THREE-GROUPS WITH CYCLIC CENTRE AND CENTRAL QUOTIENT OF MAXIMAL CLASS

S. B. CONLON
(Received 13 September; revised 30 November 1976)
Communicated by M. F. Newman

Abstract

All three-groups with cyclic centre and such that the quotient by the centre has maximal class are listed and a presentation with generators and relations for each is given.

Let G be a p-group with cyclic centre Z and such that G / Z has maximal class. It is known (though not in the literature) and not difficult to verify that the analysis of p-groups of maximal class as set out in Blackburn (1958) or Chapter III, Section 14 of Huppert (1967) carries through for such a group G; one works with the upper central series instead of the lower central series in the maximal class case. Let

$$
(1)=G_{a+1}<Z=G_{a}<G_{a-1}<\ldots<G_{2}<G
$$

be the upper central series of G, where a is the class of G. When $a=2$ or $3, G$ has an abelian maximal subgroup and is readily described (Conlon (1976)). For $a \geqslant 4$, we have that

$$
C_{G}\left(G_{2} / G_{4}\right)=\ldots=C_{G}\left(G_{a-2} / G_{a}\right)
$$

and this is a maximal subgroup G_{1} of G. The subgroup $C_{G}\left(G_{a-1}\right)$ is also maximal and G is called exceptional if $G_{1} \neq C_{G}\left(G_{a-1}\right)$. The quotient G / Z is always a nonexceptional maximal class group. G is not exceptional if a is even. Further if $s \in G-G_{1}-C_{G}\left(G_{a-1}\right)$, then $s^{p} \in Z$. If $s_{1} \in G_{1}-G_{2}$, and if $s_{i+1}=\left[s_{i}, s\right](i=1, \ldots, a-1)$, then $G_{i}=\left\langle G_{i+1}, s_{i}\right\rangle$. All maximal subgroups of G which contain Z (and so G_{2}) and which are not equal to G_{1} or $C_{G}\left(G_{a-1}\right)$ are also nonexceptional groups with centre Z. If $p=2$, then G_{1} is abelian and G is described in Conlon (1976).

When $p=3$ and $|Z|=3$ (G has maximal class a), then $G_{1}^{\prime}=\left[G_{2}, G_{1}\right] \leqslant Z=G_{a}$, G is nonexceptional and such groups are described by Blackburn (1958). But if $|Z| \geqslant 3^{2}$, then G can be exceptional. However if $G=G / Z$, then G is of maximal class $a-1$ and so $\left[G_{2}, G_{1}\right] \leqslant G_{a-1}$, whence $\left[G_{2}, G_{1}\right] \leqslant G_{a-1}$. Thus $\left[s_{2}, s_{1}\right]=s_{a-1}^{f} z$ for $0 \leqslant f<3$ and $z \in Z$. Thus G is certainly a quotient of a group with a presentation:

$$
\begin{align*}
& G(a)=\left\langle s, s_{1}, \ldots, s_{a}, Z\right| Z \text { is a central cyclic 3-group, } \tag{1}\\
& \quad s_{i+1}=\left[s_{i}, s\right](i=1, \ldots, a-1), s^{3}=z_{1},\left(s s_{1}^{-1}\right)^{3}=z_{2}, \\
& \left.\left[s_{2}, s_{1}\right]=s_{a-1}^{t} z, \text { where } s_{a}, z_{1}, z_{2} \text { and } z \in Z\right\rangle .
\end{align*}
$$

When $a=2$ or 3 , one can further suppose that $f=0$ and $z=1$. We have the following consequences (2), \ldots, (9) of the relations in (1):

$$
\begin{equation*}
\left[s_{3}, s_{1}\right]=s_{a}^{t} z^{-3} \tag{2}
\end{equation*}
$$

Other than (2) and the relation $\left[s_{2}, s_{1}\right]=s_{a-1}^{f} z$, we have the following for $1 \leqslant i<j \leqslant a$:

$$
\begin{equation*}
\left[s_{j}, s_{i}\right]=z^{m(j-i) \cdot 3^{(i d+j-2) / 2]}} \tag{3}
\end{equation*}
$$

where $m(l+12)=m(l)$ for all $l \geqslant 0$ and for $0 \leqslant l<12$ we have:

$$
\begin{array}{rrrrrrrrrrrrr}
l & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
m(l) & 0 & 1 & -1 & 2 & -1 & 1 & 0 & -1 & 1 & -2 & 1 & -1
\end{array}
$$

In particular $m(2 l+1) \equiv(-1)^{l}(\bmod 3)$, for $l>0$.

$$
\begin{equation*}
z^{3^{(1(\alpha-1) / g)}}=1 \tag{4}
\end{equation*}
$$

(5) If $\left[s_{a-1}, s_{1}\right] \neq 1$, then a is odd and z has order exactly $3^{(a-1) / 2}$. Also in this case we have:

$$
\left[s_{a-1}, s_{1}\right]=z^{(-3)^{(a-3) / 2}}
$$

(6) If $f \neq 0$, then $\left[s_{a-1}, s_{1}\right]=s_{a}^{-1}$.

$$
\begin{equation*}
\left[s_{a-1}, s_{a-2}\right]=\ldots=\left[s_{a-1}, s_{2}\right]=1 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
s_{1}^{3}=\left(s_{3}^{-1}\right)^{s^{-1}} s_{a-1}^{-f} z^{2} z_{1} z_{2}^{-1}=s_{4} s_{6} \ldots s_{5}^{-1} s_{3}^{-1} s_{a-1}^{-f} z^{2} z_{1} z_{2}^{-1} \tag{8}
\end{equation*}
$$

For $i>1$,

$$
s_{i}^{3}=\left(s_{i+2}^{-1}\right)^{s^{-1}} z^{2.3^{i-1}}=s_{i+3} s_{i+5} \ldots s_{i+4}^{-1} s_{i+2}^{-1} z^{2 \cdot 3^{i-1}}
$$

For $a \geqslant 3$,

$$
\begin{gather*}
s_{a-1}^{3}=1 \\
s_{a}^{3}=1 \tag{9}
\end{gather*}
$$

By passing to the quotient $G(a) / Z$ and using induction on a, it is readily seen that $G(a)$ is a 3-group and that $|G(a)| \leqslant|Z| .3^{a}$.

Relations (4), (5), (6) and (9) place restrictions on the choice of z and s_{a} in Z. Once these are satisfied, then $|G(a)|=|Z| .3^{a}$ without any collapse and $G(a)$ gives the correct form of our sought group G of class a. To see this one constructs by induction on a the group $G(a+1)$ from a maximal subgroup $G(a)$ by adding another element s_{0} satisfying:

$$
\begin{equation*}
\left[s_{0}, s\right]=s_{1}, \quad\left[s_{1}, s_{0}\right]=s_{a-1}^{f^{\prime}} z^{\prime} \tag{10}
\end{equation*}
$$

and s_{0} acts identically on Z. s_{0} then gives an automorphism of $G(a)$ provided

$$
\begin{equation*}
z^{g(10-2) / 2]}=1, \quad f=0, \quad\left(z^{\prime}\right)^{3}=z \quad \text { and } \quad z_{1}=z_{2} \tag{11}
\end{equation*}
$$

To assign a value to s_{0}^{3}, we choose instead to insist that $\left(s s_{0}^{-1}\right)^{3} \in Z$ and $\left(s s_{0}^{-1}\right)^{3}$ acts identically on $G(a)$ provided

$$
\begin{equation*}
\left(s_{a}\left[s_{1}, s_{a-2}\right]\right)^{f^{\prime}}=1 \tag{12}
\end{equation*}
$$

The conditions (11) and (12), with s_{i} replaced by s_{i+1} hold in any case in the maximal subgroup $\left\langle s, s_{2}, \ldots, s_{a+1}, Z\right\rangle$ of a group $G(a+1)$ defined as in (1).

The fact that Z is the centre of $G(a)$ and that $G(a) / Z$ has maximal class $a-1$ is proved by induction on a.

The isomorphism problem is resolved by looking at all possible choices of generators s, s_{1} and t and pushing $G=G(a)$ into a standard form; here t is a generator of the centre Z. In separating the isomorphism classes, account may also be taken of the number h of maximal subgroups M of G such that $G_{2} \leqslant M$ and $M \neq G_{1}$ or $C_{G}\left(G_{a-1}\right)$ and such that every element in $M-G_{2}$ has order $3 .|Z|$.
a is the class of $G, 3^{b}=|Z|$ and $3^{c}=\left|G_{1}^{\prime}\right|$. We can suppose that $z=t^{g .3^{b-c}}$, where $g \equiv \pm 1(\bmod 3)$. In the nonexceptional cases we can always make $g=1$. The exceptional cases occur when $c=[a / 2]$ and a is odd and greater than 4 ; here we can insist that $s s_{1} \in C_{G}\left(G_{a-1}\right)$ which implies that $\left[s_{a-1}, s_{1}\right]=s_{1}^{-1}$ and that $g \equiv(-1)^{(a-1) / 2}(\bmod 3) . G$ is presented as follows:

$$
\begin{gather*}
\text { Gabcdef }=\left\langle s, s_{1}, \ldots, s_{a}, t\right|\left[s_{i}, s\right]=s_{i+1}(i=1, \ldots, a-1), \tag{13}\\
{[t, s]=\left[t, s_{1}\right]=1, t^{3^{b-1}}=s_{a}, s^{3}=t^{d}} \\
\left.\left(s s_{1}^{-1}\right)^{3}=t^{e},\left[s_{2}, s_{1}\right]=s_{a-1}^{f} t^{g .3^{b-c}}\right\rangle .
\end{gather*}
$$

The table (14) gives the values of the parameters to obtain a full set of nonisomorphic groups. The values of g and h are also included. The values of d, e, f and g are only significant modulo 3.

Table (14)

	a	b	c	d	e	f	g	h
Non-exceptional	$\geqslant 2$	$\geqslant 1$	0	0	0	0	1	0
	$\geqslant 2$	$\geqslant 1$	0	1	1	0	1	3
	$\geqslant 3$	$\geqslant 1$	0	0	1	0	1	2
	odd $\geqslant 3$	$\geqslant 1$	0	0	2	0	1	2
	$\geqslant 4$	$b=c$	$0<c<[a / 2]$	0	0	0	1	1
	$\geqslant 4$	$b=c$	$0<c<[a / 2]$	0	2	0	1	2
	$\geqslant 4$	$b=c$	$0<c<[a / 2]$	1	1	0	1	3
	$\geqslant 4$	$b>c$	$0<c<[a / 2]$	0	0	0	1	0
	$\geqslant 4$	$b>c$	$0<c<[a / 2]$	1	1	0	1	3
	$\geqslant 4$	$b>c$	$0<c<[a / 2]$	2	2	0	1	3
	$\geqslant 4$	$b>c$	$0<c<[a / 2]$	0	1	0	1	2
	odd $\geqslant 5$	$b>c$	$0<c<[a / 2]$	0	2	0	1	2
Exceptional	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	0	0	0	$(-1)^{(a-1) / 2}$	0
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	0	0	1	$(-1)^{(\alpha-1) / 2}$	0
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	0	1	0	$(-1)^{(a-1) / 2}$	1
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	0	2	0	$(-1)^{(a-1) / 2}$	1
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	0	1	1	$(-1)^{1 a-1) / 2}$	1
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	0	2	1	$(-1)^{(a-1) / 2}$	1
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	1	1	0	$(-1)^{(a-1) / 2}$	2
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	1	1	1	$(-1)^{(a-1) / 2}$	2
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	1	2	0	$(-1)^{(a-1) / 2}$	2
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	1	2	1	$(-1)^{(a-1) / 2}$	2
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	2	2	0	$(-1)^{(a-1) / 2}$	2
	odd $\geqslant 5$	$b \geqslant c$	$c=[a / 2]$	2	2	1	$(-1)^{(a-1) / 2}$	2

References

N. Blackburn (1958), "On a special class of p-groups", Acta Math. 100, 45-92.
S. B. Conlon (1976), " p-Groups with an abelian maximal subgroup and cyclic center", J. Austral. Math. Soc. 22, 221-233.
B. Huppert (1967), Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, 1967).

Department of Pure Mathematics
University of Sydney
NSW 2006, Australia

