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CYCLIC TARSKI ALGEBRAS

MARTA A. ZANDER

The variety of cyclic Boolean algebras is a particular subvariety of the variety of tense
algebras. The objective of this paper is to study the variety T of {->, g, /i}-subreducts
of cyclic Boolean algebras, which we call cyclic Tarski algebras. We prove that T is
generated by its finite members and we characterise the locally finite subvarieties of
T. We prove that there are no splitting varieties in the lattice A(T) of subvarieties of
T. Finally, we prove that the subquasivarieties and the subvarieties of a locally finite
subvariety of T coincide.

1. INTRODUCTION AND PRELIMINARIES

The variety of tense algebras [8] is denned as the variety of algebras
(A; A, V, ->,g, ft, 0,1), where (A; A, V, ->, 0,1) is a Boolean algebra and g and ft are unary
operators satisfying the following identities: gl = 1, ftl = 1; g{x Ay) = gx A gy,
h(x A y) = hx A hy\ ->x V g->h->x = 1; ->x V h->g->x = 1.

Tense algebras are the algebraic counterpart of tense logics.
In [2] a particular subvariety of the variety of tense algebras, called Boolean algebras

with a distinguished automorphism (or cyclic Boolean algebras), was studied. By a cyclic
Boolean algebra we understand a tense algebra (A; A, V,->,g, ft,0,1), such that g is an
automorphism of A (and so ft = g~l).

The purpose of this paper is to investigate the variety of {-*,g, ft}-subreducts of
cyclic Boolean algebras. This variety models the implication operation of cyclic Boolean
algebras in the same way as Tarski algebras (or implication algebras) model the implica-
tion operation of Boolean algebras.

DEFINITION 1.1: The variety T of cyclic Tarski algebras consists of algebras
A = (,4; -•, g, ft, 1) of type (2,1,1,0) fulfilling the following conditions:

1. 1 -> x = x,

2. x - » x = l,

3. x -> (y -¥ z) = (i -> y) ->• (x -> z),
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4. (x -> y) -)• y = (y -»• x) -* x,

5. g{x -> y) = gx -* gy, h(x -* y) = hx -* hy,

6. hgx = ghx = x.

That is, A = (A; —t, g, h, 1) € T if (4; -4,1) is a Tarski algebra and g and /i are
operators fulfilling conditions (5) and (6). Observe that if A € T, then g and h are
automorphisms of the Tarski algebra {A; -», 1), and h = g~l.

We assume familiarity with the theory of Tarski algebras. In particular, we recall
the following properties:

THEOREM 1 . 2 . In any Tarski algebra A ,

1. • x -*• (y -¥ x) = 1,

2. (x -> (y -> z)) -+ ((x - > ! / ) - > ( i - » z)) = 1,

3. x - > l = l,

4. if i -> y = 1 and j / —• x = 1 then x = y,

5. (x -*• y) -¥ x = x,

6. For i , y € A, the relation x ^ y if x —• y — 1, is a partial order with last
element 1. Relative to this partial order, A is a join-semiJattice and the

join of two elements a and b is given by a V b = (a -* b) -* b. Besides,
for each a in A, [a) = {x € A : a ^ x} is a Boolean algebra in which, for
b,c ^ a, b A c = (6 —• (c -> a)) —¥ a gives t ie meet and b -* a is the

complement ofb ([5]).

A deductive system in a Tarski algebra A is a subset D of A that satisfies 1 € D,

and b & D whenever a and a —> b 6 D. A gh-deductive system in an algebra A € T is a
deductive system closed by <7 and /i. Congruences in a Tarski algebra are determined by
deductive systems [5] and, similarly, congruences in an algebra A 6 T are determined
by gh—deductive systems. The congruence relation associated to a gh—deductive system
D C A is x = y (mod D) if and only if x -> y € D and y —• x € £>.

For i / C .A, the gh-deductive system generated by H is the intersection of all gh-

deductive systems of A containing H. . .

It is well known the following characterisation of a deductive system in a Tarski
algebra [5].

LEMMA 1 . 3 . Let A be a Tarski algebra and D a subset of A. D is a deductive
system of A if and only if the following conditions are satisfied:

1. D is non-empty,

2. D is an increasing subset of A,

3. if a, b G D and there exists a A b, then a A b 6 D.

As a consequence of Lemma 1.3 we obtain the following characterisation of the

deductive system generated by a subset H. The proof is easy.
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LEMMA 1 . 4 . For a non-empty subset H of a Tarski algebra A, t i e deductive
system generated by H consists of all elements of the form oi A a2 A . . . A a,,, at € A,
n € N, such that for each i = 1,2,... , n, a< ^ xt with xt € H.

A Kripke frame, or simply a frame, is a triple T = (W; ft, i?"1), where W is a set,
R is a binary relation denned on W and i ? - 1 is the inverse relation of R. For w & W,
let ft(rw) = {z e W : tuftz} and JJ-^tu) = {z e W : z/fco}. For a given frame
T = {W; R, R-1), Alg(^) = (2W; ->, ff, A, W), where g and /i are defined by

g(X) = {w € W : /Z(w) C X } and /i(X) = {u; € W : J ? " 1 ^ ) C X)

and the set-theoretical implication is X -+ y = (W\X) U y , for A", y C VT, is a cyclic
Tarski algebra which is called the canonical algebra of T. Observe that, in fact, Alg(J")
is a cyclic Boolean algebra.

Let A = (A; —¥, g, h, 1) e T and let S)(A) denote the set of maximal deductive
systems of A. Then ^ ( A ) = (3)(A); R, R~l), where R C 2)(A) x S)(A) is defined by
C/.RW if and only if ff"1^) Q W (or, equivalently, by UR~lW if and only if ft"1 (I/) C W),
is called the canonical frame for A. Since </ is an automorphism, it is clear that for each
U € 3?(A), /?([/) has just one element, h(U), and g and /i induce bijections on 3D(A).
So it is immediate to check the following.

THEOREM 1 . 5 . If A e T, then Alg(.F( A)) e T.

THEOREM 1 . 6 . Jf A e T, A is isomorphic to a subalgebra of Alg( J"(A)).

PROOF: An embedding can be taken as s : 4 —• 2I)(A) with s(a) = {U 6 3 ( A ) :

aef/}. D
The orbit of an element U € 2)(A) is the set O(U) = {gn(U),n€ Z} .

It is clear that ^"(A) is the disjoint union of its connected components Tj, j G / ,

where ^ = {O{Uj)\ R'jy R
1'1) for some Uj € 5D(A) and R) = RC\ (O(Uj) x O(Uj)). Hence

it can be proved that Alg(.F(A)) S f ] Alg(^) .

2. A;-CYCLIC TARSKI ALGEBRAS

Our next objective is to study, for each k £ N, the subvariety of T, which we call
the variety of fc-cyclic Tarski algebras, characterised by the equation gkx — x. The case
k = 2 was used in [1] to obtain a representation of cubic lattices.

The next Lemma provides a characterisation of maximal deductive systems of a
finite Tarski algebra. The proof can be found in [3].

LEMMA 2 . 1 . Let A be a non-trivial finite Tarsia algebra with n antiatoms. If a

is an antiatom of A, then A \ (a] is a maximal deductive system of A. Moreover, every

maximal deductive system of A is of the form A \ (a], for some antiatom a of A. In

particular, A has exactly n maximal dedutive systems.
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As a consequence of Lemma 2.1 we obtain the following characterisation of maximal
5/1-deductive systems of a finite A;-cyclic Tarski algebra. Observe that in a fc-cyclic Tarski
algebra, h = gk~l.

LEMMA 2 . 2 . Let A be a finite k-cyclic Tarski algebra. If a is an antiatom of
k

A, then p| A \ {gla] is a maximal gh-deductive system of A. Moreover, every maximal
t = l . k

gh-deductive system of A is of the form f| A \ (gl a], for some antiatom a of A.
k . i = 1 *

PROOF: It is clear that f] A \ (g* a] is a deductive system. Let x € f\ A\(g' a] and
k «=i t=i

suppose that gx £ f) A \ (gl a]. Then for some i = 1,. . . , A;, gx < g' a. Thus hgx ^ hg' a,
t=i

and as hgx = x and hg'a = g1*'1 gla = </*+'~1a, we have x < gk+t~l a. Since A is a
A:-cyclic algebra, gk+l~l a = gl a for some /, 1 ^ I ^ k, a contradiction.

*
If D is a ph-deductive system such that f] A \ (g* a] ^ D, there exists x € D such

* . . «=1

that x & f] A \ (5*0], that is, x < gxa for some i. Since x € D, g' a 6 D, and thus,
D contains the antiatoms o, ga,..., tj*"1 a. Let us see that D contains all the antiatoms

*
of A. Indeed, if b is an antiatom and b ^ gla for every i, then b £ f) A\(g' a] and,

1 = 1
consequently, b € D. Now, D is closed under existing infima, and in any finite Tarski
algebra, every element is an infimum of antiatoms, so D = A. Hence f] A \ (g* a] is a

maximal <//i-deductive system.
Let us see that every maximal 5/1-deductive system M is of this form. As M is

maximal, M is proper, so there exists an antiatom a of A not belonging to M. Since M
is increasing, it follows that M C A \ (a]. Besides, as M is closed under g, M C A \ (gi a]

k k

for i = 1, . . . , A. So M C f| A \ (g' a] and by maximality, M = f| A \ (gl a}. U
i=l i=l

The intersection of all maximal deductive systems of a Tarski algebra is {1}. So we
have:

COROLLARY 2 . 3 . Let A be a finite k-cyclic Tarski algebra. The intersection of
all maximal gh-deductive systems of A is {1}.

Since every finite algebra in T is fc-cyclic for some A;, we obtain the following corollary.

COROLLARY 2 . 4 . The intersection of all maximal gh-deductive systems of a
Mite algebra A e T is {1}.

LEMMA 2 . 5 . Every finite subdirectly irreducible algebra of T is simple.

PROOF: Let A e T, A finite and { A } i ^ n the collection of maximal 5/1-deductive
n

systems of A. From Corollary 2.4, the canonical map i: A —> Y[ A/D{ is injective. Since

A is subdirectly irreducible, A is isomorphic to A/£>< for some i. Hence A is simple. 0
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LEMMA 2 . 6 . Every subdirectly irreducible k-cyclic Tarski algebra is finite and,
consequently, simple.

PROOF: Let A be a subdirectly irreducible fc-cyclic Tarski algebra and ^"(A)
= |J Tj, the disjoint union of its connected components. We have that gk{U) = U

for every maximal deductive system of A and, consequently, Tj is a finite frame for every
j . Consider the embedding

5 : A -> Alg(jF(A)) S J J Alg(JTj).

For each i € J , consider 7rt : \[ Alg(J}) —> Alg(^i) the i-th projection and let

Si = 7i"i o s. We have that Ker(si) is a proper 5/1-deductive system of A. If A is simple,
Ker(sj) = {1}, and so s* is an embedding of A into A\g(Ti). If A is non-simple subdirectly
irreducible with monolith M and we assume that for every i, Ker(sj) ^ {1}, then
M C nKer(sj) = C\{U : U € 2)(A)} = {1}, a contradiction. So there exists i such that
Si is an embedding. Since every component Ti is finite, Alg( J i ) is finite and, consequently,
so is A. 0

Finally, we give a characterisation of subdirectly irreducible (simple) fc-cyclic Tarski

algebras. For a A;-cyclic Tarski algebra A, we say that d is the period of A if d is the least

natural such that gda = a for all a in A. It is clear that d is a divisor of k.

For each k € N, let Wk = {w\, tu 2 , . . . , Wk} and T* = (W*; Rk, Rj^1) where Wi

for 1 ^ i < A; — 1 and WkRkW\-

Let Bit = Alg(^lt). Observe that g{{wi}) = {tu<-i} for 2 ^ i ^ k and ff({wi})
= {w^, and then, g acts transitively on the set of antiatoms of B*, and consequently, g
is an automorphism of Bfc. It is clear that gkx = x for every x 6 2Wk and that B* is a
fc-cyclic Tarski algebra.

THEOREM 2 . 7 . Let A be a k-cyclic Tarski algebra of period d. Then A is sub-
directly irreducible if and only if A is isomorphic to a nontrivial increasing subalgebra of
Bd.

PROOF: Let A be a subdirectly irreducible A:-cyclic Tarski algebra of period d. By
Lemma 2.6, A is simple and finite, and so .F(A) is connected being that every connected
component yields a congruence of A. In addition, the maximal deductive systems of A
are {A \ (p'a], 0 ^ i < d] for an antiatom a of A, that is, .F(A) has the form (*), and
hence Alg(^(A)) is isomorphic to Bd.

Let s : A -> Alg(.F(A)) be the embedding of Theorem 1.6. If au a2,..., ad are the
antiatoms of A and i ^ j , then a* £ (a,], that is, a,- e A \ (a,] for every j ^ i. Thus
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s(oi) = {A \ (a,] : j ^ i}. So s(di) is an antiatom of Alg(^(A)) and, consequently, s
induces a bijection from the set of antiatoms of A on the set of antiatoms of Alg(.F(A)).
Since every element of a finite Tarski algebra is an infimum of antiatoms, it follows that
s : A —• Min(s(A)) J is an isomorphism, where with Min(a(A)) we denote the set of
minimal elements of s(A). Hence A is isomorphic to an increasing subset of B<j, closed
under g and h, that is, an increasing subalgebra of Bd.

The converse is trivial being that every nontrivial subalgebra of a simple algebra is
simple. Q

Besides giving a characterisation of subdirectly irreducible fc-cyclic Tarski algebras,
Theorem 2.7 allows us to prove that B* is a generator of the variety of A;-cyclic Tarski
algebras.

COROLLARY 2 . 8 . Tie variety ofk-cyclic Tarski algebras is generated by Bfc.

3. THE VARIETY 7

Let 2Z be the field of subsets of Z with the set-theoretical operation of implication.
Let g be the automorphism of 2Z induced by the mapping m - f n + l , n e Z and h = g~l.
It is clear that 2Z = (2Z; -+, g, h, Z) e 7. Observe that 2Z = Alg((Z; R, R'1)), where
zR{z - 1), for 2 6 Z .

A subset of Z is called k-periodic, k a positive integer, if it coincides with the set
obtained by adding k to each of its elements. It is clear that the set of fc-periodic subsets
of Z is a subalgebra of 2Z. We say that a subset of Z is periodic if it is fc-periodic for
some k.

LEMMA 3 . 1 . B* is isomorphic to a subalgebra of 2Z.

P R O O F : If we consider the congruence modulo A; in Z and we use the notation [x]k
for the equivalence class of x, then Z \ [0}k, Z \ [l]k, ..., Z\[k - l]k are the antiatoms
of the subalgebra of fc-periodic subsets of Z. It is clear that g acts transitively on these
antiatoms, that is, this subalgebra is isomorphic to the algebra Bk- D

The proof of the following Theorem is similar to that of [2, Theorem 2.3].

THEOREM 3 . 2 . Tie variety T is generated by 2Z. Moreover, T = ISP(2Z).

PROOF: If A € T, A ^ Alg(J"(A)) S f] Alg(^), where {Fj}iej is the family

of distinct connected components of ^"(A). If Tj is finite, then k\g{Tj) = Bn for some
n, and if Tj is infinite then Alg(^7

J) = 2Z. Consequently Alg(j"(A)) is isomorphic to a
product fl A;, where Aj = Bn or Aj = 2Z. In both cases there exists a monomorphism

Aj ^ 2Z. Thus A ^ n AJ "-* (2Z)y. a n d so A e ISP(2Z). D

In [2, Theorem 2.6] it is proved that the variety of cyclic Boolean algebras is gener-
ated by any infinite set of algebras B*. This could be done by establishing an embedding
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from 2 Z into a homomorphic image of a product of an infinite family of B'ts. Since
a Boolean homomorphism is, in particular, a Tarski homomorphism, the proof of that
theorem also holds for the variety T . Consequently we have:

THEOREM 3 . 3 . If J is an infinite subset ofN, then T = V([Bj : j e J}).

COROLLARY 3 . 4 . T is generated by its finite members.

THEOREM 3 . 5 . If A is a subdirectly irreducible algebra ofT, then A is isomor-
phic to a subalgebra of 2Z.

PROOF: Let A be a subdirectly irreducible algebra of T and consider the embedding
s : A —• Alg(^"(A)) of Theorem 1.6. Arguing as in Lemma 2.6, there is a connected
component Tj such that A can be embedded into Alg(^). But Alg(J"7) is isomorphic
to either 2Z or Bn, for some n. Since Bn is isomorphic to a subalgebra of 2Z, we have
that there exists a monomorphism Alg(Tj) <-> 2Z. Thus there exists an embedding from
A into 2Z. D

Our next objective is to prove that the locally finite subvarieties of T are the finitely
generated ones.

In [6], Bezhanishvili calls a class K of algebras uniformly locally finite if for all k 6 N
there exists m(k) € N such that the cardinality of every subalgebra fc-generated of an
algebra of K is less than or equal to m(k). In that work it is proved that:

THEOREM 3 . 6 . If K has finite signature, then K is locally finite if and only if
K is generated by a uniformly locally finite class.

If A is a fc-cyclic finite algebra and d is the period of A, then A is isomorphic to an
increasing subalgebra of Bj. In particular, it contains the antiatoms of B<j. Let Ant(Bd)
be the subalgebra generated by the antiatoms of Bd, that is, Ant(Bd) consists of the
antiatoms of Bd and 1. Observe also that >lnt(Bd) is generated by any element different
from 1. Thus, if K is an infinite subset of N, the family {Ant(Bd) : d e K) is not a
uniformly locally finite class.

These remarks together with Theorem 3.6 allow us to characterise the locally finite
subvarieties of T.

THEOREM 3 . 7 . Let V be a subvariety ofT. V is locally finite if and only ifV is
finitely generated. Consequently, V is locally finite if and only ifV C V(B/t) for some k.

PROOF: Let V be a non-finitely generated subvariety of T and let X = {At,i € /}
be a set of non-isomorphic subdirectly irreducible algebras that generate V. Since V is
not finitely generated, X is not a finite set of finite algebras.

Suppose that X contains an infinite algebra Aj = A. Since A is subdirectly irre-
ducible we may identify A with a subalgebra of 2Z. If A contains an element x which is
not periodic, then the subalgebra (x) generated by x is not finite. So V is not finitely
generated. Suppose that every element of A is periodic. Then A = |J Sj, where Sj is a
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finite algebra of period dj, and consequently, Ant(Rdj) C S,. Since A is infinite, the set
K = {dj : Sj is a subalgebra of A} is infinite and, by the previous remark, the family
{i4nt(B^) : dj 6 K} generates a variety which is not locally finite. Since Ant(Bdj) Q A
for every dj e K, it follows that {Ant(Bdj) : dj € K} C V(A), so V(A) is not locally
finite, and consequently, V is not locally finite.

If X does not contain an infinite algebra, then X contains infinitely many non-
isomorphic finite algebras Aj. If dk is the period of Aj, then Ant(Bdi) Q A{. The set
K = {di : Ant{Bdi) £ V) is infinite and i4n<(Bdi) e V for every dj e K. So, as in the
previous case, V is not locally finite.

For the last part, observe that if V is finitely generated, V is generated by a finite set
of finite algebras. But then there exists k e N such that all these algebras are Jfc-cyclic.
So V C V(Bk). D

Observe that there exist proper subvarieties of T that are not finitely generated. For
instance, consider the subalgebra A of 2Z whose elements are 1 and the antiatoms of 2Z.

It is clear that A (= {i Vgn x = 1 : n e N} and that 2Z £ V{A), so V(A) is a proper
subvariety of T.

Now we are going to prove that there are no splitting subvarieties for the lattice
A(T) of subvarieties of T- Let us see first the following lemma that characterises the
5/1-deductive system generated by a set H.

LEMMA 3 . 8 . Let A e T . The gh-deductive system generated by a non-empty
subset H of A consists of the elements of the form aj A a2 A . . . A On, a,; € A, such that
for each i = 1,2, . . . , n, a< ̂  gniXi with Xi 6 H, rii € Z and n € N.

P R O O F : Let D be the set of elements of A of the form ai A a2 A . . . A an, a* € .A such
that for each i = 1,2,. . . , n, a, ^ <7n'ii with i< € # , rii 6 Z, n € N.

By Lemma 1.4, D is a deductive system. In order to see that D is closed under g and
h, it is enough to observe that if there exists ai A a 2 . . . A an G D then gax A ga2 . . . A <7an

exists and g{a\ A a 2 . . . A an) = ga.\ A ffa2... A ^an. Similarly for /i. D

Recall that an element a of a complete lattice L is said to be strictly join prime

if a ^ V a t implies that there exists i € / such that a ^ d{. In [9] it was proved the
•e/

following characterisation of splitting elements of a complete lattice L.

THEOREM 3 . 9 . Let L be a complete lattice. Then a 6 L is a splitting element
if and only if a is strictly join prime.

For any fixed variety V, let us denote A(V) the complete lattice of all subvarieties
of V and call splitting elements of A(V) splitting varieties. The following theorem was
also established in [9].
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THEOREM 3 . 1 0 . If a variety V is congruence-distributive and generated by its
finite algebras, then every splitting variety in A(V) is generated by a finite subdirectly
irreducible algebra ofV.

THEOREM 3 . 1 1 . There are no splitting varieties in A(T).

P R O O F : Let us prove that there are no strictly join prime varieties V(A), where A
is a finite subdirectly irreducible algebra in T.

If A is a finite simple algebra of period n > 1, V(A) is not strictly join prime.
Indeed, since T is generated by any infinite family of algebras B m , we have that K({B m :
n does not divide a m}) = 7". So V(A) C V ( { B m : n does not divide m}), but ^ ( A )
% V(B m ) for any m being that n does not divide m.

Let us see that V ( B 0 is not strictly join prime either. Consider for each n > 1 the
algebra A n obtained from B n by removing its first element and let A = J | A.n. Let

n>l

o = (10,100,1000,...) e A and D the 5/1-deductive system generated by a -+ ga and
ga —> a.

a-»ga = (01,011,0111,...), and in a similar way, ga-^a- (10,101,1011,...).
k

Let us see that a £ D. Indeed, if we suppose that a e D, then a = /\ait where
either â  ^ gki(a —*• ga) or at ^ gki{ga —• a), fc* 6 Z. The element / \aj has in each

t=t
component at most k zeros, whereas a has n — 1 zeros in the component corresponding
to An, a contradiction.

Consequently, in the quotient A / D , o / l and a = g~a. So {a, 1} is a subalgebra of
A/D isomorphic to Bi, that is,

V(Bi) C S # P ( { A n : n > 1}) C \ / V(An).
n>l

But since the simple algebras of V(An) are in HS(An), it is clear that V^B^ g V(An)
for any n > 1. 0

The variety of cyclic Boolean algebras is generated by the algebra of finite and
cofinite subsets of Z (see [2]). It is natural to expect that the algebra of cofinite subsets
of Z generates T. This is the next result.

THEOREM 3 . 1 2 . Tie algebra of cofinite subsets ofZ generates T.

PROOF: Consider the algebra A = [} A^, where Ay is the algebra of cofinite subsets
jeti

of Z. Let us see that for every n 6 N, there is a 5/1-deductive system D of A such that Bn

is isomorphic to a subalgebra of A/D. In particular, this implies that for every n £ N, Bn

belongs to the variety generated by the algebra of cofinite subsets of Z and, consequently,
this variety is T.

Consider the element a = (Z\ {0}, Z \{ -n , 0,n},Z\ {-2n, -n, 0, n, 2n},...) and let
D be the 3/1-deductive system generated by a -» gna and gna -¥ a. We have a -> gna =
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(Z \ {n}, Z \ {2n}, Z \ {3n},...) and gna -> o = (Z \ {0}, Z \ {-n}, Z \ {-2n},...).
By Lemma 3.8, an element x oi A belongs to D if and only if x is an infimum of

elements {aj}, where each ai satisfies a* ^ g*'(a -> gna) or aj ^ g*'(gna -> a), fe| e Z.
Arguing as in the proof of Theorem 3.11, it can be seen that o is not an element of D.
So a ^ 1. Besides, g'a ^ a for 1 < i < n - 1, since a -> g'a = g'a, a & D and so g'a £ D.

n

Consider the subalgebra S of A/£> generated by a and A, g'a. This infimum is an
element of A/D since infima exist in A. We have j ' aVs J o = 1 and g*a -> g'a = g'a for
all i 7̂  j , 1 ^ i, j < n and j " a = a. So S is isomorphic to Bn. D

4 . QUASIVARIETIES OF A;-CYCLIC TARSKI ALGEBRAS

Our next task is to prove that the subquasivarieties and the subvarieties of a locally
finite subvariety of T coincide. Observe that V is a locally finite subvariety of T if and
only if V C V^B*) for some k.

LEMMA 4 . 1 . Let A be a Bnite k-cyclic Tarski algebra and D a maximal gh-
deductive system of A. Tien the quotient A/D is isomorphic to a subalgebra of A.

k-l . fc-l
PROOF: Let D = f) A \ (gla] = A \ (J (g'a], where a is an antiatom of A and

:=0 t=0

let S be the g/i-deductive system generated by a. Let us see that S is a subalgebra of
A such that S n D — {1}. Indeed, 5 is an increasing subset of A closed under g and
h, and consequently, S is a subalgebra of A. If z e S D D, z ^ 1, then z = A, g'a, for
/ C { 1 , . . . , k}, and thus z < gla for all i € /. As a consequence, g'a e D, a contradiction.

Now we are going to prove that A/D ~ S. First observe that if x, y G S and x = y
in A/£>, then x->y,y-txeDnS = {1}, so a; = y.

If x £ S and x £ £>, let m = A{y € 5 : x ^ y}. From x £ D there exists an
antiatom 6 of A not belonging to D such that a; ̂  b = g'a for some s. Since <75a G 5, it
follows that m ^ 1.

Let us see that x = m. It is clear that x ^ m, and then, i 4 m = 1 e D. If we
suppose that m —¥ x £ D, then m —• x ^ </'a for some i. Then m < <7*a -* m < (m
—• x) -> m = m, that is, m = <7*a —>• m. Hence g'a = (<?'a -> m) -> g'a = m -> #'a, that
is, <7*a = m —̂  j 'a . The proof finishes if we prove that m -¥ g'a = 1, since in that case
we would have g'a — 1, a contradiction.

Let us prove then that m —> g'a = 1. Observe that, since m G 5 and m ^ 1, m & D.
So there exists an antiatom of A of the form g*a such that m < g*a. Since x ^ m ^ gJa
and x ^ m —> z ^ g'a, x is a lower bound of {gxa,g*a} and consequently, the element
g'a A g*a exists and belongs to 5. By the definition of m, we have that m ^ g'a A p^a.
In particular m ^ g'a, that is, m -^ g'a = 1. D

COROLLARY 4 . 2 . Every simple homomorphic image of a Bnite algebra A is a
retract of A.
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If K is a class of algebras, we denote by Q(K) the quasivariety generated by K.

Every variety is a quasivariety.

A critical algebra is a finite algebra not belonging to the quasivariety generated by
its proper subalgebras.

THEOREM 4 . 3 . (See [7]) Every non-trivial locally finite quasivariety is generated
by its critical algebras.

THEOREM 4 . 4 . Tie set of critical algebras of V(Bfc) coincides with its set of
simple algebras.

PROOF: Observe first that every simple finite algebra is critical. Suppose now that
A is a finite algebra that is not simple. Then the set {£>J"=1 of non-trivial g/i-deductive

systems of A is not empty. Let i : A —• fj A/Dj be the subdirect representation of A.
. 7 = 1

By Lemma 4.1, for each j , there exists a proper subalgebra S7 of A such that S_, = A/Dj.
Thus A € ISP({Sj}"=l) and consequently, A is not critical. D

REMARK If A 6 T is a finite simple algebra, then Q(A) = V(A). Indeed, as A is finite,
the subdirectly irreducible algebras of V(A) are in HS(A). Since A is simple, every
subalgebra of A is simple and thus HS(A) = S(A). If B e V(A) and K is the set of
subdirectly irreducible algebras of V(A), then

B e SP(K) C SPS(A) C Q(A).

COROLLARY 4 . 5 . For a finite k-cyclic Tarski algebra A,

Q(A) = V(A) = V(Au...,An),

where Ai , . . . , An are tie simple homomorphic images of A.

PROOF: Let A j , . . . , An be the simple homomorphic images of A and D\, Z32, • • • ,Dn

the maximal 5/1-deductive systems of A such that Ai = A/D{. Then Q(Aj) = V(Aj)
and so,

n n

Q ( A , , . . . , A,) = V Q(Ai) = \ / V(Ai) = V(AU ...,An) = V(A).
«=1 i = l

n n

In order to see that Q(A) = Q(Ai,..., An) , consider i : A «-• f] A / A = J~[ A,.

Then A 6 SP(AU ..., An) C Q(AU..., An) , that is, Q(A) C Q(A^.., An). On' the

other hand, by Lemma 4.1, A< e 5(A) C Q(A), so Q(AU . . . , An) C Q(A). D

From Theorem 4.4 and Corollary 4.5 we have the following result:

THEOREM 4 . 6 . Tie subvarieties and t ie subquasivarieties of a locally finite sub-

variety of T coincide.
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