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We are concerned with an algorithm for determining the 
index (when it is finite) of a subgroup H of a group K when 
K is specified by a finite set of generators and relations and 
H is specified as generated by a finite set of words in the 
generators of K. A systematic computational attack on the 
problem was discovered by Coxeter and Todd [ l ] , and has 
proved to be a very useful tool in problems involving generators 
and relations in groups [2]. Although the method was not com­
pletely formalized it was clearly possible to convert it into a 
computer program, and this has been done by a number of 
people. Leech has given a survey of this work in [3], where 
further references may be found. 

The author has written yet another such program,- using 
a method which is logically much the same as Leech* s. This 
paper consists of a formal description of the algorithm, a proof 
that it works, and some comments on the actual program. 
Leech presents a convincing argument for the effectiveness of 
the procedure in [3], but does not give a formal proof. 
Mendelsohn [4] has given a proof for a version of the algorithm 
which is closer to the original Todd-Coxeter method but differs 
somewhat from the version discussed he re . 

We interpret each step of the algorithm in group-theoretic 
t e r m s , and are thus able to describe in such t e rms the point at 
which the computation terminates (see the proof of theorem Z). 
Theorem 1 in section 2 is an interesting by-product, which is 
presumably known, but does not appear to have been explicitly 
noted before. 
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Section 1 contains a prel iminary reformulation of the 
problem and section 2 develops the theoretical description of 
the algori thm. The necessary practical modifications of the 
p rocess a re discussed in section 3. 

I am indebted to N. Mendelsohn for stimulating my 
interes t in this problem, and for a prepubiication copy of [4]. 
Correspondence with J . Leech regarding some examples used 
to tes t the program was most illuminating. The computer 
facilit ies used in this work were supported in part by the 
United States National Science Foundation, grant NSF-GP579» 

Restatement of the problem in t e rms of free groups 

Our problem may be stated informally thus: Find the 
index of H in K, where K is generated by y . . . . t y 

1 n 
subject to the relat ions r = r = . . . = r = 1 , and H is 

1 2 s 
generated by h . . . . , h . Here the r and h. a re expressed 

i t i l 

in t e r m s of the y. . The following is a more formal r e s t a t e ­

ment of the above: 
Let F be a free group on the generators x , . . . , x . 

1 n 
Lret r . . . . , r be words in F , let R be the set of all their 

I s 
conjugates in F , and let [R] be the subgroup generated by R. 
Define K as F / [R] and y. as the image of x. under the 

canonical map. Let g , . . * , g be elements of F, h , . . . , h 

thei r images in K, and H the subgroup generated by the h . 

It i s required to find the index of H in K. 

Let G be the subgroup of F generated by g -. . . , g 

and R. Under the canonical map, the cosets of H in K 
correspond to the cosets of G in F , and the original problem 
is equivalent to finding the index of G in F. Theorem 2 in 
section 2 states prec ise ly in what sense we solve the lat ter 
problem. 
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The algorithm in theory 

The algorithm will be described in t e rms of operations 
on an a r ray A of integers with n + 1 columns and a varying 
number of rows. (In the theoretical discussion we admit the 
possibility of an infinite number of rows. ) The columns a re 
labelled from 0 to n, with columns 1 to n corresponding 
to the n generators x , . . . , x of F and column 0 c o r r e s -

1 n 
ponding to the identity element. For notationai convenience we 
suppose the rows to be numbered consecutively from 1, but the 
order of the rows has no significance. The a r r ay need not be 
complete, i . e . some cells A., m a y b e empty, but we assume 

that every row contains at least one number. 

The following four conditions will be assumed to hold for 
all a r r a y s . 

(1) Any row with more than one entry has an entry in 
column 0. 

(2) The integer 1 appears in the a r ray . 

(3) Any integer appearing in the a r ray appears at least 
once in each column. 

(4) No proper subset of the rows forms an a r r ay 
satisfying (3). 

These are two further propert ies for which it is convenient 
to have names. We call an a r ray consistent if 

(5) No integer appears more than once in any column. 

We call an a r ray complete if 

(6) No cell is empty. 

An a r ray which is both consistent and complete can be 
interpreted as a "multiplication table'1 defining a transit ive 
representation of F by permutations of the integers appearing 
in the a r ray . For an integer p, p-x. is defined as the entry 

J -1 
in column j of the row with p in column 0, while p - x . 
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is the entry in column 0 of the row with p in column j . 
Since F is free this specification of the action of the generators 
can be extended to give a representat ion of the whole group. 
Conditions (3), (5) and (6) ensure that the operations a re well 
defined, and (4) is equivalent to transitivity of the representat ion. 
Given such an a r r a y A, we define S(A) as the subgroup of F 
which leaves the integer 1 invariant. The cosets of S(A) in 
F a re in one-one correspondence with the different integers 
appearing in A, and so the index of S(A) in F is equal to the 
(possibly infinite) number of rows of A. 

Any a r r a y satisfying (1) » (4) can be interpreted as 
part ial ly specifying a representat ion on equivalence c lasses 
of the integers in A and defines a corresponding subgroup 
S(A). We proceed with the formal detai ls . 

A link in A is a pair (i, u) where i is a row number, 

u = x or x. f and neither A „ nor A is empty, The head 
3 J i0 lj . 4 " 

of (i, u) is A._ if u = x. and A., if u = x. , while the tail 
xO j xj j 

of (i, u) is A., if u s x . and A.^ if u = x. . A sequence of 

links c = (i , u ) . . . (i , u ) is a chain in .A if the head of 
1 1 m m — 

each link after the first is equal to the tail of the preceding link. 
We say that c is a chain from p to q if p is the head of 
(i , u } and q is the tail of (i , u ). The inverse of c is 

1 1 m m 
the sequence (i » u ) . . . (i , u ) and is a chain if c i s . 

m m 1 1 
The element of F represented by the word u . . . u is said 

1 m 
to be covered by c. Note that if c covers w then c 

«1 
covers w 

Define S(A) as the set of all w in F covered by some 
chain from 1 to 1 in A. Define p, q in A to be equivalent 
if there is a chain from p to q in A covering the identity 
element of F. It is completely straightforward to check that 
S(A) is a subgroup, and that distinct equivalence c lasses of 
integers correspond to distinct right cosets of S(A) in F. 
(Note that (2) and (3) imply that for any p appearing in A9 

there is a chain from 1 to p. ) 
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We next describe the effect certain operations on A have 
on S(A). 

LEMMA 1. Suppose that the cell A., is empty and that 

p is an integer not occurring in A. Form Ar by placing p 
in A., and for each column except the j th adding a new row 

with p in that column, so that condition (3) is satisfied. Then 
S(A')=S(A). 

Proof. Suppose j ^ 0. Then the only essential difference 
between A! and A is that A* contains the additional links 

(i,x.) and (i, x. ). Obviously, S(A)(WS(A1)- Conversely, 

take any w in S(A! ) and let c be a chain from i to 1 in 
A! covering w and of minimal length. If either of the new 

links occurs in c the combination (i, x.)(i ,x. ) must occur, 
J J 

since (i ,x.) is the only link in A1 with p as tail and 
-1 J 

( i ,x . ) is the only one with p as head. An occurrence of 
J -1 

( i ,x . )( i ,x . ) would contradict the minimality of c. Hence c 
J J 

is a chain in A and w € S(A). If j = 0, then by condition (1) 
there is a unique k ^ 0 with A non-empty and a s imilar 

-1 
consideration of (i»x ) and (i, x ) completes the proof. 

LEMMA 2. Let p < q be two integers in A and let 
c , c be chains in A from 1 to p and from i to q 

P q . 
respectively. Form Af from A by replacing all occurrences 
of q by p. Then S(A* ) is the subgroup generated by S(A) 

-1 
and w w where w , w a re covered by c , c respectively. 

p q p q p q 

Proof. Let G be the subgroup generated by S(A) and 

w w . Any sequence of links which is a chain in A is also 
a chain in A1 and so S(A) C S(A! ). In A1 , c c is a chain 

-1 P q 

from 1 to 1 covering w w . Hence w w~* € SfA1 ) and 
p q p q 

G C S(Af ). Conversely, suppose w € S(Af ) and 
c = (i , u.) . . . (i ,u ) is a chain from i to i in A' which 

1 1 m m 
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covers w. Considered as a sequence of links in A, c can 
fail to be a chain in A only because of breaks where the tail 
of one link is p and the head of the next is q, or vice ve rsa . 
Let b(c) denote the number of such breaks . (If p = 1, then 
c may not be from 1 to 1 in A. A tr ivial variation of the 
following argument will handle this possibility; for simplicity 
we d is regard it. ) Assume the inductive hypothesis that if w 
is any element of S(A! ) covered by a chain c from i to 1 
in A1 such that b(c) < s, then w € G. The hypothesis is 
t rue for s = 1, since if b(c) = 0 then c is a chain in A and 
w c S(A)C G. Now consider a w € S(AI ) covered by a chain 
with b(c) = s. Suppose the first break occurs after the k-th 
link, and for definiteness suppose that the tail of (i . u ) is p, 

J& AC 

and that the head of (i, ,,11,) is q. Consider the sequence 
k+1 k . . 

— -1 • -1 
c =c c c where c = (i , u ) . . . (i , u ) c , c = c c and 

1 2 3 i l l k k p 2 p q 
c = c (i , u ) . . . (i , u ). Now "c covers w, so 

3 q k+1 k+1 m m 
w = w w w , where w is covered by c . The sequence c 

1 2 ^ i i 1 
is a chain from i to 1 in A and so w € S(A)C G; 

- i -1 

w_ = w w * G; c , is a chain from 1 to 1 in A1 and 
2 p q 3 

b(c ) < s so by the inductive hypothesis, w € G. Hence 

w c G and the proof is complete. 

COROLLARY. If p and q a re equivalent in A, and 
A! is obtained by replacing q by p throughout A then 
S(A' )=S(A) . 

Proof. Let c be a chain from p to q which covers 
pq 

the identity. Apply lemma 2 with c any chain from 1 to p 
p - i 

and take c =c c . Since w =w , w w is the identity 
q p pq . P q P q 

and the resul t follows. 

LEMMA 3. Given a finite a r ray A, thei-e is a finite 
algori thm for obtaining a consistent a r ray B with S(A) = S(B). 

Proof. Suppose A is not consistent so that, say 
A_ =-A • If ei ther of the rows has only the single entry, it 

may be deleted without affecting S(A); otherwise both A and 
iO 
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A are non-empty. For each column number m i j proceed 

as follows: 

(i) if A. = A , or if both a re empty, make no change, 
im km 

(ii) if just one of A. , A is empty copy the other 
im km 

entry into it, 

(iii) if A. 4 A , replace the larger number by the 
im km 

smaller throughout the a r ray . 

Operation (ii) clearly does not affect S(A), and if (iii) applies 
then A is equivalent to A and by the corollary to lemma 1, 

im km 
S(A) is unchanged. When these operations have been done for 
all columns the two rows i and k are identical, and one may 
be dropped. Thus from any inconsistent a r r ay A we obtain an 
equivalent a r ray A! with one less row. If A is finite the 
process must lead to a consistent a r ray in a finite number of 
s teps. 

Remark, In a consistent a r r ay no two distinct integers 
a re equivalent. 

LEMMA 4. Given an a r ray A and a word w € F , an 
a r r ay B may be constructed in a finite number of steps such 
that S(A) = S(B) and for some q there is a chain from 1 to q 
in B which covers w. 

Proof. The construction can be made by applying the 
operation of Lemma 1 not more than m t imes , where m is 
the length of w. 

THEOREM 1. Given a finite set of words u , . . . , u 
1 m 

in a finitely generated free group, there is a finite algorithm 
for determining the index of the subgroup they generate. 

Proof. Let G , k = 1 , . . . , m be the subgroup generated 

by the f irs t k of the u. and let G consist of the identity. 

Start with an a r ray A which has n + i rows, a 1 in each 
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0 
row and column, and no other en t r ies . Then S(A ) = G . 
Suppose A has been constructed, with S(A )=G . 

Apply lemma 4 if necessary to obtain an a r r ay with a chain 
over u from 1 to p , and then replace p by 1 to obtain 

k k k 
A . By lemma 2, S(Ak) = G . Finally, apply lemma 3 to 

obtain a consistent a r r ay B with 3(B) = G . 
m 

If B is complete, G has finite index equal to the 
m 

number of rows of B. On the other hand if B is not complete, 
the construction of lemma 1 leads to an a r ray B1 with 
S(B* ) = G . Examination of the construction shows that B? 

m 
is also consistent and incomplete (unless n = 1, B ! actually 
has more empty cells than B) so the same operation can be 
applied to Bf , and so on. Carrying out the process countably 
many t imes gives a complete consistent a r r a y , showing that 
G has infinite index, 

m 

We a re now in a position to attack the original problem. 
L.et G be the subgroup of F generated by words g , . , , , g 

1 s 
and all conjugates of the words r , . . . , r . Since the lat ter 
set is infinite we cannot simply apply theorem 1. We describe 
a process for constructing a sequence of consistent a r r a y s 

0 1 
A , A , . . . which may or may not te rminate . We write G 
for S(Ak). 

0 
Use the method of theorem 1 to construct A so that 

G is generated by g. » • • • » g » and then continue as follows: 
0 I s 

(a) Take p as the smallest unprocessed integer in A . 
(Initially all integers a re unprocessed and p = 1 will be the 
choice when k = 0. ) 

(b) I^et c be a chain from 1 to p, and let w be the 
k+1 word it covers . Obtain a new consistent a r r ay B by the 

k+i 
method of theorem 1 so that S(A ) is generated by G and 
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-1 - 1 
the e l ements wr w , a .. , wr w . Whenever a new integer i s 

1 t 
introduced in the construction use an integer larger than any 
that has yet appeared; i. e. an integer el iminated by use of 
l emma 2 should not be reintroduced. 

(c) If n e c e s s a r y , apply lemma 1 to fill all c e l l s of the row 
with p in column 0, and column 0 of al l rows with p in 

k+1 
other co lumns. Take the result ing array as A . Then 

k+1 k+1 -1 
G = S(A ) = S(B ) i s generated by G, and wr w , . . . , 

- 1 
wr w . 

(d) Mark the integer p as p r o c e s s e d , and increase k 
by i . 

(e) If the array contains any unprocessed in tegers , 
return to s tep (a). If it does not, stop. 

The contention i s that this procedure terminates if and 
only if G has finite index in F, and that M it does terminate 

then G = S(A ) where A i s the final array. If the p r o c e s s 

t erminate s , then, in virtue of step (d), A must be complete 
and hence G has finite index. Since G C G» this shows 

that the p r o c e s s cannot terminate unless G has finite index. 
Converse ly suppose G does have finite index. Then by the 
N i e l s e n - S c h r e i e r theorem [5] it i s finitely generated. Each 
m e m b e r of a finite set of generators i s express ib le in t e r m s 
of the g1 s and a finite number of the conjugates of the rf s; 
hence G i s actually generated by the g* s and some finite 
number of conjugates of the r ! s. Now observe that if w is 
any word covered by a chain from 1 to a marked integer in 

k -1 
A , then al l the conjugates wr.w are in G » Because of 

1 k 
(d), for any w € F there wi l l be for some k a chain in A 
over w from 1 to some integer q. Eventually e i ther q 
i t se l f wi l l be marked or it wi l l have been replaced by some 
smal l er integer which is marked. Thus any finite set of 
conjugates of the rf s wi l l be in G for some sufficiently 

large k and consequently for some k, G = G and i s of finite 
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index. This implies that A will be complete. None of the 
steps (a) - (e) can introduce new integers into a complete 
a r r a y , so in a finite number of steps the algorithm will 

f k f 
t e rmina te . At this point A = A and S(A ) = G = G. Thus 
we have proved 

. . . . . . r THEOREM 2. Given words g . . . . , g and r . 
1 s 1 

in a finitely generated free group, let G be the group generated 
by the g1 s and the conjugates of the r1 s. There is an algorithm 
which te rmina tes if and only if G is of finite index in F. If 
the algorithm te rmina tes , it determines the index of G in F, 

The pract ical algori thm 

A program called COSET has been writ ten for the IBM 
7090/94 computer which c a r r i e s out a p rocess logically 
equivalent to the one outlined in the preceeding section. 
A list of g! s and r ! s is punched on cards and read into the 
computer. The output from a problem is either a statement 
of the index of the subgroup and of the permutation associated 
with each generator of F , or else a statement to the effect 
that computation led to an a r r a y too large for the storage 
capacity of the computer. In the program1 s present form, n, 
the number of genera tors of F , may be at most 9, and the 
maximum number of rows which can be accommodated is about 
29, 000/(n + 2). An improved vers ion is planned, which will 
have a capacity of about 29,000/(n + 1) rows. 

Considerable effort went into making the program efficient 
in i ts use of t ime, and it does in fact work rapidly. For example, 

2 -1 
it found the 448 cosets of { A , A B} in the group with relat ions 

8 7 2 - 1 3 
A = B = (AB) = (A B) =1 in under 6 seconds. (This example 
is proposed as a tes t problem in [3]. ) 

The logical essent ia ls of the algorithm were given in 
section 2, but for efficiency of operation a number of complica­
tions must be added. If w is covered by a chain from 1 to p, 

then finding (or creating) a chain from 1 to 1 over wrw 
amounts to finding (or creating) a chain from p to p over r 
and this is the procedure actually followed. In Leech1 s 

366 

https://doi.org/10.4153/CMB-1964-033-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-033-x


terminology, one "applies the coset p to the relation r" . 

The single a r ray as described contains all the necessary 
information, but not all the information is readily accessible. 

For instance, to find p • x. requires a search of column j * 

Such searching is comparatively time-consuming for a computer, 
and it is necessary to avoid it by "double-entry bookkeeping" 
using additional columns from n + 1 to 2n with A. 

_4 i.J + n 
containing A • x. . 8 iO j 

There is one feature of COSET which is not used in other 
p rograms , and which I believe contributes substantially to its 
speed. Column 0 is not explicit in any of these programs; 
in effect the row number (corresponding directly to the address 
of the row in storage) is understood to be the column 0 entry. 
Thus, when an application of lemma 2 calls for replacing all 
occurrences of one number by another, the replacement must 
actually be carr ied out. Further shifting of rows and consequent 
renumbering is needed to eliminate the gap left by the row cor­
responding to the deleted number. In COSET an extra column 
is maintained. Initially the entry in this column is set equal to 
the number of the row in which it appears . Whenever the program 
refers to a number it actually looks up the extra entry in the 
corresponding row. Consequently the effect of replacing q by 
p throughout the a r ray is obtained simply by replacing the extra 
entry in row q by p. That row q has been effectively deleted 
is indicated by the fact that the extra entry in row q is no longer 
equal to q. 

There is a consolidation routine which does actually 
rear range rows and change numbers throughout the table, but 
it comes into play only at the end of the program (so that the 
printed permutations will deal with cosets numbered consecutively 
from 1 on), or at such times as the table threatens to exceed 
the available space (so that the space taken up by "deleted" rows 
may be made available for reuse) . 
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