
Canad. Math. Bull. Vol. 54 (3), 2011 pp. 422–429
doi:10.4153/CMB-2011-020-4
c©Canadian Mathematical Society 2011

Two Conditions on the Structure Jacobi
Operator for Real Hypersurfaces in
Complex Projective Space

Juan de Dios Pérez and Young Jin Suh

Abstract. We classify real hypersurfaces in complex projective space whose structure Jacobi operator

satisfies two conditions at the same time.

1 Introduction

Let CPm, m ≥ 2, be a complex projective space endowed with the metric g of constant

holomorphic sectional curvature 4. Let M be a connected real hypersurface of CPm

without boundary. Let J denote the complex structure of CPm, N a locally defined

unit normal vector field on M and (φ, ξ, η, g) the almost contact metric structure

induced on M. In particular, − JN = ξ is a tangent vector field to M called the

structure vector field on M. We also call D the maximal holomorphic distribution

on M, that is, the distribution on M given by all vectors orthogonal to ξ at any point

of M.

The study of real hypersurfaces in non-flat complex space forms is a classical topic

in Differential Geometry. The classification of homogeneous real hypersurfaces in

CPm was obtained by Takagi, see [8], [9], and is given by the following list:

A1: Geodesic hyperspheres.

A2: Tubes over totally geodesic complex projective spaces.

B: Tubes over complex quadrics and RPm.

C : Tubes over the Segre embedding of CP1 × CPn, where 2n + 1 = m and m ≥ 5.

D: Tubes over the Plucker embedding of the complex Grassmann manifold G(2, 5).

In this case m = 9.

E: Tubes over the canonical embedding of the Hermitian symmetric space

SO(10)/U (5). In this case m = 15.

Other examples of real hypersurfaces are ruled real ones, that were introduced

by Kimura [4]: take a regular curve γ in CPm with tangent vector field X. At each

point of γ there is a unique complex projective hyperplane cutting γ so as to be

orthogonal not only to X, but also to JX. The union of these hyperplanes is called a

ruled real hypersurface. It will be an embedded hypersurface locally although globally

it will in general have self-intersections and singularities. Equivalently, a ruled real
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hypersurface is such that D is integrable or g(AD, D) = 0, where A denotes the shape

operator of the immersion.

We will call the Jacobi operator on M with respect to ξ the structure Jacobi oper-

ator on M. Then the structure Jacobi operator Rξ ∈ End(TpM) is given by

(

Rξ(Y )
)

(p) =

(

R(Y, ξ)ξ
)

(p)

for any Y ∈ TpM, p ∈ M, where R denotes the curvature operator of M in CPm.

Recently [5] we have classified real hypersurfaces in CPm whose structure Jacobi

operator satisfies

(1.1) (∇XRξ)Y = c{η(Y )φAX − g(φAX,Y )ξ}

for any X,Y tangent to M, where c is a non-zero constant. If we restrict (1.1) to D we

obtain

(1.2) (∇XRξ)Y = cg(φAX,Y )ξ

for any X,Y ∈ D, c being a non-zero constant. We also consider the following con-

dition

(1.3) (Rξφ − φRξ)X = ω(X)ξ

for any X ∈ D, where ω is an 1-form on M. If we put both conditions together we

will prove the following:

Theorem 1.1 Let M be a real hypersurface in CPm, m ≥ 3, satisfying (1.2) and (1.3).

Then c < 0 and

(i) if c 6= −1, M is locally congruent to a geodesic hypersphere of radius r such that

cot2(r) = −c,

(ii) if c = −1, M is locally congruent to a tube of radius π
4

over a complex submanifold

of CPm.

Results related to our theorem have been obtained by Ki and the second author [3]

for the shape operator of M, and by Baikoussis [1] in the case of the Ricci tensor.

2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of class

C∞ unless otherwise stated. Let M be a connected real hypersurface in CPm, m ≥ 2,

without boundary. Let N be a locally defined unit normal vector field on M. Let ∇
be the Levi–Civita connection on M and ( J, g) the Kaehlerian structure of CPm.

For any vector field X tangent to M we write JX = φX + η(X)N, and − JN = ξ.

Then (φ, ξ, η, g) is an almost contact metric structure on M. That is, we have

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y ) − η(X)η(Y )
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for any tangent vectors X,Y to M. From (2.1) we obtain

(2.2) φξ = 0, η(X) = g(X, ξ).

From the parallelism of J we get

(2.3) (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ

and

(2.4) ∇Xξ = φAX

for any X,Y tangent to M, where A denotes the shape operator of the immersion.

As the ambient space has holomorphic sectional curvature 4, the equations of Gauss

and Codazzi are given, respectively, by

R(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY

− 2g(φX,Y )φZ + g(AY, Z)AX − g(AX, Z)AY,

(2.5)

and

(2.6) (∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX,Y )ξ

for any tangent vectors X,Y, Z to M, where R is the curvature tensor of M.

From the Gauss equation we have

(2.7) Rξ(X) = X − η(X)ξ + η(Aξ)AX − η(AX)Aξ

for any X tangent to M.

In the sequel we need the following results:

Theorem 2.1 ([6]) Let M be a real hypersurface of CPm, m ≥ 2. Then the following

are equivalent:

(i) M is locally congruent to one of the homogeneous hypersurfaces of class either A1

or A2.

(ii) φA = Aφ.

We define the type number of M at p ∈ M, t(p), as the rank of the shape operator

of M at p. We have:

Theorem 2.2 ([7]) Let M be a real hypersurface in CPm, m ≥ 3, satisfying t(p) ≤ 2

for any point p ∈ M. Then M is a ruled real hypersurface.

Theorem 2.3 ([5]) There exist no real hypersurfaces in CPm, m ≥ 3, whose shape

operator is given by Aξ = αξ + βU , AU = βξ + β2
−(c+1)

α U , AX = − c+1
α X, for any

tangent vector orthogonal to Span{ξ,U}, where U is a unit vector field in D, α and β
are non-vanishing smooth functions defined on M and c is a constant.
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3 Some Lemmas

From condition (1.3), for any Y, Z ∈ D we get g
(

Rξ(φY ), Z
)

+ g
(

Rξ(Y ), φZ
)

= 0.

Differentiating covariantly this equation in the direction of X ∈ D we obtain

g
(

∇X

(

Rξ(φY )
)

, Z
)

+ g
(

Rξ(φY ),∇XZ
)

+ g
(

∇X

(

Rξ(Y )
)

, φZ
)

+ g
(

Rξ(Y ),∇XφZ
)

= 0.

This yields

g
(

(∇XRξ)φY, Z
)

+ g
(

Rξ(∇XφY ), Z
)

+ g
(

Rξ(φY ),∇XZ
)

+ g
(

(∇XRξ)Y, φZ
)

+ g
(

Rξ(∇XY ), φZ
)

+ g
(

Rξ(Y ),∇XφZ
)

= 0.

From (1.2), bearing in mind that Rξ(ξ) = 0, we obtain

g
(

Rξ(∇XφY ), Z
)

+ g
(

Rξ(φY ),∇XZ
)

+ g
(

Rξ(∇XY ), φZ
)

+ g
(

Rξ(Y ),∇XφZ
)

= 0.

As ∇XφZ = (∇Xφ)Z + φ∇XZ = −g(AX, Z)ξ + φ∇XZ, we have

g
(

Rξφ(∇XY ), Z
)

+ g
(

Rξ(φY ),∇XZ
)

− g
(

φRξ(∇XY ), Z
)

− g
(

φRξ(Y ),∇XZ
)

= 0.

Now from (1.3) we obtain ω(Z)g(ξ,∇XY ) + ω(Y )g(ξ,∇XZ) = 0. That is

(3.1) ω(Z)g(φAX,Y ) + ω(Y )g(φAX, Z) = 0,

for any X,Y, Z ∈ D. M is called Hopf if ξ is a principal vector field, that is Aξ = αξ
for a certain function α. Let us suppose that M is non-Hopf. Thus we can write, at

least locally, Aξ = αξ+βU , where U is a unit vector field in D and β a non-vanishing

function defined on M.

If we take X = U = Y , Z = φU in (3.1) we get

(3.2) − ω(φU )g(AU , φU ) + ω(U )g(AU ,U ) = 0.

If we take X = U , Y = Z = φU in (3.1) we have

(3.3) ω(φU )g(AU ,U ) = 0.

Lemma 3.1 If M satisfies (1.2), (1.3) and g(AU ,U ) 6= 0, then ω(Y ) = 0, for any

Y ∈ D.

Proof As g(AU ,U ) 6= 0, from (3.3) we get ω(φU ) = 0. Then, from (3.2), ω(U ) = 0.

If in (3.1) we take Z = φU , we have ω(Y )g(AX,U ) = 0, for any X,Y ∈ D.

This means that ω(Y )AU has no component in D. If there exists Y ∈ D such that

ω(Y ) 6= 0, AU has no component in D, thus g(AU ,U ) = 0 and we arrive at a

contradiction.
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Lemma 3.2 With the same conditions as in Lemma 3.1, if g(AU ,U ) = 0, either

ω(Y ) = 0, for any Y ∈ D, or M is ruled.

Proof In this case, (3.2) becomes ω(φU )g(AU , φU ) = 0. Taking Y = U , X = Z =

φU in (3.1) we get

(3.4) − ω(φU )g(AφU , φU ) + ω(U )g(AφU ,U ) = 0,

and taking Y = Z = U , X = φU in (3.1) we have

(3.5) ω(U )g(AφU , φU ) = 0.

If we suppose ω(φU )ω(U ) 6= 0, from (3.4) and (3.5) we obtain

(3.6) g(AφU , φU ) = g(AU , φU ) = 0.

Take Z = U in (3.1). Then ω(U )g(φAX,Y )+ω(Y )g(φAX,U ) = 0, for any X,Y ∈ D.

If now X = U , we have ω(U )g(φAU ,Y ) = 0, for any Y ∈ D. This yields φAU=0 and

this gives

(3.7) AU = βξ.

Choosing Z = φU in (3.1) we obtain ω(φU )g(φAX,Y ) +ω(Y )g(AX,U ) = 0, for any

X,Y ∈ D. From (3.7), g(AX,U ) = 0, for any X ∈ D. Therefore, the above equation

yields g(φAX,Y ) = 0, for any X,Y ∈ D. As D is φ-invariant this yields that M is

ruled.

If we now suppose ω(U ) 6= 0, but ω(φU ) = 0, take Z = Y = U in (3.1).

We obtain g(φAX,U ) = 0, for any X ∈ D. Thus AφU = 0. Taking Y ∈ DU =

Span{ξ,U , φU}⊥, Z = U in (3.1) we get ω(U )g(φAX,Y ) +ω(Y )g(φAX,U ) = 0, for

any X ∈ D. As AφU = 0, this yields g(φAX,Y ) = 0, for any X ∈ D, Y ∈ DU . Thus

AφY = 0, for any Y ∈ DU . Thus the type number at any point is at most 2, and from

Theorem 2.2, M is ruled.

Now if ω(U ) = 0, ω(φU ) 6= 0, from (3.2), (3.3) and (3.4) we have g(AφU , φU ) =

g(AU , φU ) = 0. Taking Y = Z = φU in (3.1) we obtain g(AX,U ) = 0, for any

X ∈ D. Thus AU = βξ. If in (3.1) we take Z = U , Y = φU , we have g(φAX,U ) = 0,

for any X ∈ D. Therefore, AφU = 0. Take now Y ∈ DU , Z = φU . From (3.1),

ω(φU )AφY − βω(Y )ξ has no component in D. Then from any X ∈ D we obtain

g(AφY, X) = 0. As DU is φ-invariant this means AY = 0 for any Y ∈ DU and M is

ruled.

Finally, we consider the case ω(U ) = ω(φU ) = 0. Taking Z = U in (3.1) we

have ω(Y )g(φAX,U ) = 0, and taking Z = φU , we get ω(Y )g(AX,U ) = 0, for any

X,Y ∈ D. If there exists Y ∈ DU such that ω(Y ) 6= 0, we should have AU = βξ,

AφU = 0 and DU is A-invariant. If in (3.1) we take Y = Z ∈ DU such that ω(Y ) 6= 0,

we get g(φAX,Y ) = 0 for any X ∈ DU , thus AφY = 0. Now from (3.1) we obtain

g(φAX, Z) = 0 for any X, Z ∈ DU , and M must be ruled.
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4 The Non-Hopf Case

From Lemmas 3.1 and 3.2, suppose that M is ruled. Then Aξ = αξ + βU , AU = βξ,

AZ = 0, for any Z ∈ Span{ξ,U}⊥. Thus Rξ(φU ) = φU and Rξ(U ) = U + αAU −
βAξ = (1 − β2)U . Thus φRξ(φU ) = −U , Rξ(φ2U ) = −Rξ(U ) = (β2 − 1)U . If M

satisfies (1.3), φRξ(φU ) − Rξ(φ2U ) = −β2U = ω(φU )ξ. This yields β = 0, which

is impossible.

Thus we must suppose that ω(X) = 0, for any X ∈ D. Now (1.3) becomes Rξφ =

φRξ . Therefore Rξ(φU ) = φU + αAφU = φRξ(U ) = φ(U + αAU − βAξ). So we

have

(4.1) αAφU = αφAU − β2φU .

From (4.1) it is clear that α 6= 0. Moreover, if X ∈ DU , Rξ(φX) = φX + αAφX =

φRξ(X) = φ(X + αAX). As α 6= 0, we get

(4.2) AφX = φAX

for any X ∈ DU . Let X,Y ∈ D. From (1.2), g
(

(∇XRξ)Y, ξ
)

= cg(φAX,Y ) =

g
(

Y, (∇XRξ)ξ
)

= −g
(

Y, Rξ(φAX)
)

. If we develop this equation we obtain

(4.3) (c + 1)g(φAX,Y ) = −αg(Y, AφAX) + β2g(U , φAX)g(U ,Y )

for any X,Y ∈ D. Thus (c + 1)φAX + αAφAX − β2g(U , φAX)U has no component

in D. Therefore

(4.4) (c + 1)φAX + αAφAX − β2g(U , φAX)U = −αβg(AφU , X)ξ

for any X ∈ D.

From (4.3) we also obtain that (c + 1)AφY + αAφAY − β2g(U ,Y )AφU has no

component in D, for any Y ∈ D. Thus

(4.5) (c+1)AφX+αAφAX−β2g(U , X)AφU = (c+1)βg(φX,U )ξ−αβg(AφU , X)ξ

for any X ∈ D.

From (4.2), (4.4) and (4.5) we obtain β2g(U , φAX)U = 0. This means that

g(AX, φU ) = 0 for any X ∈ DU . From (4.1), for any X ∈ DU we have g(φAU , X) =

0. This yields g(AU , X) = 0, for any X ∈ DU . Therefore, DU is A-invariant, and

from (4.2) the eigenspaces of the restriction of A to DU are holomorphic, which

means that they are invariant by φ.

First suppose that c = −1. From (4.4) and (4.5), we have now

αAφAX − β2g(U , φAX)U = −αβg(AφU , X)ξ and

αAφAX − β2g(U , X)AφU = −αβg(AφU , X)ξ

for any X ∈ D. If we take X = φU we have g(AφU , φU ) = 0. From (4.1) we obtain

αg(AφU ,U ) = αg(φAU ,U ) = −αg(AφU ,U ). This gives g(AU , φU ) = 0. Thus

(4.6) AφU = 0.
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Again from (4.1), αφAU = β2φU . Applying φ to this equality we get

(4.7) AU = βξ +
β2

α
U .

From (4.3), for any X ∈ DU , AφAX = 0 = φA2X. If we suppose that AX = λX,

λ = 0. Thus the type number t(p) ≤ 2 at any point of M. Thus M should be ruled.

Then, from [7], we know that Aξ = αξ + βU , AU = βξ. This and (4.7) give a

contradiction. So we must suppose that c 6= −1.

From (4.4) and (4.5) we obtain (c + 1)φAX − β2g(U , φAX)U = (c + 1)AφX −
β2g(U , X)AφU − (c + 1)βg(φX,U )ξ, for any X ∈ D. Taking X = U in the above

equation we have (c + 1)φAU − β2g(U , φAU )U = (c + 1)AφU − β2g(U , X)AφU .

Taking its scalar product with φU we get

(4.8) (c + 1)g(AU ,U ) = (c + 1 − β2)g(AφU , φU ).

If we take the scalar product of (4.1) and φU we have

(4.9) αg(AφU , φU ) = αg(AU ,U ) − β2.

Moreover, from (4.1) we have g(AU , φU ) = 0. From (4.8) and (4.9) we get

g(AφU , φU ) = − c+1
α and g(AU ,U ) =

β2
−(c+1)

α . That means AU = βξ + β2
−(c+1)

α U ,

AφU = − c+1
α φU . From (4.2) and (4.3), for any X ∈ DU such that AX = λX,

λ(c + 1 + λα) = 0. Thus either λ = 0 or λ = − c+1
α . From Theorem 2.3 at least there

exists X ∈ DU such that AX = λX with λ 6= − c+1
α . Thus there exists X ∈ DU such

that AX = 0. The proof of the main theorem in [5] yields that this is not posssible.

Thus M must be Hopf.

5 The Hopf Case

Suppose that Aξ = αξ. You can easily see that now Rξφ = φRξ , Then, if X ∈ D

satisfies AX = λX, αλφX = αAφX. Thus either α = 0 or AφX = λφX. From

Theorem 2.1, the second possibility yields M is of type either A1 or A2.

If α = 0, then

g
(

(∇XRξ)Y, ξ
)

= g
(

Y, (∇XRξ)ξ
)

= −g
(

Y, Rξ(φAX)
)

= −g
(

Rξ(Y ), φAX
)

= −g(Y, φAX) = cg(φAX,Y ).

Thus c = −1, and M is locally congruent to a tube of radius π
4

over a complex

submanifold of CPm (see [2], [8]). It is easy to see that these real hypersurfaces satisfy

both (1.2) and (1.3).

If we consider a geodesic hypersphere of radius r, 0 < r < π
2

, we can write Aξ =

2 cot(2r)ξ, AX = cot(r)X, for any X ∈ D. Now (∇XRξ)Y =

(

cot2(r) − 1
)

∇XY −
g(φAX,Y )ξ − 2 cot(2r)A∇XY − 4 cot2(2r)g(φAX,Y )ξ. In order to satisfy (1.2), tak-

ing the scalar product of the above equation and ξ we must have cot2(r) = −c. Then
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g
(

(∇XRξ)Y,W
)

= 0 for any W ∈ D. This means that geodesic hyperspheres ap-

pearing in our theorem satisfy both (1.2) and (1.3).

If we consider a type A2 real hypersurface, we can write Aξ = 2 cot(2r)ξ, and there

exist X,W ∈ D such that AX = cot(r)X, AW = − tan(r)W . If we repeat the above

reasoning we have − cot2(r) = c = − tan2(r). Thus c = −1, r =
π
4

, and this finishes

the proof.
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