Canad. Math. Bull. Vol. 54 (3), 2011 pp. 422–429 doi:10.4153/CMB-2011-020-4 © Canadian Mathematical Society 2011

Two Conditions on the Structure Jacobi Operator for Real Hypersurfaces in Complex Projective Space

Juan de Dios Pérez and Young Jin Suh

Abstract. We classify real hypersurfaces in complex projective space whose structure Jacobi operator satisfies two conditions at the same time.

1 Introduction

Let $\mathbb{C}P^m$, $m \ge 2$, be a complex projective space endowed with the metric g of constant holomorphic sectional curvature 4. Let M be a connected real hypersurface of $\mathbb{C}P^m$ without boundary. Let J denote the complex structure of $\mathbb{C}P^m$, N a locally defined unit normal vector field on M and (ϕ, ξ, η, g) the almost contact metric structure induced on M. In particular, $-JN = \xi$ is a tangent vector field to M called the structure vector field on M. We also call \mathbb{D} the maximal holomorphic distribution on M, that is, the distribution on M given by all vectors orthogonal to ξ at any point of M.

The study of real hypersurfaces in non-flat complex space forms is a classical topic in Differential Geometry. The classification of homogeneous real hypersurfaces in $\mathbb{C}P^m$ was obtained by Takagi, see [8], [9], and is given by the following list:

A₁: Geodesic hyperspheres.

- A₂: Tubes over totally geodesic complex projective spaces.
- *B*: Tubes over complex quadrics and $\mathbb{R}P^m$.
- *C*: Tubes over the Segre embedding of $\mathbb{C}P^1 \times \mathbb{C}P^n$, where 2n + 1 = m and $m \ge 5$.
- *D*: Tubes over the Plucker embedding of the complex Grassmann manifold G(2, 5). In this case m = 9.
- *E*: Tubes over the canonical embedding of the Hermitian symmetric space SO(10)/U(5). In this case m = 15.

Other examples of real hypersurfaces are ruled real ones, that were introduced by Kimura [4]: take a regular curve γ in $\mathbb{C}P^m$ with tangent vector field X. At each point of γ there is a unique complex projective hyperplane cutting γ so as to be orthogonal not only to X, but also to JX. The union of these hyperplanes is called a ruled real hypersurface. It will be an embedded hypersurface locally although globally it will in general have self-intersections and singularities. Equivalently, a ruled real

Received by the editors September 10, 2008; revised April 15, 2009.

Published electronically March 5, 2011.

The first author is partially supported by MEC-FEDER Grant MTM2007-60731; the second author is supported by R17-2008-001-01001-0 from the National Research Foundation of Korea.

AMS subject classification: **53C15**, 53B25.

Keywords: complex projective space, real hypersurface, structure Jacobi operator, two conditions.

hypersurface is such that \mathbb{D} is integrable or $g(A\mathbb{D}, \mathbb{D}) = 0$, where A denotes the shape operator of the immersion.

We will call the Jacobi operator on M with respect to ξ the structure Jacobi operator on M. Then the structure Jacobi operator $R_{\xi} \in \text{End}(T_{p}M)$ is given by

$$(R_{\xi}(Y))(p) = (R(Y,\xi)\xi)(p)$$

for any $Y \in T_pM$, $p \in M$, where *R* denotes the curvature operator of *M* in $\mathbb{C}P^m$.

Recently [5] we have classified real hypersurfaces in $\mathbb{C}P^m$ whose structure Jacobi operator satisfies

(1.1)
$$(\nabla_X R_{\xi})Y = c\{\eta(Y)\phi AX - g(\phi AX, Y)\xi\}$$

for any *X*, *Y* tangent to *M*, where *c* is a non-zero constant. If we restrict (1.1) to \mathbb{D} we obtain

(1.2)
$$(\nabla_X R_{\xi})Y = cg(\phi AX, Y)\xi$$

for any $X, Y \in \mathbb{D}$, *c* being a non-zero constant. We also consider the following condition

(1.3)
$$(R_{\xi}\phi - \phi R_{\xi})X = \omega(X)\xi$$

for any $X \in \mathbb{D}$, where ω is an 1-form on M. If we put both conditions together we will prove the following:

Theorem 1.1 Let M be a real hypersurface in $\mathbb{C}P^m$, $m \ge 3$, satisfying (1.2) and (1.3). Then c < 0 and

- (i) if $c \neq -1$, *M* is locally congruent to a geodesic hypersphere of radius *r* such that $\cot^2(r) = -c$,
- (ii) if c = -1, M is locally congruent to a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C}P^m$.

Results related to our theorem have been obtained by Ki and the second author [3] for the shape operator of *M*, and by Baikoussis [1] in the case of the Ricci tensor.

2 Preliminaries

Throughout this paper, all manifolds, vector fields, *etc.*, will be considered of class C^{∞} unless otherwise stated. Let *M* be a connected real hypersurface in $\mathbb{C}P^m$, $m \ge 2$, without boundary. Let *N* be a locally defined unit normal vector field on *M*. Let ∇ be the Levi–Civita connection on *M* and (J,g) the Kaehlerian structure of $\mathbb{C}P^m$.

For any vector field *X* tangent to *M* we write $JX = \phi X + \eta(X)N$, and $-JN = \xi$. Then (ϕ, ξ, η, g) is an almost contact metric structure on *M*. That is, we have

(2.1)
$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for any tangent vectors X, Y to M. From (2.1) we obtain

(2.2)
$$\phi \xi = 0, \quad \eta(X) = g(X, \xi).$$

From the parallelism of *J* we get

(2.3)
$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi$$

and

(2.4)
$$\nabla_X \xi = \phi A X$$

for any X, Y tangent to M, where A denotes the shape operator of the immersion. As the ambient space has holomorphic sectional curvature 4, the equations of Gauss and Codazzi are given, respectively, by

(2.5)
$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y$$
$$- 2g(\phi X,Y)\phi Z + g(AY,Z)AX - g(AX,Z)AY,$$

and

(2.6)
$$(\nabla_X A)Y - (\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi$$

for any tangent vectors *X*, *Y*, *Z* to *M*, where *R* is the curvature tensor of *M*. From the Gauss equation we have

(2.7)
$$R_{\xi}(X) = X - \eta(X)\xi + \eta(A\xi)AX - \eta(AX)A\xi$$

for any *X* tangent to *M*.

In the sequel we need the following results:

Theorem 2.1 ([6]) Let M be a real hypersurface of $\mathbb{C}P^m$, $m \ge 2$. Then the following are equivalent:

- (i) M is locally congruent to one of the homogeneous hypersurfaces of class either A₁ or A₂.
- (ii) $\phi A = A\phi$.

We define the type number of *M* at $p \in M$, t(p), as the rank of the shape operator of *M* at *p*. We have:

Theorem 2.2 ([7]) Let M be a real hypersurface in $\mathbb{C}P^m$, $m \ge 3$, satisfying $t(p) \le 2$ for any point $p \in M$. Then M is a ruled real hypersurface.

Theorem 2.3 ([5]) There exist no real hypersurfaces in $\mathbb{C}P^m$, $m \ge 3$, whose shape operator is given by $A\xi = \alpha\xi + \beta U$, $AU = \beta\xi + \frac{\beta^2 - (c+1)}{\alpha}U$, $AX = -\frac{c+1}{\alpha}X$, for any tangent vector orthogonal to Span $\{\xi, U\}$, where U is a unit vector field in \mathbb{D} , α and β are non-vanishing smooth functions defined on M and c is a constant.

424

Two Conditions on the Structure Jacobi Operator

3 Some Lemmas

From condition (1.3), for any $Y, Z \in \mathbb{D}$ we get $g(R_{\xi}(\phi Y), Z) + g(R_{\xi}(Y), \phi Z) = 0$. Differentiating covariantly this equation in the direction of $X \in \mathbb{D}$ we obtain

$$g\Big(\nabla_X \big(R_{\xi}(\phi Y)\big), Z\Big) + g\big(R_{\xi}(\phi Y), \nabla_X Z\Big) \\ + g\Big(\nabla_X \big(R_{\xi}(Y)\big), \phi Z\Big) + g\big(R_{\xi}(Y), \nabla_X \phi Z\Big) = 0.$$

This yields

$$g((\nabla_X R_{\xi})\phi Y, Z) + g(R_{\xi}(\nabla_X \phi Y), Z) + g(R_{\xi}(\phi Y), \nabla_X Z) + g((\nabla_X R_{\xi})Y, \phi Z) + g(R_{\xi}(\nabla_X Y), \phi Z) + g(R_{\xi}(Y), \nabla_X \phi Z) = 0.$$

From (1.2), bearing in mind that $R_{\xi}(\xi) = 0$, we obtain

$$g(R_{\xi}(\nabla_{X}\phi Y), Z) + g(R_{\xi}(\phi Y), \nabla_{X}Z) + g(R_{\xi}(\nabla_{X}Y), \phi Z) + g(R_{\xi}(Y), \nabla_{X}\phi Z) = 0.$$

As $\nabla_{X}\phi Z = (\nabla_{X}\phi)Z + \phi\nabla_{X}Z = -g(AX, Z)\xi + \phi\nabla_{X}Z$, we have
 $g(R_{\xi}\phi(\nabla_{X}Y), Z) + g(R_{\xi}(\phi Y), \nabla_{X}Z) - g(\phi R_{\xi}(\nabla_{X}Y), Z) - g(\phi R_{\xi}(Y), \nabla_{X}Z) = 0.$

Now from (1.3) we obtain $\omega(Z)g(\xi, \nabla_X Y) + \omega(Y)g(\xi, \nabla_X Z) = 0$. That is

(3.1)
$$\omega(Z)g(\phi AX,Y) + \omega(Y)g(\phi AX,Z) = 0,$$

for any $X, Y, Z \in \mathbb{D}$. *M* is called Hopf if ξ is a principal vector field, that is $A\xi = \alpha \xi$ for a certain function α . Let us suppose that *M* is non-Hopf. Thus we can write, at least locally, $A\xi = \alpha \xi + \beta U$, where *U* is a unit vector field in \mathbb{D} and β a non-vanishing function defined on *M*.

If we take X = U = Y, $Z = \phi U$ in (3.1) we get

(3.2)
$$-\omega(\phi U)g(AU,\phi U) + \omega(U)g(AU,U) = 0.$$

If we take X = U, $Y = Z = \phi U$ in (3.1) we have

(3.3)
$$\omega(\phi U)g(AU,U) = 0$$

Lemma 3.1 If M satisfies (1.2), (1.3) and $g(AU, U) \neq 0$, then $\omega(Y) = 0$, for any $Y \in \mathbb{D}$.

Proof As $g(AU, U) \neq 0$, from (3.3) we get $\omega(\phi U) = 0$. Then, from (3.2), $\omega(U) = 0$. If in (3.1) we take $Z = \phi U$, we have $\omega(Y)g(AX, U) = 0$, for any $X, Y \in \mathbb{D}$. This means that $\omega(Y)AU$ has no component in \mathbb{D} . If there exists $Y \in \mathbb{D}$ such that $\omega(Y) \neq 0$, AU has no component in \mathbb{D} , thus g(AU, U) = 0 and we arrive at a contradiction. **Lemma 3.2** With the same conditions as in Lemma 3.1, if g(AU, U) = 0, either $\omega(Y) = 0$, for any $Y \in \mathbb{D}$, or M is ruled.

Proof In this case, (3.2) becomes $\omega(\phi U)g(AU, \phi U) = 0$. Taking $Y = U, X = Z = \phi U$ in (3.1) we get

(3.4)
$$-\omega(\phi U)g(A\phi U,\phi U) + \omega(U)g(A\phi U,U) = 0,$$

and taking Y = Z = U, $X = \phi U$ in (3.1) we have

(3.5)
$$\omega(U)g(A\phi U, \phi U) = 0.$$

If we suppose $\omega(\phi U)\omega(U) \neq 0$, from (3.4) and (3.5) we obtain

(3.6)
$$g(A\phi U, \phi U) = g(AU, \phi U) = 0.$$

Take Z = U in (3.1). Then $\omega(U)g(\phi AX, Y) + \omega(Y)g(\phi AX, U) = 0$, for any $X, Y \in \mathbb{D}$. If now X = U, we have $\omega(U)g(\phi AU, Y) = 0$, for any $Y \in \mathbb{D}$. This yields $\phi AU = 0$ and this gives

$$(3.7) AU = \beta \xi.$$

Choosing $Z = \phi U$ in (3.1) we obtain $\omega(\phi U)g(\phi AX, Y) + \omega(Y)g(AX, U) = 0$, for any $X, Y \in \mathbb{D}$. From (3.7), g(AX, U) = 0, for any $X \in \mathbb{D}$. Therefore, the above equation yields $g(\phi AX, Y) = 0$, for any $X, Y \in \mathbb{D}$. As \mathbb{D} is ϕ -invariant this yields that M is ruled.

If we now suppose $\omega(U) \neq 0$, but $\omega(\phi U) = 0$, take Z = Y = U in (3.1). We obtain $g(\phi AX, U) = 0$, for any $X \in \mathbb{D}$. Thus $A\phi U = 0$. Taking $Y \in \mathbb{D}_U =$ Span $\{\xi, U, \phi U\}^{\perp}, Z = U$ in (3.1) we get $\omega(U)g(\phi AX, Y) + \omega(Y)g(\phi AX, U) = 0$, for any $X \in \mathbb{D}$. As $A\phi U = 0$, this yields $g(\phi AX, Y) = 0$, for any $X \in \mathbb{D}, Y \in \mathbb{D}_U$. Thus $A\phi Y = 0$, for any $Y \in \mathbb{D}_U$. Thus the type number at any point is at most 2, and from Theorem 2.2, *M* is ruled.

Now if $\omega(U) = 0$, $\omega(\phi U) \neq 0$, from (3.2), (3.3) and (3.4) we have $g(A\phi U, \phi U) = g(AU, \phi U) = 0$. Taking $Y = Z = \phi U$ in (3.1) we obtain g(AX, U) = 0, for any $X \in \mathbb{D}$. Thus $AU = \beta \xi$. If in (3.1) we take $Z = U, Y = \phi U$, we have $g(\phi AX, U) = 0$, for any $X \in \mathbb{D}$. Therefore, $A\phi U = 0$. Take now $Y \in \mathbb{D}_U$, $Z = \phi U$. From (3.1), $\omega(\phi U)A\phi Y - \beta\omega(Y)\xi$ has no component in \mathbb{D} . Then from any $X \in \mathbb{D}$ we obtain $g(A\phi Y, X) = 0$. As \mathbb{D}_U is ϕ -invariant this means AY = 0 for any $Y \in \mathbb{D}_U$ and M is ruled.

Finally, we consider the case $\omega(U) = \omega(\phi U) = 0$. Taking Z = U in (3.1) we have $\omega(Y)g(\phi AX, U) = 0$, and taking $Z = \phi U$, we get $\omega(Y)g(AX, U) = 0$, for any $X, Y \in \mathbb{D}$. If there exists $Y \in \mathbb{D}_U$ such that $\omega(Y) \neq 0$, we should have $AU = \beta\xi$, $A\phi U = 0$ and \mathbb{D}_U is *A*-invariant. If in (3.1) we take $Y = Z \in \mathbb{D}_U$ such that $\omega(Y) \neq 0$, we get $g(\phi AX, Y) = 0$ for any $X \in \mathbb{D}_U$, thus $A\phi Y = 0$. Now from (3.1) we obtain $g(\phi AX, Z) = 0$ for any $X, Z \in \mathbb{D}_U$, and *M* must be ruled.

426

Two Conditions on the Structure Jacobi Operator

4 The Non-Hopf Case

From Lemmas 3.1 and 3.2, suppose that *M* is ruled. Then $A\xi = \alpha\xi + \beta U$, $AU = \beta\xi$, AZ = 0, for any $Z \in \text{Span}\{\xi, U\}^{\perp}$. Thus $R_{\xi}(\phi U) = \phi U$ and $R_{\xi}(U) = U + \alpha AU - \beta A\xi = (1 - \beta^2)U$. Thus $\phi R_{\xi}(\phi U) = -U$, $R_{\xi}(\phi^2 U) = -R_{\xi}(U) = (\beta^2 - 1)U$. If *M* satisfies (1.3), $\phi R_{\xi}(\phi U) - R_{\xi}(\phi^2 U) = -\beta^2 U = \omega(\phi U)\xi$. This yields $\beta = 0$, which is impossible.

Thus we must suppose that $\omega(X) = 0$, for any $X \in \mathbb{D}$. Now (1.3) becomes $R_{\xi}\phi = \phi R_{\xi}$. Therefore $R_{\xi}(\phi U) = \phi U + \alpha A \phi U = \phi R_{\xi}(U) = \phi (U + \alpha A U - \beta A \xi)$. So we have

(4.1)
$$\alpha A \phi U = \alpha \phi A U - \beta^2 \phi U.$$

From (4.1) it is clear that $\alpha \neq 0$. Moreover, if $X \in \mathbb{D}_U$, $R_{\xi}(\phi X) = \phi X + \alpha A \phi X = \phi R_{\xi}(X) = \phi(X + \alpha A X)$. As $\alpha \neq 0$, we get

(4.2)
$$A\phi X = \phi A X$$

for any $X \in \mathbb{D}_U$. Let $X, Y \in \mathbb{D}$. From (1.2), $g((\nabla_X R_{\xi})Y, \xi) = cg(\phi AX, Y) = g(Y, (\nabla_X R_{\xi})\xi) = -g(Y, R_{\xi}(\phi AX))$. If we develop this equation we obtain

(4.3)
$$(c+1)g(\phi AX,Y) = -\alpha g(Y,A\phi AX) + \beta^2 g(U,\phi AX)g(U,Y)$$

for any $X, Y \in \mathbb{D}$. Thus $(c+1)\phi AX + \alpha A\phi AX - \beta^2 g(U, \phi AX)U$ has no component in \mathbb{D} . Therefore

(4.4)
$$(c+1)\phi AX + \alpha A\phi AX - \beta^2 g(U,\phi AX)U = -\alpha\beta g(A\phi U,X)\xi$$

for any $X \in \mathbb{D}$.

From (4.3) we also obtain that $(c + 1)A\phi Y + \alpha A\phi AY - \beta^2 g(U, Y)A\phi U$ has no component in \mathbb{D} , for any $Y \in \mathbb{D}$. Thus

(4.5)
$$(c+1)A\phi X + \alpha A\phi AX - \beta^2 g(U,X)A\phi U = (c+1)\beta g(\phi X,U)\xi - \alpha\beta g(A\phi U,X)\xi$$

for any $X \in \mathbb{D}$.

From (4.2), (4.4) and (4.5) we obtain $\beta^2 g(U, \phi AX)U = 0$. This means that $g(AX, \phi U) = 0$ for any $X \in \mathbb{D}_U$. From (4.1), for any $X \in \mathbb{D}_U$ we have $g(\phi AU, X) = 0$. This yields g(AU, X) = 0, for any $X \in \mathbb{D}_U$. Therefore, \mathbb{D}_U is *A*-invariant, and from (4.2) the eigenspaces of the restriction of *A* to \mathbb{D}_U are holomorphic, which means that they are invariant by ϕ .

First suppose that c = -1. From (4.4) and (4.5), we have now

$$\alpha A \phi A X - \beta^2 g(U, \phi A X) U = -\alpha \beta g(A \phi U, X) \xi \text{ and}$$
$$\alpha A \phi A X - \beta^2 g(U, X) A \phi U = -\alpha \beta g(A \phi U, X) \xi$$

for any $X \in \mathbb{D}$. If we take $X = \phi U$ we have $g(A\phi U, \phi U) = 0$. From (4.1) we obtain $\alpha g(A\phi U, U) = \alpha g(\phi AU, U) = -\alpha g(A\phi U, U)$. This gives $g(AU, \phi U) = 0$. Thus

Again from (4.1), $\alpha \phi AU = \beta^2 \phi U$. Applying ϕ to this equality we get

(4.7)
$$AU = \beta \xi + \frac{\beta^2}{\alpha} U.$$

From (4.3), for any $X \in \mathbb{D}_U$, $A\phi AX = 0 = \phi A^2 X$. If we suppose that $AX = \lambda X$, $\lambda = 0$. Thus the type number $t(p) \leq 2$ at any point of *M*. Thus *M* should be ruled. Then, from [7], we know that $A\xi = \alpha\xi + \beta U$, $AU = \beta\xi$. This and (4.7) give a contradiction. So we must suppose that $c \neq -1$.

From (4.4) and (4.5) we obtain $(c + 1)\phi AX - \beta^2 g(U, \phi AX)U = (c + 1)A\phi X - \beta^2 g(U, \phi AX)U$ $\beta^2 g(U, X) A \phi U - (c+1) \beta g(\phi X, U) \xi$, for any $X \in \mathbb{D}$. Taking X = U in the above equation we have $(c+1)\phi AU - \beta^2 g(U, \phi AU)U = (c+1)A\phi U - \beta^2 g(U, X)A\phi U$. Taking its scalar product with ϕU we get

(4.8)
$$(c+1)g(AU,U) = (c+1-\beta^2)g(A\phi U,\phi U).$$

If we take the scalar product of (4.1) and ϕU we have

(4.9)
$$\alpha g(A\phi U, \phi U) = \alpha g(AU, U) - \beta^2$$

Moreover, from (4.1) we have $g(AU, \phi U) = 0$. From (4.8) and (4.9) we get $g(A\phi U, \phi U) = -\frac{c+1}{2}$ and $g(AU, U) = \frac{\beta^2 - (c+1)}{2}$. That means $AU = \beta \xi + \frac{\beta^2 - (c+1)}{2}U$, $A\phi U = -\frac{c+1}{\alpha}\phi U$. From (4.2) and (4.3), for any $X \in \mathbb{D}_U$ such that $AX \stackrel{\alpha}{=} \lambda X$, $\lambda(c+1+\lambda\alpha) = 0$. Thus either $\lambda = 0$ or $\lambda = -\frac{c+1}{\alpha}$. From Theorem 2.3 at least there exists $X \in \mathbb{D}_U$ such that $AX = \lambda X$ with $\lambda \neq -\frac{c+1}{\alpha}$. Thus there exists $X \in \mathbb{D}_U$ such that AX = 0. The proof of the main theorem in $\begin{bmatrix} 5 \end{bmatrix}$ yields that this is not posssible.

Thus *M* must be Hopf.

The Hopf Case 5

Suppose that $A\xi = \alpha\xi$. You can easily see that now $R_{\xi}\phi = \phi R_{\xi}$, Then, if $X \in \mathbb{D}$ satisfies $AX = \lambda X$, $\alpha \lambda \phi X = \alpha A \phi X$. Thus either $\alpha = 0$ or $A \phi X = \lambda \phi X$. From Theorem 2.1, the second possibility yields M is of type either A_1 or A_2 .

If $\alpha = 0$, then

$$g((\nabla_X R_{\xi})Y, \xi) = g(Y, (\nabla_X R_{\xi})\xi) = -g(Y, R_{\xi}(\phi AX))$$
$$= -g(R_{\xi}(Y), \phi AX) = -g(Y, \phi AX) = cg(\phi AX, Y).$$

Thus c = -1, and M is locally congruent to a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C}P^m$ (see [2], [8]). It is easy to see that these real hypersurfaces satisfy both (1.2) and (1.3).

If we consider a geodesic hypersphere of radius r, $0 < r < \frac{\pi}{2}$, we can write $A\xi =$ $2\cot(2r)\xi$, $AX = \cot(r)X$, for any $X \in \mathbb{D}$. Now $(\nabla_X R_{\xi})Y = (\cot^2(r) - 1)\nabla_X Y - (\cot^2(r) - 1)\nabla_X Y$ $g(\phi AX, Y)\xi - 2\cot(2r)A\nabla_X Y - 4\cot^2(2r)g(\phi AX, Y)\xi$. In order to satisfy (1.2), taking the scalar product of the above equation and ξ we must have $\cot^2(r) = -c$. Then

428

 $g((\nabla_X R_{\xi})Y, W) = 0$ for any $W \in \mathbb{D}$. This means that geodesic hyperspheres appearing in our theorem satisfy both (1.2) and (1.3).

If we consider a type A_2 real hypersurface, we can write $A\xi = 2 \cot(2r)\xi$, and there exist $X, W \in \mathbb{D}$ such that $AX = \cot(r)X$, $AW = -\tan(r)W$. If we repeat the above reasoning we have $-\cot^2(r) = c = -\tan^2(r)$. Thus c = -1, $r = \frac{\pi}{4}$, and this finishes the proof.

References

- C. Baikoussis, A characterization of real hypersurfaces in complex space forms in terms of the Ricci tensor. Canad. Math. Bull. 40(1997), 257–265. doi:10.4153/CMB-1997-031-5
- [2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space. Trans. Amer. Math. Soc. 269(1982), 481–499.
- [3] U-H. Ki and Y. J. Suh, On a characterization of real hypersurfaces of type A in a complex space form. Canad. Math. Bull. 37(1994), 238–244. doi:10.4153/CMB-1994-035-8
- [4] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in $P^n(\mathbb{C})$. Math. Ann. **276**(1987), 487–497. doi:10.1007/BF01450843
- [5] H. J. Lee, J. de Dios Pérez, F. G. Santos, and Y. J. Suh, On the structure Jacobi operator of a real hypersurface in complex projective space. Monatsh. Math. 158(2009), no. 2, 187–194. doi:10.1007/s00605-008-0025-7
- [6] M. Okumura, On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212(1975), 355–364. doi:10.1090/S0002-9947-1975-0377787-X
- [7] Y. J. Suh, A characterization of ruled real hypersurfaces in $P_n(\mathbb{C})$. J. Korean Math. Soc. **29**(1992), 351–359.
- [8] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures. J. Math. Soc. Japan 27(1975), 43–53. doi:10.2969/jmsj/02710043
- R. Takagi, *Real hypersurfaces in a complex projective space with constant principal curvatures II.* J. Math. Soc. Japan 27(1975), 507–516. doi:10.2969/jmsj/02740507

Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain e-mail: jdperez@ugr.es

Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea e-mail: yjsuh@knu.ac.kr