A MACHINE PROGRAM FOR COSET ENUMERATION
H. F. Trotter

{received January 15, 1964)

We are concerned with an algorithm for determining the
index (when it is finite) of a subgroup H of a group K when
K is specified by a finite set of generators and relations and
H is specified as generated by a finite set of words in the
generators of K. A systematic computational attack on the
problem was discovered by Coxeter and Todd {1], and has
proved to be a very useful tool in problems involving generators
and relations in groups [2]. Although the method was not com-
pletely formalized it was clearly possible to convert it into a
computer program, and this has been done by a number of
people. Leech has given a survey of this work in [3], where
further references may be found. ‘

The author has written yet another such program,. using
a method which is logically much the same as Leech's. This
paper consists of a formal description of the algorithm, a proof
that it works, and some comments on the actual program.
Leech presents a convincing argument for the effectiveness of
the procedure in [3], but does not give a formal proof.
Mendelsohn [4] has given a proof for a version of the algorithm
which is closer to the original Todd-Coxeter method but differs
somewhat from the version discussed here.

We interpret each step of the algorithm in group-theoretic
terms, and are thus able to describe in such terms the point at
which the computation terminates (see the proof of theorem 2).
Theorem 1 in section 2 is an interesting by-product, which is
presumably known, but does not appear to have been explicitly
noted before. '
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Section 1 contains a preliminary reformulation of the
problem and section 2 develops the theoretical description of
the algorithm. The necessary practical modifications of the
process are discussed in section 3.

I am indebted to N. Mendelsohn for stimulating my
interest in this problem, and for a prepublication copy of [4].
Correspondence with J. Leech regarding some examples used
to test the program was most illuminating. The computer
facilities used in this work were supported in part by the
United States National Science Foundation, grant NSF-GP579.

Restatement of the problem in terms of free groups

‘Our problem may be stated informally thus: Find the
index of H in K, where K is generated by YooV
subject to the relations r, ST, =... =T = 1, and H is

generated by h ht' Here the r, and hi are expressed
i

1: LR )
in terms of the y.. The following is a more formal restate-
i

ment of the above:

let F be a free group on the generators x,,...,X .
n

1"

Iet r T, be words in F, let R be the set of all their

PEEERE
conjugates in F, and let [R] be the subgroup generated by R.
Define K as F/[R] and y; as the image of X, under the
FERERE ht
their images in K, and H the subgroup generated by the h

canonical map. Let -IEREREY - be elements of F, h

e
It is required to find the index of H in K.

Let G be the subgroup of F generated by CIERERY A

and R. Under the canonical map, the cosets of H in K
correspond to the cosets of G in F, and the original problem
is equivalent to finding the index of G in F. Theorem 2 in
section 2 states precisely in what sense we solve the latter
problem.

358

https://doi.org/10.4153/CMB-1964-033-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-033-x

The algorithm in theory

The algorithm will be described in terms of operations
on an array A of integers with n+ 1 columns and a varying
number of rows. (In the theoretical discussion we admit the
possibility of an infinite number of rows.) The columns are
labelled from 0 to n, with columns 1 to n corresponding
to the n generators Xpooos ,xn of F and column O corres-

ponding to the identity element. For notational convenience we
suppose the rows to be numbered consecutively from 4, but the
order of the rows has no significance. The array need not be
complete, i.e. some cells Aij may be empty, but we assume

that every row contains at least one number.

The following four conditions will be assumed to hold for
all arrays.

(1) Any row with more than one entry has an entry in
column 0.

(2) The integer 1 appears in the array.

(3) Any integer appearing in the array appears at least
once in each column.

(4) No proper subset of the rows forms an array
satisfying (3).

These are two further properties for which it is convenient
to have names. We call an array consistent if

(5) No integer appears more than once in any column.
We call an array complete if

(6) No cell is empty.

An array which is both consistent and complete can be
interpreted as a ''multiplication table' defining a transitive

representation of F by permutations of the integers appearing
in the array. For an integer p, p-x. is defined as the entry
J

in column j of the row with p in column 0, while p-x..
J
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is the entry in column 0 of the row with p in column j.

Since F is free this specification of the action of the generators
can be extended to give a representation of the whole group.
Conditions (3), (5) and (6) ensure that the operations are well
defined, and (4) is equivalent to transitivity of the representation.
Given such an array A, we define S(A) as the subgroup of F
which leaves the integer 1 invariant. The cosets of S{A) in

F are in one-one correspondence with the different integers
appearing in A, and so the index of S{(A)} in F is equal to the
(possibly infinite) number of rows of 4.

Any array satisfying (1) - (4) can be interpreted as
partially specifying a representation on equivalence classes
of the integers in A and defines 3 corresponding subgroup
S(A). We proceed with the formal details.

A link in A is a pair (i,u) where i is a row number,

-1
u=x, or X, andneither A nor A, is empty. The head
] J i0 ij _

-1
of (i,u) is AiO if u:xj and Aij if u=xJ, , while the tail
of (i,u) is A, if u=x and A _ if u=x,°1g A sequence of
ij j i0

links ¢=(i,,u,)... (i ,u } is a chainin A if the head of
1 1 m m _—

each link after the first is equal to the tail of the preceding link.

We say that ¢ is a chain from p to q if p is the head of

(ii’ui) and q is the tail of (i , um). The inverse of c¢ is
-1 -

the sequence (im, um) ae (ii,u1 ) and is a chain if ¢ is.

The element of F represented by the word w,..eu is said

to be covered by ¢. Note thatif ¢ covers w then c

covers w B

Define S(A) as the set of all w in F covered by some
chain from 1 to 1 in A. Define p,q in A to be equivalent
if there is a chain from p to q in A covering the identity
element of F. It is completely straightforward to check that
S(A) is a subgroup, and that distinct equivalence classes of
integers correspond to distinct right cosets of S{(A) in F.
(Note that (2) and (3) imply that for any p appearing in A,
there is a chain from 1 to p.) '
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We next describe the effect certain operations on A have
on S(A).

is empty and that

J

p is an integer not occurring in A. Form A' by placing p

in A,, and for each column except the jth adding a new row
i

LEMMA 1. Suppose that the cell A,
i

with p in that column, so that condition (3) is satisfied. Then
S(A') = S(A).

Proof. Suppose j# 0. Then the only essential difference
between A'!' and A is that A' contains the additional links

(i,xj) and (i,xj-i). Obviously, S(A)C S(A'). Conversely,

take any w in S(A') and let c be a chain from 1 to 1 in
A' covering w and of minimal length. If either of the new

links occurs in ¢ the combination (i, xj)(i,xj-i) must occur,
since (i,xj) is the only link in A' with p as tail and
(i,xj-i) is the only one with p as head. An occurrence of
(i,xj)(i,xj.i) would contradict the minimality of ¢. Hence c¢

is a chainin A and we S(A). If j=0, then by condition (1)
there is a unique k # 0 with Aik non-empty and a similar

-1 ,
consideration of (i,xk ) and (i,xk) completes the proof.

LEMMA 2. Let p<q be two integers in A and let
cP, <:q be chainsin A from {1 to p and from 1 to q

respectively. Form A' from A by replacing all occurrences
of q by p. Then S(A') is the subgroup generated by S(A)

-1
and w w where w_, w_are covered by ¢ , ¢ respectively.
P q P q P q

Proof. ILet G be the subgroup generated by S(A) and
wpw;i. Any sequence of links which is a chain in A is also
a chain in A' and so S(A)C S(A'). In A', cpc:;l1 is a chain
from 1 to 1 covering w W-i. Hence w w-1e€¢ S(A') and
P q P aq

G C Ss(a'). Conversely, suppose w € S(A') and
c:(ii,ui) (im,um) is a chain from 1 to 1 in A' which
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covers w. Considered as a sequence of links in A, ¢ can
fail to be a chain in A only because of breaks where the tail
of one link is p and the head of the next is q, or vice versa.
Let b{c) denote the number of such breaks. (If p=1, then
¢ may not be from 1 to 1 in A. A trivial variation of the
following argument will handle this possibility; for simplicity
we disregard it.) Assume the inductive hypothesis that if w
is any element of S(A') covered by a chain ¢ from 1 to 1
in A' such that b{(c) < s, then we G. The hypothesis is
true for s =1, since if b(c) =0 then ¢ is a chainin A and
w € S(A)C G. Now consider a w ¢ S(A') covered by a chain
with b(c) =s. Suppose the first break occurs after the k-th
link, and for definiteness suppose that the tail of (ik, uk) is p,

and that the head of (i ,uk) is gq. Consider the sequence

k+i
< c_c_ where ¢ (i,u) (i )c.1 c c:c“i d
c = r ={i, .o . , = n
€1%2%3 1M kMK 2" %p°q °
C3=Cq(ik+i’uk+i) (im,um). Now € covers w, Sso
w:w4w2w‘, where w_ is covered by ci. The sequence c1
4 z i
is 2 chain from 4 to 1 in A and so Wi e« s(A)C G;
W, TW w-ieG; c, is a chainfrom 4 to 1 in A' and
2 P q 3

b(c3) < s so by the inductive hypothesis, W, € G. Hence

w € G and the proof is complete.

COROLLARY. If p and q are equivalent in A, and
A' 1is obtained by replacing q by p throughout A then
S(A') = 5{(A).

Proof. Let cpq‘be a chain from p to q which covers

the identity. Apply lemma 2 with ¢ any chain from 1 to p

and take ¢ =c c . Since w_=w , W w-1 is the identity
9 P Pa- P q P

and the result follows.

LEMMA 3. Given a finite array A, theie is a finite
algorithm for obtaining a consistent array B with S(A) = S(B).

Proof. Suppose A is not consistent so that, say
Aij zAkj' If either of the rows has only the single entry, it
may be deleted without affecting S(A); otherwise both A_0 and
i
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AkO are non-empty. For each column number m # j proceed

as follows:
or if both are empty, make no change,

(1) if AimzAkm'

(ii) if just one of Aim’ Akm is empty copy the other

entry into it,

(iii) if Aim # Akm’ replace the larger number by the

smaller throughout the array.

Operation (ii) clearly does not affect S{A), and if (iii) applies
then Aim is equivalent to Ak_m and by the corollary to lermma 1,

S(A) is unchanged. When these operations have been done for
all columns the two rows i and k are identical, and one may
be dropped. Thus from any inconsistent array A we obtain an
equivalent array A' with one less row. If A is finite the
process must lead to a consistent array in a finite number of
steps.

Remark. In a consistent array no two distinct integers
are equivalent.

LEMMA 4. Given an array - A and a word we F, an
array B may be constructed in a finite number of steps such
that S(A) =S(B) and for some q there is a chain from 1 to q
in B which covers w.

Proof. The construction can be made by applying the
operation of Lemma 1 not more than m times, where m is
the length of w.

THEOREM 1. Given a finite set of words ui, o ey urn

in a finitely generated free group', there is a finite algorithm
for determining the index of the subgroup they generate.

Proof. Let Gk, k=1,...,m be the subgroup generated

by the first k of the u and let G. consist of the identity.

0
Start with an array Ao which has n+ 1 rows, a 1 in each
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row and column, and no other entries. Then S(Ao) = GO.

k-1 k-1
Suppose A has been constructed, with S(A ) = Gk-i'

Apply lemma 4 if necessary to obtain an array with a chain
over uk from 1 to pk, and then replace pk by 1 to obtain

Ak. By lemma 2, S(Ak) = Gk. Finally, apply lemma 3 to

obtain a consistent array B with S(B) = Gm

If B is complete, Gm has finite index equal to the

number of rows of B. On the other hand if B is not complete,
the construction of lemma 1 leads to an array B' with
S(B') = Gm. Examination of the construction shows that B!

is also consistent and incomplete (unless n =4, B' actually
has more empty cells than B) so the same operation can be
applied to B', and so on. Carrying out the process countably
many times gives a complete consistent array, showing that
Grn has infinite index.

We are now in a position to attack the original problem.
Let G be the subgroup of F generated by words IR -5

and all conjugates of the words r T Since the latter

| R
set is infinite we cannot simply apply theorem 4. We describe
a process for constructing a sequence of consistent arrays

0 .1
A ,A ,... which may or may not terminate. We write Gk

for S(Ak).

0
Use the method of theorem 1 to construct A so that

GO is generated by 8yrrr 8y and then continue as follows:

(2a) Take p as the smallest unprocessed integer in Ak.
(Initially all integers are unprocessed and p =1 will be the
choice when k =0.)

(b) Let c be a chain from {1 to p, and let w be the

. . . k+1
word it covers. Obtain a new consistent array B by the

method of theorem 1 so that S(Ak+1) is generated by Gk and
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-1 . .
the elements WI,W e, WEW Whenever a new integer is

introduced in the construction use an integer larger than any
that has yet appeared; i.e. an integer eliminated by use of
lemma 2 should not be reintroduced.

(c) If necessary, apply lemma 1 to fill all cells of the row
with p in column 0, and column 0 of all rows with p in

other columns. Take the resulting array as Ak+1. Then
k+ -
Gqu = S(Ak+1) =S(B 1) is generated by Gk and wriw 1, e e
-1

wr W
t

{d) Mark the integer p as processed, and increase k
by 1.

(e) If the array contains any unprocessed integers,
return to step (a). If it does not, stop.

The contention is that this procedure terminates if and
only if G has finite index in F, and that if it does terminate

b3
then G = S(Af) where A is the final array. If the process

.. f
terminates, then, in virtue of step (d), A must be complete

and hence G has finite index. Since ch G, this shows

that the process cannot terminate unless G has finite index.
Conversely 'suppose G does have finite index. Then by the
Nielsen-Schreier theorem [5] it is finitely generated. Each
member of a finite set of generators is expressible in terms
of the g's and a finite number of the conjugates of the r's;
hence G is actually generated by the g's and some finite
number of conjugates of the r's. Now observe that if w is
any word covered by a chain from 1 to a marked integer in

k -
A, then all the conjugates wriw 1 are in Gk° Because of

(d), for any w e F there will be for some k a chainin A
over w from 1 to some integer q. Eventually either q
itself will be marked or it will have been replaced by some
smaller integer which is marked. Thus any finite set of
conjugates of the r's will be in Gk for some sufficiently

large k and consequently for some Kk, Gk =G and is of finite
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k
index. This implies that A" will be complete. None of the
steps (a) - (e) can introduce new integers into a complete
array, so in a finite numbeér of steps the algorithm will

f : f
terminate. At this point A =Ak and S(A) =Gk= G. Thus

we have proved

THEOREM 2. Given words 8yre 18y and oo T,

in a finitely generated free group, let G be the group generated
by the g's and the conjugates of the r's. There is an algorithm
which terminates if and only if G is of finite indexin F. If
the algorithm terminates, it determines the indexof G in F,

The practical algorithm

A program called COSET has been written for the IBM
7090/94 computer which carries out a process logically
equivalent to the one outlined in the preceeding section.

A list of g's and r's is punched on cards and read into the
computer. The output from a problem is either a statement

of the index of the subgroup and of the permutation associated
with each generator of F, or else a statement to the effect
that computation led to an array too large for the storage
capacity of the computer. In the program's present form, n,
the number of generators of F, may be at most 9, and the
maximum number of rows which can be accommodated is about
29,000/(n + 2). An improved version is planned, which will
have a capacity of about 29,000/(n + 1) rows.

Considerable effort went into making the program efficient
in its use of time, and it does in fact work rapidly. For example,

2 -1
it found the 448 cosets of {A ,A "B} in the group with relations

8 7 2 -1_.3
A =B =(AB) =(A B) =1 in under 6 seconds. (This example

is proposed as a test problem in [3].)

The logical essentials of the algorithm were given in
section 2, but for efficiency of operation a number of complica-
tions must be added. If w is covered by a chain from 1 to p,

then finding (or creating) a chain from 1 to 1 over wrw
amounts to finding (or creating) a chain from p to p over r
and this is the procedure actually followed. In Leech's

366

https://doi.org/10.4153/CMB-1964-033-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-033-x

terminology, one ''applies the coset p to the relation r'.

The single array as described contains all the necessary
information, but not all the information is readily accessible.

. . -1 . .
For instance, to find p-x, requires a search of column j.
J

Such searching is comparatively time-consuming for a computer,
and it is necessary to avoid it by '""double-entry bookkeeping"

using additional columns from n+ 1 to 2n with A
1 i, j+n

containing AiO . xj .

There is one feature of COSET which is not used in other
programs, and which I believe contributes substantially to its
speed. Column 0 is not explicit in any of these programs;
in effect the row number (corresponding directly to the address
of the row in storage) is understood to be the column 0 entry.
Thus, when an application of lemma 2 calls for replacing all
occurrences of one number by another, the replacement must
actually be carried out. Further shifting of rows and consequent
renumbering is needed to eliminate the gap left by the row cor-
responding to the deleted number. In COSET an extra column
is maintained. Initially the entry in this column is set equal to
the number of the row in which it appears. Whenever the program
refers to a number it actually looks up the extra entry in the
corresponding row. Consequently the effect of replacing q by
P throughout the array is obtained simply by replacing the extra
entry in row q by p. That row q has been effectively deleted
is indicated by the fact that the extra entry in row q 1is no longer
equal to q.

There is a consolidation routine which does actually
rearrange rows and change numbers throughout the table, but
it comes into play only at the end of the program (so that the
printed permutations will deal with cosets numbered consecutively
from 1 on), or at such times as the table threatens to exceed
the available space (so that the space taken up by ''deleted' rows
may be made available for reuse).
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