W , let Sw
Fl,Ranx

be the preimage of the Bruhat cell

B\BwB/B under the above relative position map.

A.1.1 Now, we define the !-extension of semi-infinite sheaves on Sw0
Fl,Ranx

. Similar construc-
tions work for Sw

Fl,Ranx
and S0

Gr,Ran as well.

Denote S
w0

Fl,Ranx
as the closure of Sw0

Fl,Ranx
in Flω

ρ

G,Ranx
, it is isomorphic to S

0
Gr,Ran ×

pt/G
pt/B.

If λ ∈ Λneg, let (Confλ × Ranx)⊂ ⊂ Confλ × Ranx be the subspace such that (D, I) ∈ Confλ ×
Ranx belongs to (Confλ × Ranx)⊂ if and only if supp(D) ⊂ I.
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Let � be the semi-infinite Bruhat order. For any tλw � w0, we define

Stλw
Fl,Ranx

⊂ (Confλ × Ranx)⊂ ×
Ranx

Flω
ρ

Ranx
(A.1.1)

as the sub-prestack such that the map κλ̌ induced by α extends to an injective map

(ω1/2)〈λ̌,2ρ〉(−〈λ̌, D〉) −→ Vλ̌
PG

(A.1.2)

on X, and the relative position of the resulting B-reduction at x and the Iwahori structure ε
is w.

For any such Stλw
Fl,Ranx

, the map

it
λw : Stλw

Fl,Ranx
−→ (Confλ × Ranx)⊂ ×

Ranx

S
w0

Fl,Ranx
−→ S

w0

Fl,Ranx
(A.1.3)

is a locally closed embedding, and {Stλw
Fl,Ranx

, tλw � w0} gives rise to a stratification of S
w0

Fl,Ranx
.

The projection ptλw : Stλw
Fl,Ranx

→ (Confλ × Ranx)⊂ has a section stλw : (Confλ × Ranx)⊂ →
Stλw

Fl,Ranx
which sends (D, I) to (D, I, PG, α, ε), where PG = ωρ(−D)

T×G, α is given by the

identification of ωρ(−D) and ωρ on X − I, and ε is given by ωρ(−D)|x
T× wB.

Definition A.1.2. We define the semi-infinite category SI�w0
q,Fl,Ranx

:= ShvGG(Sw0

Fl,Ranx
)N(K)ωρ

Ranx

and SI=tλw
q,Fl,Ranx

:= ShvGG(Stλw
Fl,Ranx

)N(K)ωρ

Ranx .

One can check that the pullback GG along (A.1.3) is canonically identified with the pullback
of GΛ along

Stλw
Fl,Ranx

ptλw

−→ (Confλ × Ranx)⊂ −→ Confλ. (A.1.4)

In particular, we define

(stλw)! : SI=tλw
q,Fl,Ranx

−→ ShvGΛ((Confλ × Ranx)⊂),

(ptλw)! : ShvGΛ((Confλ × Ranx)⊂) −→ SI=tλw
q,Fl,Ranx

.
(A.1.5)

Here, we use the observation that (ptλw)! : ShvGΛ((Confλ × Ranx)⊂) −→ ShvGG(Stλw
Fl,Ranx

) factors

through the full subcategory SI=tλw
q,Fl,Ranx

.
Since (Confλ × Ranx)⊂ ×

Ranx

N(K)ωρ

Ranx
acts transitively on Stλw

Fl,Ranx
and is (ind-

pro-)unipotent, the functors in (A.1.5) are equivalences. Furthermore, we have the following.

Lemma A.1.3. We have (SI=tλw
q,Fl,Ranx

)T (O)ωρ

Ranx = 0 if λ /∈ Λ�. Here, Λ� denotes the kernel of the
bilinear form b (i.e. bλ is trivial).

Proof. By the factorization property, we only consider the point case ShvGG(S−,tλw
Fl,x )N−(K)ωρ

T (O)ωρ

� ShvGΛ|λ·x(pt)T (O)ωρ

. According to [GL18, § 7.5], the T (O)ωρ
-equivariance structure on the fiber

GΛ|λ·x corresponds to the character bλ. In particular, it is trivial only if λ ∈ Λ�. �

A.1.4 With the preparations above, we prove the following.

Proposition A.1.5. The left adjoint functor of (it
λw)! : SI�w0

q,Fl,Ranx
−→ SI=tλw

q,Fl,Ranx
is well-

defined.
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Proof. By considering the dual category, it is equivalent to proving that (it
λw)∗ exists, which is

further equivalent to the following:

(i) for any finite set I with a distinguished point, the functor

(it
λw

I )∗ : SI�w0

q,Fl,XI
x
−→ SI=tλw

q,Fl,XI
x

(A.1.6)

exists, where SI�w0

q,Fl,XI
x

(respectively, SI=tλw
q,Fl,XI

x
) is the base change of SI�w0

q,Fl,Ranx
(respectively,

SI=tλw
q,Fl,Ranx

) along XI
x → Ranx;

(ii) for any surjection preserving the distinguished point φ : I→ J, denote Δφ : XJ
x ↪→ XI

x the
corresponding diagonal embedding. The natural transformation

(it
λw

J )∗ ◦Δ!
φ −→ Δ!

φ ◦ (it
λw

I )∗ (A.1.7)

is an isomorphism.

Once the above two points are proven, we obtain the desired functor by passing to the limit.
The category SI�w0

q,Fl,XI
x

admits a block decomposition according to different characters of T

indexed by Λ/Λ�. To show the existence of adjoint functor, it is sufficient to show in the block.
We assume λ ∈ Λ�, and prove parts (i) and (ii) for T -monodromic objects in SI�w0

q,Fl,XI
x
.

In this case, (i) and (ii) are corollaries of the Braden theorem in [DG14, Theorem 3.1.6].

Similar to the construction of Stλw
Fl,XI

x
, we can define S−,tλw

Fl,XI
x
. Let s−,tλw

I : (Confλ ×XI
x)⊂ →

S−,tλw
Fl,XI

x
, i−,tλw

I : S−,tλw
Fl,XI

x
∩ S

w0

Fl,XI
x
→ S

w0

Fl,XI
x
, and p−,tλw

I : S−,tλw
Fl,XI

x
→ (Confλ ×XI

x)⊂ denote the cor-
responding maps.

Consider the Gm-action on the fiber of S
w0

Fl,Ranx
via Gm

2ρ−→ T � S
w0

Fl,Ranx
. In our specific

case, the Braden theorem says that the functors (stλw
I )! ◦ (it

λw
I )∗ and (s−,tλw

I )∗ ◦ (i−,tλw
I )! are

well-defined for Gm-monodromic D-modules on S
w0

Fl,Ranx
, and are canonically isomorphic. In

addition, (s−,tλw
I )∗ = (p−,tλw

I )∗ for Gm-monodromic D-modules.

Since (A.1.5) are equivalences, we have (it
λw

I )∗ = (ptλw
I )! ◦ (s−,tλw

I )∗ ◦ (i−,tλw
I )! = (ptλw

I )! ◦
(p−,tλw

I )∗ ◦ (i−,tλw
I )! : SI�w0

q,Fl,XI
x
−→ SI=tλw

q,Fl,XI
x
. This implies part (i) immediately. For part (ii),

we observe that the !-pullback and ∗-pushforward satisfy base-change, in particular (ptλw
I )! ◦

(p−,tλw
I )∗ ◦ (i−,tλw

I )! commutes with taking !-restriction to the diagonal. �

A.2 Local–global comparison
Recall the substack (Bunωρ

N )w
=λ·x of (Bunωρ

N )
′
∞·x in § 7.2.5. In this section, we focus on the

!-extension of the constant D-module on (Bunωρ

N )w0 := (Bunωρ

N )w0
=0·x.

The restriction of GG to (Bunωρ

N )w0 is canonically trivialized. Let jN
!,glob,Fl be the !-extension of

the twisted constant sheaf on (Bunωρ

N )w0 , it is well-defined since the constant sheaf is holonomic.
In this section, we aim to prove the following.

Lemma A.2.1. Pulling-back along πFl,Ranx : S
w0

Fl,Ranx
↪→ (Sw0

Fl,Ranx
)∞·x −→ (Bunωρ

N )
′
∞·x induces an

isomorphism of semi-infinite sheaves

π!
Fl,Ranx

(jN
!,glob,Fl)[dg] � j!(ωS

w0
Fl,Ranx

). (A.2.1)

A.2.2 Let Bunw
B be the preimage of the Bruhat cell B\BwB/B under Bun′

B := BunB ×
pt/G

pt/B −→ B\G/B.
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For any tλw � w0, we define

(Bunωρ

N )tλw := Bunw
B ×

BunT

Confλ,

where the map Confλ −→ BunT is given by D �→ ωρ(−D).
Let it

λw
glob be the locally closed embedding

it
λw

glob : (Bunωρ

N )tλw −→ (Bunωρ

N )
′
∞·x

which sends (PB, ε, D) to (PG, {κλ̌}, ε). Here, PG = PB

B×G, and κλ̌ : (ω1/2)〈λ̌,2ρ〉 −→ Vλ̌
PG

is

given by (ω1/2)〈λ̌,2ρ〉 ↪→ (ω1/2)〈λ̌,2ρ〉(−〈λ̌, D〉) −→ Vλ̌
PG

.

The map it
λw factors through (Bunωρ

N )w0 := Bunωρ

N ×
pt/G

pt/B. The collection {(Bunωρ

N )tλw,

tλw � w0} gives rise to a stratification of (Bunωρ

N )w0 .
Furthermore, the following lemmas follow from definitions.

Lemma A.2.3. The diagram

Stλw
Fl,Ranx

it
λw

��

πFl,Ranx

��

S
w0

Fl,Ranx

πFl,Ranx

��

(Bunωρ

N )tλw
it

λw
glob

�� (Bunωρ

N )w0

is Cartesian.

Lemma A.2.4. The morphism

Stλw
Fl,Ranx

−→ (Confλ × Ranx)⊂ −→ Confλ (A.2.2)

is identified with

Stλw
Fl,Ranx

−→ (Bunωρ

N )tλw
ptλw
glob−→ Confλ. (A.2.3)

Here, ptλw
glob : (Bunωρ

N )tλw = Bunw
B ×

BunT

Confλ−→Confλ is the projection.

Similar to Definition 7.2.2, if we erase the character χ, we can define the global semi-infinite
sheaf category SIq,Fl,glob on (Bunωρ

N )
′
∞·x. We denote by SI�w0

q,Fl,glob and SI=tλw
q,Fl,glob the corresponding

categories on (Bunωρ

N )w0 and (Bunωρ

N )tλw, respectively.
Since the equivariance property is against a unipotent groupoid, the global semi-infinite

sheaf category is a full subcategory of the category of D-modules. The pushforward and pullback
functors for plain D-modules give rise to the corresponding functors for semi-infinite D-modules.
That is to say, we have the following functors:

it
λw

glob,! : SI=tλw
q,Fl,glob �SI�w0

q,Fl,glob : it
λw,!

glob

it
λw,∗

glob : SI�w0

q,Fl,glob �SI=tλw
q,Fl,glob : it

λw
glob,∗.

One can check that the full subcategory SI=tλw
q,Fl,glob ⊂ ShvGG((Bunωρ

N )tλw) coincides with

the image of the fully faithful functor ptλw,!
glob : ShvGΛ(Confλ) −→ ShvGG((Bunωρ

N )tλw). Thus,
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for any object F ∈ SI�w0
q,Fl,glob, its restriction to the strata (Bunωρ

N )tλw is the !-pullback of a

GΛ-twisted sheaf on ConfΛ. Combined with Lemmas A.2.3 and A.2.4, it
λw,! ◦ π!

Fl,Ranx
(F) lies

in the full subcategory ShvGΛ((Confλ × Ranx)⊂) � SI=tλw
q,Fl,Ranx

. Note that for any object F in

ShvGG(Sw0

Fl,Ranx
), it belongs to SI�w0

q,Fl,Ranx
if and only if it

λw,!(F) ∈ SI=tλw
q,Fl,Ranx

for any tλw.
In particular, π!

Fl,Ranx
(F) ∈ SI�w0

q,Fl,Ranx
.10

In order to prove Lemma A.2.1, we need to show for any tλw � w0, we have

(it
λw)∗π!

Fl,Ranx
(jN

!,glob,Fl) = 0. (A.2.4)

It is sufficient to use the Braden theorem again. Recall that (stλw)! in (A.1.5) is an equivalence,
the equation (A.2.4) equals

(stλw)! ◦ (it
λw)∗π!

Fl,Ranx
(jN

!,glob,Fl) = 0. (A.2.5)

In addition, there is an action of T on (Bunωρ

N )w0 given by the adjoint action of T on N ,
which is compatible with the T -action on the fiber of S

w0

Fl,Ranx
. In particular, since jN

!,glob,Fl is
T -monodromic, the sheaf π!

Fl,Ranx
(jN

!,glob,Fl) is T -monodromic. In particular, (A.2.4) is true if
λ /∈ Λ�.

If λ ∈ Λ�, using the Braden theorem, we have

(stλw)! ◦ (it
λw)∗ ◦ π!

Fl,Ranx
(jN

!,glob,Fl) = (s−,tλw)∗ ◦ (i−,tλw)! ◦ π!
Fl,Ranx

(jN
!,glob,Fl)

= (p−,tλw)∗ ◦ (i−,tλw)! ◦ π!
Fl,Ranx

(jN
!,glob,Fl). (A.2.6)

Let Bunλ,w
B− be the algebraic substack of Bun′

B− such that the degree of the induced T -bundle
is −λ + (2− 2g)ρ and the relative position of the B−-bundle and the Iwahori structure at x is w.
We denote by (Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− the sub-Zastava space of (Z̄Fl,x)∞·x. It has a projection

vλ,w
Fl,glob to Confλ, and we denote by stλw

glob : Confλ → (Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− its section.

Lemma A.2.5. In the following, the upper diagram is commutative and the lower diagram is
Cartesian.

S
w0

Fl,Ranx
∩ S−,tλw

Fl,Ranx

p−,tλw

������������������������

((Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− ) ×

Confλ
(Confλ × Ranx)⊂

prλ
Conf×Ran

��

Id×prλ

��

(Confλ × Ranx)⊂

prλ

��
(Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B−

vλ,w
Fl,glob

�� Confλ

In addition, pulling-back the gerbe GG along

S
w0

Fl,Ranx
∩ S−,tλw

Fl,Ranx
−→ (Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B−

q̄′Z−→ (Bunωρ

N )w0

10 However, the naive analogy of Lemma 7.2.3 in the semi-infinite setting is not correct.
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is canonically isomorphic to the pullback of the gerbe GΛ along

S
w0

Fl,Ranx
∩ S−,tλw

Fl,Ranx
−→ (Confλ × Ranx)⊂ −→ Confλ.

Using the above lemma, we obtain

(A.2.6) = prλ
Conf×Ran,∗ ◦ (Id× prλ)! ◦ q̄′!Z(jN

!,glob,Fl)

=
Base change

(prλ)! ◦ vλ,w
Fl,glob,∗ ◦ q̄′!Z(jN

!,glob,Fl)

=
Braden theorem

(prλ)! ◦ (stλw
glob)

∗ ◦ q̄′!Z(jN
!,glob,Fl). (A.2.7)

It remains to show

(stλw
glob)

∗ ◦ q̄′!Z(jN
!,glob,Fl) = 0. (A.2.8)

In the affine Grassmannian case, it is well-known that the !-pullback from the Drinfeld
compactification to the Zastava space sends !-extension (respectively, IC) sheaf on (Bunωρ

N )∞·x
to !-extension (respectively, IC) sheaf on the Zastava space. The analogous result also holds in
the affine flags case.

Proposition A.2.6. Up to a cohomological shift, there is

q̄′!Z(jN
!,glob,Fl) � j!(c(Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w

B−
). (A.2.9)

Here, j!(c(Bunωρ
N )w0 ×′

Bun′
G

Bunλ,w

B−
) is the shifted !-extension of the (twisted) constant sheaf on the

open Zastava space (Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− .

Proof. The proof adapts a similar argument of § 8.2.3–8.2.7. Here, we sketch the proof.
We fix a μ, and let λ be very anti-dominant. Taking projection defines a map

r1 : ((Bunωρ

N ×′
BunG

Bunμ
B−)× ((Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− ))disj −→ (Bunωρ

N )w0 × Confμ. (A.2.10)

The factorization structure gives another map, i.e. composing the factorization map

((Bunωρ

N ×′
BunG

Bunμ
B−)× ((Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− ))disj

−→ (Bunωρ

N )w0 ×′
Bun′

G

Bunμ+λ,w
B− ×

Confμ+λ
∞·x

(Confμ × Confλ∞·x)disj (A.2.11)

with the projection

(Bunωρ

N )w0 ×′
Bun′

G

Bunμ+λ,w
B− ×

Confμ+λ
∞·x

(Confμ × Confλ∞·x)disj −→ (Bunωρ

N )w0 × Confμ, (A.2.12)

gives a map r2.
Furthermore, the images of both maps land in the open subspace ((Bunωρ

N )w0 × Confμ)good ⊂
(Bunωρ

N )w0 × Confμ, where we impose the condition that the generalized Nωρ
-structure is genuine

at the support of the point in Confμ.
Similar to § 7.2, one can define a N(O)ωρ

Confμ-bundle ((Bunωρ

N )w0 × Confμ)level
good on

((Bunωρ

N )w0 × Confμ)good, and the action of N(O)ωρ

Confμ extends to an action of N(K)ωρ

Confμ .
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One can check that further compositions of r1, r2 with the projection

((Bunωρ

N )w0 × Confμ)good −→ ((Bunωρ

N )w0 × Confμ)level
good/N

′ (A.2.13)

are the same if N ′ is a large enough sub-pro-group of N(K)ωρ

Confμ which contains N(O)ωρ

Confμ .
To prove (A.2.9), since the composition of r1 and the projection to (Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B−

is surjective, we need to prove that the !-pullback of the !-extension sheaf on (Bunωρ

N )w0 along
(Bunωρ

N )w0 × Confμ −→ (Bunωρ

N )w0 and r1 is the !-extension sheaf on ((Bunωρ

N ×′
BunG

Bunμ
B−)×

((Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− ))disj.

By the identification of composed maps r1, r2 with projection (A.2.13), it is equivalent to
proving that the !-pullback of the !-extension sheaf on ((Bunωρ

N )w0 × Confμ)good along r2 is the
!-extension sheaf on ((Bunωρ

N ×′
BunG

Bunμ
B−)× ((Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− ))disj.

Since the !-extension sheaf on ((Bunωρ

N )w0 × Confμ)good is the !-pullback of jN
!,glob,Fl, we only

need to show that the !-pullback of jN
!,glob,Fl along ((Bunωρ

N )w0 × Confμ)good −→ (Bunωρ

N )w0 and
r2 is the !-extension sheaf. Now, it follows that if λ + μ is anti-dominant enough, the composed
map of r2 and ((Bunωρ

N )w0 × Confμ)good −→ (Bunωρ

N )w0 is smooth. �

Now, the desired isomorphism (A.2.8) follows immediately, since the image of stλw
glob lies in

the complement of (Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w
B− .

A.2.7 Comparison between jN
!,glob,Fl and j!(ωS

w0
Fl,x

). Let ωS
w0
Fl

be the twisted dualizing sheaf on

Sw0
Fl under the canonical trivialization of GG on Sw0

Fl . In this section, we prove the following.

Lemma A.2.8. We have π!
Fl,x(jN

!,glob,Fl)[dg] � j!(ωS
w0
Fl

).

Proof. Similar to the Ran case, π!
Fl,x(jN

!,glob,Fl) is also N(K)ωρ

x -equivariant and T -equivariant.
Thus, we can use the Braden theorem once again.

Recall the notation jtλw,Fl : Stλw
Fl −→ Flω

ρ

G in Definition 5.1.5, and let us denote by it
λw

x the
closed embedding pt = {tλw} ↪→ Stλw

Fl,x. According to Proposition 5.1.4, we only need to prove

(it
λw

x )! ◦ j∗tλw,Fl ◦ π!
Fl,x(jN

!,glob,Fl) = 0, (A.2.14)

if tλw �= 1. If λ /∈ Λ�, it is true since semi-infinite sheaves on Stλw
Fl,x is not T -monodromic (to be

more precise, it has a different T -monodromy structure from π!
Fl,x(jN

!,glob,Fl)).
Assume λ ∈ Λ�. By the Braden theorem,

(A.2.14) = H(S−,tλw
Fl , π!

Fl,x(jN
!,glob,Fl)|S−,tλw

Fl

). (A.2.15)

By base change and Proposition A.2.6, (A.2.15) is just the shifted !-fiber of the sheaf vλ,w
Fl,glob,∗ ◦

j!(c(Bunωρ
N )w0 ×′

Bun′
G

Bunλ,w

B−
) at tλ · x ∈ Confλx. Using the Braden theorem again, we have

vλ,w
Fl,glob,∗ ◦ j!(c(Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w

B−
) = (stλw

glob)
∗ ◦ j!(c(Bunωρ

N )w0 ×′
Bun′

G

Bunλ,w

B−
) = 0. (A.2.16)

�
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As a combination of Lemmas A.2.1 and A.2.8, we obtain

Corollary A.2.9. The !-restriction of j!(ωS
w0
Fl,Ranx

) to Flω
ρ

G,x is isomorphic to j!(ωS
w0
Fl,x

).

Appendix B. Semi-infinite equivalence vs Iwahori equivalence

In the untwisted case, it is known that for a category C with a strong action of G(K)ωρ
, and any

λ, μ ∈ Λ, the following functors are equivalences:

CAdλIωρ oblv−→ CT (O)ωρ Av
AdμIωρ

/T (O)ω
ρ

∗ −→ CAdμIωρ

CIωρ Av
N−(K)ω

ρ

! � CN−(K)ωρ
T (O)ωρ

.

(B.0.1)

The first is implicit in [AB09, Lemma 8] and the second is proved in [Ras14, Theorem 17.2.1,
Corollary 17.2.3].11 For self-completeness, we prove the metaplectic version of the above
equivalence with a similar proof as in [Ras14] and [Gai18a, Proposition 5.2.2].

Proposition B.0.1. For a category C with a strong action of (ShvGG(G(K)ωρ
), �), and any

λ, μ ∈ Λ, the functors in (B.0.1) are still equivalences.

Proof. Let us first consider the first claim.
The gerbe GG on G(K)ωρ

has a canonical trivialization on T (O)ωρ
, which canonically extends

to AdμIωρ
preserving the multiplication structure. We consider the constant sheaf on AdμIωρ

under this trivialization, denoted by cAdμIωρ . By definition, AvAdμIωρ
/T (O)ωρ

∗ (F) is given by

cAdμIωρ

T (O)ωρ

× F for any AdλIωρ
-equivariant object F ∈ C.

Choose a trivialization of GG at t−λ ∈ G(K)ωρ
, which determines a left transition functor

t−λ · − : ShvGG(Flω
ρ

G )→ ShvGG(Flω
ρ

G ). Applying this functor to F, we obtain an I0-equivariant
GG-twisted sheaf. However, note that conjugating the trivialization on T (O)ωρ

by t−λ will change
the trivialization by a character sheaf b−λ on T (O)ωρ

. So, t−λF is (Iωρ
, b−λ)-equivariant.

Similarly, if we choose a trivialization of GG at t−μ ∈ G(K)ωρ
, it determines a transition

functor t−μ · −. Let cIωρ
t−μ := t−μ · cAdμIωρ . We have

cAdμIωρ
T (O)ωρ

� F � tμ · cIωρ
t−μ

T (O)ωρ

� F � tμ · cIωρ
t−μ · tλ T (O)ωρ

� t−λ · F. (B.0.2)

Since t−λF is I0-equivariant, we can take right I0-averaging of cIωρ
t−μtλ ∈ ShvGG(G(K)ωρ

)
before taking convolution. Up to a shift, it is isomorphic to the pullback of (J−μ+λ,∗)−λ along
G(K)ωρ −→ F̃l.

In conclusion, we obtain that, up to a shift, AvAdμIωρ
/T (O)ωρ

∗ (F) is given by tμ(J−μ+λ,∗)−λ
I
�

t−λF. The functor tμ(J−μ+λ,∗)−λ
I
� t−λ · − is an equivalence since transitions and convolution

with twisted BMW sheaves are equivalences.
Now, we prove the second claim.

First, we need to prove that AvN−(K)ωρ

! (F) is well-defined for F in the image

of CIωρ −→ C. We only need to prove AvAdαN−(tO)ωρ

! (F) exits for any dominant α,

and then AvN−(K)ωρ

! (F) = colim AvAdαN−(tO)ωρ

! (F). Since AdαIωρ
= AdαN(O)ωρ · T (O)ωρ ·

11 The original statement of p-adic groups belongs to Casselman, Borel, and Bernstein, cf. [Bor76, Lemma 4.7].
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AdαN−(tO)ωρ
, and AdαN(O)ωρ ⊂ Iωρ

, we obtain that for F lies in the image of CIωρ −→ C,

we have AvAdαN−(tO)ωρ

! (F) � AvAdαIωρ
/T (O)ωρ

! (F). The latter exists and is the left adjoint functor

of the equivalence functor CAdαIωρ oblv−→ CT (O)ωρ Av
Iωρ

/T (O)ω
ρ

∗ −→ CIωρ

.
To be more precise, for F lies in the image of CIωρ −→ C,

AvAdαN−(tO)ωρ

! (F) � tαJ−α,!�F[〈α, 2ρ̌〉].
In particular, there is

AvN(O)ωρ

∗ ◦AvN−(K)ωρ

! (F) � colimAvN(O)ωρ

∗ (tαJ−α,!�F[〈α, 2ρ̌〉]) � (Jα,∗)−α � J−α,! � F � F.
(B.0.3)

We note that the functor AvN−(K)ωρ

! : CIωρ−→CN−(K)ωρ
T (O)ωρ

is the left adjoint functor of

AvN(O)ωρ

∗ : CN−(K)ωρ
T (O)ωρ −→ CIωρ

. Thus, it remains to show AvN(O)ωρ

∗ is conservative, i.e. if

AvN(O)ωρ

∗ (F) = 0 and F is N−(K)ωρ
T (O)ωρ

-equivariant, then AvN(O)ωρ

∗ (F) = 0 implies F = 0.

Indeed, since N−(tO)ωρ
T (O)ωρ

=
⋂

α∈Λ+ Iωρ ∩AdαIωρ
, we have F = AvN−(O)ωρ

∗ (F) =

colim AvIωρ∩AdαIωρ
/T (O)ωρ

∗ (F). In particular, if F �= 0, there exists a very dominant α, such that

AvIωρ∩AdαIωρ
/T (O)ωρ

∗ (F) �= 0.

Using the fact that F is N−(K)ωρ
T (O)ωρ

-equivariant, we have

AvIωρ∩AdαIωρ
/T (O)ωρ

∗ (F) � AvAdαN(O)ωρ

∗ (F).

The latter is an AdαIωρ
-equivariant object.

Now, note that

AvN(O)ωρ

∗ (F) � AvN(O)ωρ

∗ ◦AvAdαN(O)ωρ

∗ (F),

the desired property AvN(O)ωρ

∗ (F) �= 0 follows from AvAdαN(O)ωρ

∗ (F) �= 0 and the fact that

AvN(O)ωρ

∗ : CAdαIωρ −→ CIωρ

is an equivalence (the first claim of (B.0.1)). �
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Drinfeld’s compactifications, Selecta Math. (N.S.) 8 (2002), 381–418.

BFT21 A. Braverman, M. Finkelberg and R. Travkin, Gaiotto conjecture for Repq(GL(N − 1|N)),
Pure Appl. Math. Q. (150th birthday of Kazhdan-Lusztig volume), to appear. Preprint (2021),
arXiv:2107.02653.

BG02 A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002),
287–384.

Cam19 J. Campbell, A resolution of singularities for Drinfeld’s compactification by stable maps,
J. Algebraic Geom. 28 (2019), 153–167.

CDR21 J. Campbell, G. Dhillon and S. Raskin, Fundamental local equivalences in quantum geometric
Langlands, Compos. Math. 157 (2021), 2699–2732.

CF21 L. Chen and Y. Fu, An extension of the Kazhdan–Lusztig equivalence, Preprint (2021),
arXiv:2111.14606.

Del77 P. Deligne, SGA 4 1/2–Cohomologie étale, Lecture Notes in Mathematics, vol. 569 (Springer,
1977).

DG14 V. Drinfeld and D. Gaitsgory, On a theorem of Braden, Transform. Groups 19 (2014), 313–358.
arXiv:1308.3786 [math.AG]
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