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Higher calcium urinary loss induced by a calcium sulphate-rich mineral water

intake than by milk in young women

Comments by Arnaud

I did not intend to revisit the discussion of the publication of
Brandolini et al.1 on Ca urinary excretion attributed to the
sulfate content of water but in their answers2 to my com-
ments3, they said that ‘I accept their experimental results’
and that ‘I do not contest the difference in calciuria between
milk and sulfate-rich water’. I never wrote that I agree with
their results and even more with their conclusions but ques-
tioned how is it possible to evaluate a 20 mg difference in
daily Ca urinary excretion from a study with subjects under
uncontrolled dietary intakes, unbalanced experimental study
design and without analytical results on acid–base balance
and sulfate to support their acidogenic hypothesis of sulfate.
I did not find any convincing explanations in their answers
but I want to raise several points of disagreement, which
are either repeated or new.

First, the acidifying mechanism of ingested free sulfate and
sulfate produced from sulfur amino acids after protein inges-
tion are two different processes. In urine, the excretion of
SO4

22 reflects the oxidation of sulfur amino acids methionine,
cysteine or cystine of dietary or endogenous proteins and is
accompanied by the generation of 2 mEq Hþ per mmol
sulfur oxidised4 – 7. In contrast, when calcium sulfate or cal-
cium chloride is ingested at levels to allow for equivalent
absorption of sulfate and their cations, there is no ‘net acid’
intake8. The acid effect of ingested CaCl2 is due to a much
greater absorption of Cl2 than Ca9. Similarly, calcium sulfate
given intravenously is neutral. When ingested, fractional
sulfate absorption is higher that that of Ca and the type of
anionic exchange determines its effect on the acid–base bal-
ance10. The acid load in that case is metabolically different
from sulfate derived from absorbed amino acids and endogen-
ous protein, as protons released during sulfur oxidation must
be added to sulfate excreted in urine. Thus we cannot say
that there exists ‘a commonly accepted consensus to attribute
acidifying property of sulfate’ when sulfate originates from
inorganic salts or from organic compounds.

Second, I disagree with the claim that ‘it is well known that
sulfate is well absorbed and excreted in urine because this
anion cannot be metabolised or retained’. In our study11

cited by Brandolini et al.1, it was shown that 7 % of sulfate
from a water containing 1479 mg per litre was incorporated
and in urine and stool between 30 and 60 % was in the
form of conjugates or bound to organic compounds. There
are hundreds of sulfur-containing compounds in the human
body12 and sulfated oligosaccharides have important biologi-
cal roles, their unique structure contributing to recognition by

a receptor13. Proteochondroitin sulfate plays a major role in
the mechanical support of cartilage; its functions are depen-
dent on the high charge of the sulfate and any decrease in
the sulfation might be expected to affect the structure and
stability of the cartilage14. Sulfate is the fourth most abundant
anion in the human plasma, and circadian variations of
serum inorganic sulfate levels have been shown in healthy
volunteers15. Mean plasma levels of 0·29–0·35 mmol sul-
fate/l are reported in infants and adult subjects with no depen-
dence on age and sex16. Higher values are reported in
newborns, suggesting that the elevated serum sulfate levels
in the newborn fulfil the needs for important biological func-
tions including connective tissue synthesis17. Sulfate require-
ments for the growing fetus are high and thus the needs
during pregnancy are not adequately assessed12. Free sulfate
is used for the biosynthesis of 30-phosphoadenosine-50-phos-
phosulfate; this pool of active sulfate is small in man as com-
pared with animal species, so that efficient sulfate
conjugations are maintained by its continuous provision for
xenobiotic elimination and hormone activation. Sulfate was
also suggested to mediate the therapeutic effect on osteoar-
thritis of glucosamine sulfate18.

Third, I also disagree with their comment on the impact of
fluid intake on mineral balance: ‘it must be recommended to
drink less water in order to preserve bone mineral mass’.
Any increase of water excretion or diuresis is accompanied
by intra- and extracellular fluid electrolytes, particularly an
elevated excretion of Ca19. It was shown that urea saline
diuresis induced a linear increase in the clearance of Ca20

and extracellular volume expansion also augments Ca
excretion21. Drinking 0·5 litres of distilled water produces
a significant increase of ionised plasma Ca concentration
and an inverse reduction of parathyroid hormone secretion22.
A similar effect was reported with a mineral water contain-
ing 9 mg Ca/l and the suppressive effect was more important
in the morning, less pronounced at noon and disappeared in
the afternoon23. While the risk of mineral disturbances after
the ingestion of distilled, deionised or low-mineralised water
is not perceived in European countries, it is discussed in
countries such as China (Hong Kong) and the Philippines
where more than 60 % of bottled drinking water sold is dis-
tilled. The German Nutrition Society published the advice
that the ‘exclusive consumption of pure water (distilled)
may lead, according to the dietary intake, to a depletion of
the body minerals’24. It is thus true to advise ‘to drink less
(distilled or low-mineralised) water in order to preserve
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bone mineral mass’ but the optimal content of mineral in
water and beverages to prevent bone loss has not been
investigated. Total water intake, particularly in the case of
polydipsia–polyuria, increases Ca losses and leads to osteo-
porosis25. During intense physical exercise, an increased con-
centration of the bone marker of osteoclastic bone resorption
is observed from 30 min after the start of the exercise and up
to 2 h after the end of the exercise while this effect is sup-
pressed when the consumption of mineral water with a low
Ca content is replaced by Contrex with 486 mg Ca/l26.
These studies show that fluid and water intake affect Ca
metabolism and bone turnover. The WHO released a report
on nutrients in drinking water examining the relationship
between water hardness and health, which may lead to the
establishment of minimum health-based future WHO guide-
line values and an international symposium on the Health
Aspects of Magnesium and Calcium in Drinking Water has
been organised (24–26 April 2006; Baltimore, MD, USA)
to evaluate the evidence and the needs for research before
a decision can be taken.

Fourth, the sentence ‘a woman drinking 1 litre of CaSO4-rich
water daily would have bone mineral density equivalent to a
woman 7 years younger who drinks only Ca-poor water’ is cor-
rect. Due to the solubility of Ca in water, only sulfate-rich water
can reach concentrations higher that 400 mg/l. The names of the
brands of mineral waters consumed in the EPIDOS study were
listed27 and only two waters have contents above 400 mg/l: Con-
trex (480 mg/l) and Vittel Hépar (563 mg/l). As shown in Fig. 1,
there is a direct relationship for still mineral waters between Ca
and sulfate contents while bicarbonate concentration does not
change. Such correlation between higher Ca concentration and
sulfate as the principal counter-ion in water was reported
recently28. The comparison of short-term administration of
500 mg Ca from either a CaSO4

22-rich mineral water, a
CaSO4

22 solution or a calcium carbonate pharmaceutical prep-
aration on plasma Ca and intact parathyroid hormone as well
as Ca and creatinine in urine leads to the conclusion that sulfate
does not increase Ca urinary excretion29.

Fifth, more surprising, the ‘potential toxic effect of hydro-
gen sulfide on colonic mucosa’ that was not relevant to
both their study and my comments leads Brandolini et al.

to conclude that I ‘occulted this hypothesis’. Since 1993, a
large number of studies have been published on sulfate-redu-
cing bacteria and colonic sulfur metabolism, health and
safety. Major research progresses were obtained since the
hypothesis that H2S may be involved in the aetiopathogenesis
of inflammatory bowel disease was published30. H2S cannot
be ignored as the main constituent associated with halitosis
and responsible for the unpleasant odour of the human
flatus31. The title of a recent review ‘Hydrogen sulfide:
from the smell of the past to the mediator of the future?’32

draws our attention to the relatively high concentrations of
endogenously produced H2S that have been observed in the
brain of human subjects showing to act as a neuromodu-
lator33 – 35 as well as to its properties as a vasodilator com-
pound36. Sulfate found in the colon may come from
unabsorbed dietary sulfate and sulfur amino acids, taurine,
and sulfur-containing food additives such as sulfur dioxide,
sulfites and carrageenan12. To discriminate the metabolic
fate of inorganic sulfate from water and dietary sulfate, we
conducted a study on patients proctocolectomised for ulcera-
tive colitis under a strictly controlled diet and drinking 0·5
litres of a sulfate-rich water containing 7·7 mmol (740 mg)
inorganic sulfate. Sulfate absorption from water is similar to
that observed when sulfate is consumed from food taken
over the whole day37. Inorganic sulfate supplementation of
the drinking water (16·7 mmol; 1600 mg/l) in mice showed
in the short (7 d) and long term (1 year) that this supplemen-
tation did not increase intestinal sulfate or H2S concen-
trations, suggesting that inorganic sulfate is not an
important modulator of colonic H2S38. Several human studies
confirmed that proteins were far superior to sulfate as sub-
strates for the production of faecal H2S39 and that differences
in dietary intake of sulfate are unlikely to be responsible for
the higher free sulfate in ulcerative colitis patients. Pitcher
et al.40 suggest that increased bacterial desulfation of secreted
colonic mucin releases more free sulfate and is contributory
to the observed reduction in mucus gel thickness, probably
due to cleavage of disulfide bonds, and the consequent loss
of barrier function in ulcerative colitis. Because cysteine
and cystine in protein are less absorbed from the upper
small intestine, standard therapy for ulcerative colitis patients
has included restriction of foods such as milk, eggs and
cheese, which are significant sources of dietary sulfur41.
Finally, evidence on the role of sulfate in the aetiology of
ulcerative colitis is inconclusive12 and there is little evidence
to implicate dietary components in the aetiology or pathogen-
esis of ulcerative colitis42, while Ohge et al.43 qualified as a
speculation that H2S induces colonic mucosa injury.

Finally, Brandolini et al.1 indicated that subjects of their
study had to drink, per d, either 400 ml milk or 1 litre of
a CaSO4-rich mineral water, but it is not mentioned how
the subjects drank the milk or water. If they drink glasses
of 200 ml, they get a 240 mg dose of Ca for the milk
twice per d and 96 mg for water, five times per d. With
the dose-dependent absorption of Ca44, 48 % (230 mg) and
68 % (326 mg) of the dose will be absorbed from milk
and water, respectively. This difference of 96 mg Ca/d
intake in favour of the water diet may explain an excess
of 14 mg urinary Ca excretion. In a study with controlled
fluid and dietary intakes, Ca absorption from milk was
20 % greater on a 6-fold divided-dose regimen when

Fig. 1. Ca (†), sulfate (O) and bicarbonate (B) concentrations of some

French natural still mineral waters.
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compared with a single daily dose. On divided doses, a
greater net retention of Ca leads to a positive balance of
þ43 mg/d and the mean urinary Ca excretion was increased
by up to 60 mg/d45. Just an uncontrolled ingestion of unba-
lanced fluid intake can explain more that the difference
reported by Brandolini et al.1.
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