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An Extension of Craig’s Family of Lattices

André Luiz Flores, J. Carmelo Interlando,
and Trajano Pires da Nóbrega Neto

Abstract. Let p be a prime, and let ζp be a primitive p-th root of unity. The lattices in Craig’s family are

(p − 1)-dimensional and are geometrical representations of the integral Z[ζp]-ideals 〈1 − ζp〉i , where

i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions

p − 1 where 149 ≤ p ≤ 3001, Craig’s lattices are the densest packings known. Motivated by this,

we construct (p − 1)(q − 1)-dimensional lattices from the integral Z[ζpq]-ideals 〈1 − ζp〉i〈1 − ζq〉 j ,

where p and q are distinct primes and i and j are positive integers. In terms of sphere-packing density,

the new lattices and those in Craig’s family have the same asymptotic behavior. In conclusion, Craig’s

family is greatly extended while preserving its sphere-packing properties.

1 Introduction

In this section we briefly review the construction of lattices from number fields and

give a summary of our contribution. The main goal is to establish notation. More

details on this background material can be found in [1, 3] and the references therein.

Let K be a number field of degree d, and let σ1, . . . , σd be the embeddings

(Q-monomorphisms) of K into C, the field of complex numbers. As usual, σi is

real for 1 ≤ i ≤ r, and σ j+s is the complex conjugate of σ j for r + 1 ≤ j ≤ r + s.

Hence, d = r + 2s. The canonical embedding σK : K → Rd is the injective ring

homomorphism defined by

σK (x) =
(

σ1(x), . . . , σr(x),ℜσr+1(x),ℑσr+1(x), . . . ,ℜσr+s(x),ℑσr+s(x)
)

,

where ℜz and ℑz are the real and imaginary parts of the complex number z, respec-

tively.

Let OK be the ring of algebraic integers of K, and let a be a nonzero OK -ideal of

absolute norm NK/Q (a) = |OK/a|. The set σK(a) = {σK (α) | α ∈ a}, also called the

geometric representation of a, is a d-dimensional point lattice (or lattice, for short)

whose fundamental region has volume

(1.1) V (σK(a)) = 2−s
√

|Disc(K)| · NK/Q (a),

where |Disc(K)| is the absolute value of the discriminant of K, see [3, p. 107]. We

also say that σK (a) is the lattice associated with a.

Given α ∈ a, the squared Euclidean distance between the point σK (α) ∈ Rd

and the origin is equal to |σK (α)|2 = cK TrK/Q (αᾱ), where cK = 1 if K is totally
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real, cK =
1
2

if K is totally complex, TrK/Q ( · ) denotes trace, and ᾱ is the complex

conjugate of α; see [1, p. 225]. The parameter

ρ =
1
2

min{|σK (α)| | α ∈ a, α 6= 0}

is called the packing radius of σK(a).

The center density δ(Λ) of a d-dimensional lattice Λ is equal to ρd/V (Λ), where

V (Λ) is the volume of a fundamental region for Λ. The sphere-packing density of Λ

is ∆ = Vdδ(Λ), where Vd is the volume of a d-dimensional sphere of radius 1; see

[1, pp. 6–13]. In view of (1.1), the center density of the lattice σK (a) is given by

(1.2) δ(σK(a)) =
2sρd

√

|Disc(K)|NK/Q (a)
.

Let F be the field Q(ζp), and let p be the integral OF-ideal 〈1−ζp〉. The (p−1)-di-

mensional Craig lattice ([1, Ch. 8]) is defined as A(i)
p−1 = σF(pi). For i ≤ (p − 3)/2,

the packing radius of A(i)
p−1 is lower bounded by

√
pi/2; see [2]. Moreover, for large

n = p − 1, these lattice packings satisfy

(1.3) 1
n

log2 ∆n & − 1
2

log2 log2 n,

where ∆n represents the density of the n-dimensional packing; see [1, p. 17].

The contribution of the present work is to extend Craig’s technique as follows. Let

L be the cyclotomic field Q(ζpq), where p and q are distinct primes. Let Ii j = PiQ j

be an integral OL-ideal where P = 〈1 − ζp〉 and Q = 〈1 − ζq〉 are also OL-ideals,

and i and j are positive integers. The new lattices are defined as σL(Ii j). Note that

for each i and j, σL(Ii j) is an n-dimensional lattice, where n = (p − 1)(q − 1). In

Section 2, we show that the packing radius of σL(Ii j) is lower bounded by
√

2pqi j/2

for i ≤ (p − 1)/2 and j ≤ (q − 1)/2. In Section 3 we calculate the center density of

σL(Ii j) and show that similar to Craig’s lattices, the new lattices are asymptotically

good with respect to their densities∆n; that is, (1.3) holds for large n = (p−1)(q−1).

2 The Packing Radius of σL(Ii j)

In this section we will prove that Tr(ξξ̄) ≥ 4pqi j for any element ξ 6= 0 in Ii j . This

is the statement of Theorem 2.6, which will immediately provide a lower bound for

the packing radius of σL(Ii j). A few definitions, observations, and lemmas preceding

that result are in order.

Any x ∈ Z[ζpq] can be expressed as x =
∑p−2

k=0 xkζ
k
p where xk ∈ Z[ζq] for k =

0, . . . , p − 2, or as x =
∑q−2

k=0 ykζ
k
q , where yk ∈ Z[ζp] for k = 0, . . . , q − 2. With this

notation in mind, define the mappings

λp : Z[ζpq] → Z[ζp] by x =

q−2
∑

k=0

ykζ
k
q 7→

q−2
∑

k=0

yk,
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and

λq : Z[ζpq] → Z[ζq] by x =

p−2
∑

k=0

xkζ
k
p 7→

p−2
∑

k=0

xk.

Observe that λp (respectively, λq) is a homomorphism from the additive group of

Z[ζpq] into the additive group of Z[ζp] (respectively, Z[ζq]). The next two lemmas

follow by direct inspection, hence their proofs are omitted.

Lemma 2.1 Let w =
∑p−2

k=0 wkζ
k
p ∈ Z[ζp]. Then

TrQ(ζp)/Q (ww̄) = p

( p−2
∑

k=0

w2
k

)

−
( p−2
∑

k=0

wk

) 2

= (p − 1)

( p−2
∑

k=0

w2
k

)

− 2
∑

k<s

wkws.

Lemma 2.2 Let x =
∑p−2

k=0 xkζ
k
p ∈ Z[ζpq]. Then

TrQ(ζpq)/Q (xx̄) = p

( p−2
∑

k=0

TrQ(ζq)/Q (xkxk)

)

− TrQ(ζq)/Q

( p−2
∑

k=0

xk

)( p−2
∑

k=0

xk

)

.

Lemma 2.3 Let x =
∑p−2

k=0 xkζ
k
p ∈ Z[ζpq]. Then λq(ζa

px) = λq(x) − pxp−1−a for

any integer a such that 1 ≤ a < p − 1.

Proof Write

ζa
px = ζa

p(x0 + x1ζp + · · · + xp−2ζ
p−2
p )

= −xp−1−a + (x0 − xp−1−a)ζp + (x1 − xp−1−a)ζ2
p + · · · + (xp−3 − xp−1−a)ζ

p−2
p

and calculate λq of the latter expression using the definition of the mapping.

Lemma 2.4 Let x =
∑p−2

k=0 xkζ
k
p ∈ Z[ζpq], and let f (X) =

∑p−2
k=0 xkXk ∈ Z[ζq][X].

Let f (k)(X) denote the k-th derivative of f for 0 ≤ k ≤ p − 1. If x ∈ pi , where

1 ≤ i ≤ p, then

f (1) ≡ f (1) ≡ · · · ≡ f (i−1)(1) ≡ 0 (mod pZ[ζq]).

Proof Note that x ∈ pi if and only if there are polynomials g(X), h(X) ∈ Z[ζq][X]

such that

f (X) = x0 + x1X + · · · + xp−2X p−2
= g(X)(X − 1)i + h(X)(X p − 1).

The proof is completed by successively differentiating both sides with respect to X

and evaluating them at X = 1.

Lemma 2.5 ([2, Lemma 2, p. 149]) Let η 6= 0 be an element of pi with 1 ≤ i ≤ p−1
2

.

Then TrQ(ζp)/Q (ηη̄) ≥ 2pi.
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Theorem 2.6 Let ξ 6= 0 be an element of Ii j = Pi Q j , where 1 ≤ i ≤ p−1
2

and

1 ≤ j ≤ q−1
2

. Then TrQ(ζpq)/Q (ξξ̄) ≥ 4pqi j.

Proof Let M = {µ ∈ Ii j | µ 6= 0 and TrQ(ζpq)/Q (µµ̄) is minimum}. We can express

M as the disjoint union M0 ∪M1, where M0 = {µ ∈ M | λp(µ) = λq(µ) = 0} and

M1 = M \M0. The proof is carried out by showing the following claims.

Claim 2.7 If M0 = ∅, then TrQ(ζpq)/Q (ξξ̄) ≥ 4pqi j for all ξ 6= 0 in Ii j .

Claim 2.8 If M0 6= ∅, then TrQ(ζpq)/Q (ξξ̄) ≥ 4pqi j for all ξ 6= 0 in Ii j .

In preparation for the proofs of Claims 2.7 and 2.8, observe that an element x ∈
Q j can be written as x = (1 − ζq) jz, where z =

∑p−2
k=0 zkζ

k
p is in Z[ζpq]. Hence,

x =
∑p−2

k=0 xkζ
k
p, where xk ∈ (1 − ζq) j Z[ζq] for k = 0, . . . , p − 2. Similarly, x =

∑p−2
k=0 ykζ

k
q , where yk ∈ (1 − ζq) j Z[ζp] for k = 0, . . . , q − 2.

Proof of Claim 2.7 Define

T = {t ∈ Z[ζq] | ∃ ξ ′ ∈ M1 with λq(ξ ′) = t p}

and t0 ∈ T by

TrQ(ζq)/Q (t0t0) = min{TrQ(ζq)/Q (tt) | t ∈ T}.
Further, let ξ ∈ M1 be such that λq(ξ) = t0 p. During the rest of the proof, we will

use the representation

ξ = x0 + x1ζp + · · · + xp−2ζ
p−2
p ,

where xk =
∑q−2

ℓ=0 ak,ℓζ
ℓ
q and t0 =

∑q−2
ℓ=0 hℓζ

ℓ
q . We have

(2.1) λq(ξ) =

p−2
∑

m=0

xm =

p−2
∑

m=0

q−2
∑

ℓ=0

am,ℓζ
ℓ
q =

q−2
∑

ℓ=0

p−2
∑

m=0

am,ℓζ
ℓ
q .

On the other hand,

(2.2) λq(ξ) = t0 p =

( q−2
∑

ℓ=0

hℓζ
ℓ
q

)

p.

From (2.1) and (2.2), it follows that

(2.3)

p−2
∑

m=0

am,ℓ = phℓ.

For y = ζa
pξ with a ≥ 1, observe that TrQ(ζpq)/Q (y ȳ) = TrQ(ζpq)/Q (ξξ) is also min-

imum, that is, y ∈ M. Since M0 = ∅, we can assume that λq(y) 6= 0. The last

statement can be seen as follows:
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(i) If λq(ξ) 6= 0 and λp(ξ) = 0, then λp(y) = λp(ζa
pξ) = ζa

pλp(ξ) = 0, whence

λq(y) 6= 0.

(ii) If λq(ξ) 6= 0 and λp(ξ) 6= 0, it is no loss of generality to assume that λq(y) 6= 0.

Otherwise, λp(y) 6= 0 and λq(y) = 0, and we would reverse the roles of ξ and y.

By Lemma 2.3,

λq(y) = λq(ζa
pξ) = λq(ξ) − pxp−1−a = p(t0 − xp−1−a) 6= 0.

From the fact that y ∈ M and the definition of t0, we have

(2.4) TrQ(ζq)/Q ((xm − t0)(xm − t0)) ≥ TrQ(ζq)/Q (t0t0)

for m = 0, . . . , p − 2. The left-hand-side of (2.4) is equal to

q

q−2
∑

ℓ=0

(am,ℓ − hℓ)
2 −

( q−2
∑

ℓ=0

am,ℓ −
q−2
∑

ℓ=0

hℓ

) 2

,

which in turn is equal to

q

( q−2
∑

ℓ=0

am,ℓ
2 − 2

q−2
∑

ℓ=0

am,ℓhℓ +

q−2
∑

ℓ=0

hℓ
2

)

−
( q−2
∑

ℓ=0

am,ℓ

) 2

+ 2

( q−2
∑

ℓ=0

am,ℓ

)( q−2
∑

ℓ=0

hℓ

)

−
( q−2
∑

ℓ=0

hℓ

) 2

.

The right-hand-side of (2.4) is equal to

q

( q−2
∑

ℓ=0

hℓ
2

)

−
( q−2
∑

ℓ=0

hℓ

) 2

.

From

TrQ(ζq)/Q (xmxm) = q

( q−2
∑

ℓ=0

a2
wv

)

−
( q−2
∑

ℓ=0

awv

) 2

,

we obtain

TrQ(ζq)/Q (xmxm) ≥ 2q

( q−2
∑

ℓ=0

am,ℓhℓ

)

− 2

( q−2
∑

ℓ=0

am,ℓ

)( q−2
∑

ℓ=0

hℓ

)

.

Therefore,

p−2
∑

m=0

TrQ(ζq)/Q (xmxm) ≥
p−2
∑

m=0

2q

( q−2
∑

ℓ=0

am,ℓhℓ

)

− 2

p−2
∑

m=0

( q−2
∑

ℓ=0

am,ℓ

)( q−2
∑

ℓ=0

hℓ

)

= 2q

( q−2
∑

ℓ=0

p−2
∑

m=0

am,ℓhℓ

)

− 2

( q−2
∑

ℓ=0

p−2
∑

m=0

am,ℓ

)( q−2
∑

ℓ=0

hℓ

)

.
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From (2.3),

p−2
∑

m=0

TrQ(ζq)/Q (xmxm) ≥ 2q

( q−2
∑

ℓ=0

(phℓ)hℓ

)

− 2

( q−2
∑

ℓ=0

phℓ

)( q−2
∑

ℓ=0

hℓ

)

= 2p

(

q

( q−2
∑

ℓ=0

h2
ℓ

)

−
( q−2
∑

ℓ=0

hℓ

) 2
)

;

that is,

p−2
∑

m=0

TrQ(ζq)/Q (xmxm) ≥ 2p TrQ(ζq)/Q (t0t0).

Observe also that

TrQ(ζq)/Q

(

( p−2
∑

m=0

xm

)( p−2
∑

m=0

xm

)

)

= TrQ(ζq)/Q

(

λ(ξ)λ(ξ)

)

= TrQ(ζq)/Q

(

(t0 p)(t0 p)
)

= p2 TrQ(ζq)/Q (t0t0).

Lemma 2.1 and the latter equality yield

TrQ(ζpq)/Q (ξξ) = p

( p−2
∑

m=0

TrQ(ζq)/Q (xmxm)

)

− TrQ(ζq)/Q

(

( p−2
∑

m=0

xm

)( p−2
∑

m=0

xm

)

)

≥ p
(

2p TrQ(ζq)/Q (t0t0

)

) − p2 TrQ(ζq)/Q (t0t0) = p2 TrQ(ζq)/Q (t0t0).

For i ≤ p−1
2

, we obtain

TrQ(ζp)/Q (x0x0) ≥ p(p − 1) TrQ(ζq)/Q (t0t0) ≥ 2pi TrQ(ζq)/Q (t0t0) ≥ 4pqi j,

where the latter inequality follows from Lemma 2.5.

Proof of Claim 2.8 Let ξ ′ ∈ M0, and consider the representations

ξ ′ =

p−2
∑

m=0

xmζ
m
p and ξ ′ =

q−2
∑

ℓ=0

yℓζ
ℓ
q

where xm =
∑q−2

ℓ=0 am,ℓζ
ℓ
q and yℓ =

∑p−2
m=0 am,ℓζ

m
p . From Lemma 2.2,

TrQ(ζpq)/Q (ξξ̄) = p

( p−2
∑

m=0

TrQ(ζq)/Q (xkxk)

)

− TrQ(ζq)/Q

(

( p−2
∑

m=0

xm

)( p−2
∑

m=0

xm

)

)

= p

( p−2
∑

m=0

TrQ(ζq)/Q (xmxm)

)
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as λq(x) = 0. Regarding the latter summation, observe that

TrQ(ζq)/Q (xmxm) = q

( q−2
∑

ℓ=0

a2
m,ℓ

)

−
( q−2
∑

ℓ=0

am,ℓ

) 2

= q

( q−2
∑

ℓ=0

a2
m,ℓ

)

because

λq(ξ ′) =

p−2
∑

m=0

xm =

p−2
∑

m=0

q−2
∑

ℓ=0

am,ℓζ
ℓ
q =

q−2
∑

ℓ=0

( p−2
∑

m=0

am,ℓ

)

ζℓq = 0

implies that
∑p−2

m=0 am,ℓ = 0. Thus, we obtain the following expression:

TrQ(ζpq)/Q (ξξ̄) = pq

( q−2
∑

ℓ=0

p−2
∑

m=0

a2
m,ℓ

)

.

By way of contradiction, suppose that TrQ(ζpq)/Q (xx) < 4pqi j. This is equivalent to

(2.5)

q−2
∑

ℓ=0

p−2
∑

m=0

a2
m,ℓ < 4i j.

Therefore, for the matrix of coefficients A = (amℓ), exactly one of the following two

statements is true:

(i) There is a row with fewer than 2 j nonzero elements.

(ii) There is a column with fewer than 2i nonzero elements.

If that were not the case, then each row and each column of (a2
mℓ) would have at least

2i and 2 j strictly positive entries, respectively. We would conclude that the sum of

the entries is greater than or equal to 4i j; that is,
∑q−2

ℓ=0

∑p−2
m=0 a2

m,ℓ ≥ 4i j, which

contradicts (2.5).

In what follows, we assume that (i) occurs. If (ii) occurs, the proof is analogous.

Let m0 be an integer with 0 ≤ m0 ≤ p − 2, and xm0
=
∑q−2

ℓ=0 am0,ℓζ
ℓ
q , where the

number ν of nonzero coefficients am0,ℓ satisfies ν ≤ 2 j − 1. Since
∑q−2

ℓ=0 am0,ℓ = 0,

a parity verification shows that ν 6= 2 j − 1. Hence, ν ≤ 2e for some e ≤ j − 1.

Consider the polynomial f (X) ∈ Z[X] such that xm0
= f (ζq). We can write f (X) as:

f (X) = Xs1 + Xs2 + · · · + Xse − (Xt1 + Xt2 + · · · + Xte ),

where sk and tk ∈ {0, . . . , q − 2} for k = 1, . . . , e. The exponents sk and tk may

eventually repeat.

Since xm0
∈ Q j , applying Lemma 2.4 to f (X), the successive derivatives satisfy

f (k)(1) ≡ 0 (mod q) for k = 0, . . . , j − 1. These congruences imply that

e
∑

k=1

su
k ≡

e
∑

k=1

tu
k (mod p)
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for u = 0, . . . , j−1. It follows that the elementary symmetric functions of the sk and

tk of degree less than j coincide modulo q. Hence,

e
∏

k=1

(X − sk) ≡
e
∏

k=1

(X − tk) (mod q).

These polynomials have the same roots modulo q, so after reordering, we have sk ≡ tk

(mod q). Recalling that sk, tk ∈ {0, . . . , q − 2}, we conclude that sk = tk and, con-

sequently, f (X) ≡ 0. This is impossible since xm0
6= 0. Therefore, TrQ(ζpq)/Q (ξξ̄) ≥

4pqi j holds true in this case.

3 Asymptotic Center Density of the Lattices σL(Ii j)

We start out by obtaining a lower bound for the center density of σL(Ii j). This is

easy now that we know that the packing radius ρ of σL(Ii j) is lower bounded by
√

pqi j/2; see Theorem 2.6. Together with elementary results concerning cyclotomic

fields in [4], the formula in (1.2) yields

(3.1) δ(σL(Ii j)) ≥
2(p−1)(q−1)/2 ·

(

pqi j
2

)(p−1)(q−1)/2

(pq)(p−1)(q−1)/2

p(q−1)/2q(p−1)/2 · p(q−1)iq(p−1) j
=

(i j)
(p−1)(q−1)

2 p
(q−1)(1−2i)

2 q
(p−1)(1−2 j)

2 .

For fixed p and q, the latter expression is maximized when i = [(p − 1)/(2 ln(p))]

and j = [(q − 1)/(2 ln(q))], where [ · ] represents the nearest integer function.

Knowing the optimal values of i and j, now we can determine ∆n, the density of

σL(Ii j), for large n.

Theorem 3.1 If i and j are chosen as above, we have

1
n

log2 ∆n & − 1
2

log2 log2, n

where n = (p − 1)(q − 1) is sufficiently large.

Proof The proof is carried out assuming that both p and q approach infinity inde-

pendently. We remark that, in a similar manner, one can prove the theorem’s state-

ment in the case where p (respectively, q) is kept constant while q (respectively, p)

approaches infinity.

Let δn = δ(σL(Ii j)). From ∆n = Vnδn, it follows that log2 ∆n = log2 Vn + log2 δn

where log2 Vn = − n
2

log2
n

2πe
− 1

2
log2(nπ) − ǫ with 0 < ǫ <

log2 e

6n
; see [1, p. 9]. Thus

1

n
log2 Vn = −1

2
log2

n

2πe
− 1

2n
log2(nπ) − ǫ

n
.
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Since n = (p − 1)(q − 1), we have from (3.1) that

1

n
log2 δn ≥

1

n

( (p − 1)(q − 1)

2
log2(i j) +

(q − 1)(1 − 2i)

2
log2 p +

(p − 1)(1 − 2 j)

2
log2 q

)

.

Therefore,

1

n
log2 ∆n ≥

1

2
log2

( i j

n

)

+
1 − 2i

2(p − 1)
log2 p +

1 − 2 j

2(q − 1)
log2 q− 1

2n
log2(nπ)− ǫ

n
+

1

2
log2(2πe).

By substituting the optimal values of i and j in the latter expression, one can show

that for sufficiently large p and q,

1
n

log2 ∆n ≥ − 1
2

log2 log2 n + κ,

where κ is a positive constant.
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