An Extension of Craig's Family of Lattices

André Luiz Flores, J. Carmelo Interlando, and Trajano Pires da Nóbrega Neto

Abstract

Let p be a prime, and let ζ_{p} be a primitive p-th root of unity. The lattices in Craig's family are $(p-1)$-dimensional and are geometrical representations of the integral $\mathbb{Z}\left[\zeta_{p}\right]$-ideals $\left\langle 1-\zeta_{p}\right\rangle^{i}$, where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions $p-1$ where $149 \leq p \leq 3001$, Craig's lattices are the densest packings known. Motivated by this, we construct $(p-1)(q-1)$-dimensional lattices from the integral $\mathbb{Z}\left[\zeta_{p q}\right]$-ideals $\left\langle 1-\zeta_{p}\right\rangle^{i}\left\langle 1-\zeta_{q}\right\rangle^{j}$, where p and q are distinct primes and i and j are positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.

1 Introduction

In this section we briefly review the construction of lattices from number fields and give a summary of our contribution. The main goal is to establish notation. More details on this background material can be found in [1,3] and the references therein.

Let K be a number field of degree d, and let $\sigma_{1}, \ldots, \sigma_{d}$ be the embeddings ((\mathbb{O})-monomorphisms) of K into \mathbb{C}, the field of complex numbers. As usual, σ_{i} is real for $1 \leq i \leq r$, and σ_{j+s} is the complex conjugate of σ_{j} for $r+1 \leq j \leq r+s$. Hence, $d=r+2 s$. The canonical embedding $\sigma_{K}: K \rightarrow \mathbb{R}^{d}$ is the injective ring homomorphism defined by

$$
\sigma_{K}(x)=\left(\sigma_{1}(x), \ldots, \sigma_{r}(x), \Re \sigma_{r+1}(x), \Im \sigma_{r+1}(x), \ldots, \Re \sigma_{r+s}(x), \Im \sigma_{r+s}(x)\right),
$$

where $\Re z$ and $\Im z$ are the real and imaginary parts of the complex number z, respectively.

Let \mathfrak{D}_{K} be the ring of algebraic integers of K, and let \mathfrak{a} be a nonzero \mathfrak{D}_{K}-ideal of absolute norm $N_{K / \mathbb{Q}}(\mathfrak{a})=\left|\mathfrak{D}_{K} / \mathfrak{a}\right|$. The set $\sigma_{K}(\mathfrak{a})=\left\{\sigma_{K}(\alpha) \mid \alpha \in \mathfrak{a}\right\}$, also called the geometric representation of \mathfrak{a}, is a d-dimensional point lattice (or lattice, for short) whose fundamental region has volume

$$
\begin{equation*}
V\left(\sigma_{K}(\mathfrak{a})\right)=2^{-s} \sqrt{|\operatorname{Disc}(K)|} \cdot N_{K / \mathbb{Q}}(\mathfrak{a}), \tag{1.1}
\end{equation*}
$$

where $|\operatorname{Disc}(K)|$ is the absolute value of the discriminant of K, see [3, p. 107]. We also say that $\sigma_{K}(\mathfrak{a})$ is the lattice associated with \mathfrak{a}.

Given $\alpha \in \mathfrak{a}$, the squared Euclidean distance between the point $\sigma_{K}(\alpha) \in \mathbb{R}^{d}$ and the origin is equal to $\left|\sigma_{K}(\alpha)\right|^{2}=c_{K} \operatorname{Tr}_{K / \mathbb{Q}}(\alpha \bar{\alpha})$, where $c_{K}=1$ if K is totally

[^0]real, $c_{K}=\frac{1}{2}$ if K is totally complex, $\operatorname{Tr}_{K / \mathbb{Q}}(\cdot)$ denotes trace, and $\bar{\alpha}$ is the complex conjugate of α; see [1, p. 225]. The parameter
$$
\rho=\frac{1}{2} \min \left\{\left|\sigma_{K}(\alpha)\right| \mid \alpha \in \mathfrak{a}, \alpha \neq 0\right\}
$$
is called the packing radius of $\sigma_{K}(\mathfrak{a})$.
The center density $\delta(\Lambda)$ of a d-dimensional lattice Λ is equal to $\rho^{d} / V(\Lambda)$, where $V(\Lambda)$ is the volume of a fundamental region for Λ. The sphere-packing density of Λ is $\Delta=V_{d} \delta(\Lambda)$, where V_{d} is the volume of a d-dimensional sphere of radius 1 ; see [1] pp. 6-13]. In view of (1.1), the center density of the lattice $\sigma_{K}(\mathfrak{a})$ is given by
\[

$$
\begin{equation*}
\delta\left(\sigma_{K}(\mathfrak{a})\right)=\frac{2^{s} \rho^{d}}{\sqrt{|\operatorname{Disc}(K)|} N_{K / \mathbb{Q}}(\mathfrak{a})} \tag{1.2}
\end{equation*}
$$

\]

Let F be the field $\mathbb{O}\left(\zeta_{p}\right)$, and let \mathfrak{p} be the integral \mathfrak{D}_{F}-ideal $\left\langle 1-\zeta_{p}\right\rangle$. The $(p-1)$-dimensional Craig lattice ([1] Ch. 8]) is defined as $A_{p-1}^{(i)}=\sigma_{F}\left(\mathfrak{p}^{i}\right)$. For $i \leq(p-3) / 2$, the packing radius of $A_{p-1}^{(i)}$ is lower bounded by $\sqrt{p i} / 2$; see [2]. Moreover, for large $n=p-1$, these lattice packings satisfy

$$
\begin{equation*}
\frac{1}{n} \log _{2} \Delta_{n} \gtrsim-\frac{1}{2} \log _{2} \log _{2} n \tag{1.3}
\end{equation*}
$$

where Δ_{n} represents the density of the n-dimensional packing; see [1] p. 17].
The contribution of the present work is to extend Craig's technique as follows. Let L be the cyclotomic field $\mathbb{O}\left(\zeta_{p q}\right)$, where p and q are distinct primes. Let $\mathfrak{I}_{i j}=\mathfrak{P}^{i} \mathfrak{Q}^{j}$ be an integral \mathfrak{D}_{L}-ideal where $\mathfrak{P}=\left\langle 1-\zeta_{p}\right\rangle$ and $\mathfrak{Q}=\left\langle 1-\zeta_{q}\right\rangle$ are also \mathfrak{D}_{L}-ideals, and i and j are positive integers. The new lattices are defined as $\sigma_{L}\left(\mathfrak{J}_{i j}\right)$. Note that for each i and $j, \sigma_{L}\left(\mathfrak{I}_{i j}\right)$ is an n-dimensional lattice, where $n=(p-1)(q-1)$. In Section 2 , we show that the packing radius of $\sigma_{L}\left(\mathfrak{J}_{i j}\right)$ is lower bounded by $\sqrt{2 p q i j} / 2$ for $i \leq(p-1) / 2$ and $j \leq(q-1) / 2$. In Section 3 we calculate the center density of $\sigma_{L}\left(\mathfrak{I}_{i j}\right)$ and show that similar to Craig's lattices, the new lattices are asymptotically good with respect to their densities Δ_{n}; that is, (1.3) holds for large $n=(p-1)(q-1)$.

2 The Packing Radius of $\sigma_{L}\left(\mathfrak{J}_{i j}\right)$

In this section we will prove that $\operatorname{Tr}(\xi \bar{\xi}) \geq 4 p q i j$ for any element $\xi \neq 0$ in $\mathfrak{I}_{i j}$. This is the statement of Theorem 2.6, which will immediately provide a lower bound for the packing radius of $\sigma_{L}\left(\mathfrak{J}_{i j}\right)$. A few definitions, observations, and lemmas preceding that result are in order.

Any $x \in \mathbb{Z}\left[\zeta_{p q}\right]$ can be expressed as $x=\sum_{k=0}^{p-2} x_{k} \zeta_{p}^{k}$ where $x_{k} \in \mathbb{Z}\left[\zeta_{q}\right]$ for $k=$ $0, \ldots, p-2$, or as $x=\sum_{k=0}^{q-2} y_{k} \zeta_{q}^{k}$, where $y_{k} \in \mathbb{Z}\left[\zeta_{p}\right]$ for $k=0, \ldots, q-2$. With this notation in mind, define the mappings

$$
\lambda_{p}: \mathbb{Z}\left[\zeta_{p q}\right] \rightarrow \mathbb{Z}\left[\zeta_{p}\right] \quad \text { by } \quad x=\sum_{k=0}^{q-2} y_{k} \zeta_{q}^{k} \mapsto \sum_{k=0}^{q-2} y_{k}
$$

and

$$
\lambda_{q}: \mathbb{Z}\left[\zeta_{p q}\right] \rightarrow \mathbb{Z}\left[\zeta_{q}\right] \quad \text { by } \quad x=\sum_{k=0}^{p-2} x_{k} \zeta_{p}^{k} \mapsto \sum_{k=0}^{p-2} x_{k}
$$

Observe that λ_{p} (respectively, λ_{q}) is a homomorphism from the additive group of $\mathbb{Z}\left[\zeta_{p q}\right]$ into the additive group of $\mathbb{Z}\left[\zeta_{p}\right]$ (respectively, $\mathbb{Z}\left[\zeta_{q}\right]$). The next two lemmas follow by direct inspection, hence their proofs are omitted.

Lemma 2.1 Let $w=\sum_{k=0}^{p-2} w_{k} \zeta_{p}^{k} \in \mathbb{Z}\left[\zeta_{p}\right]$. Then

$$
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}}(w \bar{w})=p\left(\sum_{k=0}^{p-2} w_{k}^{2}\right)-\left(\sum_{k=0}^{p-2} w_{k}\right)^{2}=(p-1)\left(\sum_{k=0}^{p-2} w_{k}^{2}\right)-2 \sum_{k<s} w_{k} w_{s} .
$$

Lemma 2.2 Let $x=\sum_{k=0}^{p-2} x_{k} \zeta_{p}^{k} \in \mathbb{Z}\left[\zeta_{p q}\right]$. Then

$$
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}}(x \bar{x})=p\left(\sum_{k=0}^{p-2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q} Q}\left(x_{k} \overline{x_{k}}\right)\right)-\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(\sum_{k=0}^{p-2} x_{k}\right)\left(\sum_{k=0}^{p-2} \overline{x_{k}}\right)
$$

Lemma 2.3 Let $x=\sum_{k=0}^{p-2} x_{k} \zeta_{p}^{k} \in \mathbb{Z}\left[\zeta_{p q}\right]$. Then $\lambda_{q}\left(\zeta_{p}^{a} x\right)=\lambda_{q}(x)-p x_{p-1-a}$ for any integer a such that $1 \leq a<p-1$.

Proof Write

$$
\begin{aligned}
\zeta_{p}^{a} x & =\zeta_{p}^{a}\left(x_{0}+x_{1} \zeta_{p}+\cdots+x_{p-2} \zeta_{p}^{p-2}\right) \\
& =-x_{p-1-a}+\left(x_{0}-x_{p-1-a}\right) \zeta_{p}+\left(x_{1}-x_{p-1-a}\right) \zeta_{p}^{2}+\cdots+\left(x_{p-3}-x_{p-1-a}\right) \zeta_{p}^{p-2}
\end{aligned}
$$

and calculate λ_{q} of the latter expression using the definition of the mapping.
Lemma 2.4 Let $x=\sum_{k=0}^{p-2} x_{k} \zeta_{p}^{k} \in \mathbb{Z}\left[\zeta_{p q}\right]$, and let $f(X)=\sum_{k=0}^{p-2} x_{k} X^{k} \in \mathbb{Z}\left[\zeta_{q}\right][X]$. Let $f^{(k)}(X)$ denote the k-th derivative of for $0 \leq k \leq p-1$. If $x \in \mathfrak{p}^{i}$, where $1 \leq i \leq p$, then

$$
f(1) \equiv f(1) \equiv \cdots \equiv f^{(i-1)}(1) \equiv 0\left(\bmod p \mathbb{Z}\left[\zeta_{q}\right]\right)
$$

Proof Note that $x \in \mathfrak{p}^{i}$ if and only if there are polynomials $g(X), h(X) \in \mathbb{Z}\left[\zeta_{q}\right][X]$ such that

$$
f(X)=x_{0}+x_{1} X+\cdots+x_{p-2} X^{p-2}=g(X)(X-1)^{i}+h(X)\left(X^{p}-1\right)
$$

The proof is completed by successively differentiating both sides with respect to X and evaluating them at $X=1$.
Lemma 2.5 ([2] Lemma 2, p. 149]) \quad Let $\eta \neq 0$ be an element of \mathfrak{p}^{i} with $1 \leq i \leq \frac{p-1}{2}$. Then $\operatorname{Tr}_{\mathbb{Q}_{2}\left(\zeta_{p}\right) / \mathbb{Q}}(\eta \bar{\eta}) \geq 2 p i$.

Theorem 2.6 Let $\xi \neq 0$ be an element of $\mathfrak{I}_{i j}=\mathfrak{P}^{i} \mathfrak{Q}^{j}$, where $1 \leq i \leq \frac{p-1}{2}$ and $1 \leq j \leq \frac{q-1}{2}$. Then $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}}(\xi \bar{\xi}) \geq 4 p q i j$.
Proof Let $\mathcal{N}=\left\{\mu \in \mathfrak{I}_{i j} \mid \mu \neq 0\right.$ and $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}}(\mu \bar{\mu})$ is minimum $\}$. We can express \mathcal{M} as the disjoint union $\mathcal{M}_{0} \cup \mathcal{M}_{1}$, where $\mathcal{M}_{0}=\left\{\mu \in \mathcal{M} \mid \lambda_{p}(\mu)=\lambda_{q}(\mu)=0\right\}$ and $\mathcal{M}_{1}=\mathcal{M} \backslash \mathcal{M}_{0}$. The proof is carried out by showing the following claims.

Claim 2.7 If $\mathcal{M}_{0}=\varnothing$, then $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q} \mathbf{Q}}(\xi \bar{\xi}) \geq 4$ pqij for all $\xi \neq 0$ in $\Im_{i j}$.
Claim 2.8 If $\mathcal{M}_{0} \neq \varnothing$, then $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{\text {pq }}\right) / \mathbb{Q}}(\xi \bar{\xi}) \geq 4$ pqij for all $\xi \neq 0$ in $\mathfrak{I}_{i j}$.
In preparation for the proofs of Claims 2.7 and 2.8, observe that an element $x \in$ \mathbb{Q}^{j} can be written as $x=\left(1-\zeta_{q}\right)^{j} z$, where $z=\sum_{k=0}^{p-2} z_{k} \zeta_{p}^{k}$ is in $\mathbb{Z}\left[\zeta_{p q}\right]$. Hence, $x=\sum_{k=0}^{p-2} x_{k} \zeta_{p}^{k}$, where $x_{k} \in\left(1-\zeta_{q}\right)^{j} \mathbb{Z}\left[\zeta_{q}\right]$ for $k=0, \ldots, p-2$. Similarly, $x=$ $\sum_{k=0}^{p-2} y_{k} \zeta_{q}^{k}$, where $y_{k} \in\left(1-\zeta_{q}\right)^{j} \mathbb{Z}\left[\zeta_{p}\right]$ for $k=0, \ldots, q-2$.
Proof of Claim 2.7 Define

$$
T=\left\{t \in \mathbb{Z}\left[\zeta_{q}\right] \mid \exists \xi^{\prime} \in \mathcal{M}_{1} \text { with } \lambda_{q}\left(\xi^{\prime}\right)=t p\right\}
$$

and $t_{0} \in T$ by

$$
\operatorname{Tr}_{\mathbb{Q}_{2}\left(\zeta_{q}\right) / \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right)=\min \left\{\operatorname{Tr}_{\mathbb{O}_{2}\left(\zeta_{q}\right) / \mathbb{Q}}(t \bar{t}) \mid t \in T\right\}
$$

Further, let $\xi \in \mathcal{M}_{1}$ be such that $\lambda_{q}(\xi)=t_{0} p$. During the rest of the proof, we will use the representation

$$
\xi=x_{0}+x_{1} \zeta_{p}+\cdots+x_{p-2} \zeta_{p}^{p-2}
$$

where $x_{k}=\sum_{\ell=0}^{q-2} a_{k, \ell} \zeta_{q}^{\ell}$ and $t_{0}=\sum_{\ell=0}^{q-2} h_{\ell} \zeta_{q}^{\ell}$. We have

$$
\begin{equation*}
\lambda_{q}(\xi)=\sum_{m=0}^{p-2} x_{m}=\sum_{m=0}^{p-2} \sum_{\ell=0}^{q-2} a_{m, \ell} \zeta_{q}^{\ell}=\sum_{\ell=0}^{q-2} \sum_{m=0}^{p-2} a_{m, \ell} \zeta_{q}^{\ell} \tag{2.1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\lambda_{q}(\xi)=t_{0} p=\left(\sum_{\ell=0}^{q-2} h_{\ell} \zeta_{q}^{\ell}\right) p \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), it follows that

$$
\begin{equation*}
\sum_{m=0}^{p-2} a_{m, \ell}=p h_{\ell} \tag{2.3}
\end{equation*}
$$

For $y=\zeta_{p}^{a} \xi$ with $a \geq 1$, observe that $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}}(y \bar{y})=\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}(\xi)}(\bar{\xi})$ is also minimum, that is, $y \in \mathcal{M}$. Since $\mathcal{M}_{0}=\varnothing$, we can assume that $\lambda_{q}(y) \neq 0$. The last statement can be seen as follows:
(i) If $\lambda_{q}(\xi) \neq 0$ and $\lambda_{p}(\xi)=0$, then $\lambda_{p}(y)=\lambda_{p}\left(\zeta_{p}^{a} \xi\right)=\zeta_{p}^{a} \lambda_{p}(\xi)=0$, whence $\lambda_{q}(y) \neq 0$.
(ii) If $\lambda_{q}(\xi) \neq 0$ and $\lambda_{p}(\xi) \neq 0$, it is no loss of generality to assume that $\lambda_{q}(y) \neq 0$. Otherwise, $\lambda_{p}(y) \neq 0$ and $\lambda_{q}(y)=0$, and we would reverse the roles of ξ and y.
By Lemma 2.3

$$
\lambda_{q}(y)=\lambda_{q}\left(\zeta_{p}^{a} \xi\right)=\lambda_{q}(\xi)-p x_{p-1-a}=p\left(t_{0}-x_{p-1-a}\right) \neq 0
$$

From the fact that $y \in \mathcal{M}$ and the definition of t_{0}, we have

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q} \mathbb{Q}}\left(\left(x_{m}-t_{0}\right)\left(\overline{x_{m}-t_{0}}\right)\right) \geq \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q} \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right) \tag{2.4}
\end{equation*}
$$

for $m=0, \ldots, p-2$. The left-hand-side of (2.4) is equal to

$$
q \sum_{\ell=0}^{q-2}\left(a_{m, \ell}-h_{\ell}\right)^{2}-\left(\sum_{\ell=0}^{q-2} a_{m, \ell}-\sum_{\ell=0}^{q-2} h_{\ell}\right)^{2}
$$

which in turn is equal to

$$
\begin{aligned}
q\left(\sum_{\ell=0}^{q-2} a_{m, \ell} \ell^{2}-2 \sum_{\ell=0}^{q-2} a_{m, \ell} h_{\ell}+\sum_{\ell=0}^{q-2} h_{\ell}^{2}\right) & -\left(\sum_{\ell=0}^{q-2} a_{m, \ell}\right)^{2} \\
& +2\left(\sum_{\ell=0}^{q-2} a_{m, \ell}\right)\left(\sum_{\ell=0}^{q-2} h_{\ell}\right)-\left(\sum_{\ell=0}^{q-2} h_{\ell}\right)^{2}
\end{aligned}
$$

The right-hand-side of (2.4) is equal to

$$
q\left(\sum_{\ell=0}^{q-2} h_{\ell}^{2}\right)-\left(\sum_{\ell=0}^{q-2} h_{\ell}\right)^{2}
$$

From

$$
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q} Q}\left(x_{m} \overline{x_{m}}\right)=q\left(\sum_{\ell=0}^{q-2} a_{w v}^{2}\right)-\left(\sum_{\ell=0}^{q-2} a_{w v}\right)^{2}
$$

we obtain

$$
\operatorname{Tr}_{\mathbb{O}\left(\zeta_{q}\right) / \mathbb{Q}}\left(x_{m} \overline{x_{m}}\right) \geq 2 q\left(\sum_{\ell=0}^{q-2} a_{m, \ell} h_{\ell}\right)-2\left(\sum_{\ell=0}^{q-2} a_{m, \ell}\right)\left(\sum_{\ell=0}^{q-2} h_{\ell}\right)
$$

Therefore,

$$
\begin{aligned}
\sum_{m=0}^{p-2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(x_{m} \overline{x_{m}}\right) & \geq \sum_{m=0}^{p-2} 2 q\left(\sum_{\ell=0}^{q-2} a_{m, \ell} h_{\ell}\right)-2 \sum_{m=0}^{p-2}\left(\sum_{\ell=0}^{q-2} a_{m, \ell}\right)\left(\sum_{\ell=0}^{q-2} h_{\ell}\right) \\
& =2 q\left(\sum_{\ell=0}^{q-2} \sum_{m=0}^{p-2} a_{m, \ell} h_{\ell}\right)-2\left(\sum_{\ell=0}^{q-2} \sum_{m=0}^{p-2} a_{m, \ell}\right)\left(\sum_{\ell=0}^{q-2} h_{\ell}\right)
\end{aligned}
$$

From (2.3),

$$
\begin{aligned}
\sum_{m=0}^{p-2} \operatorname{Tr}_{\mathbb{O}\left(\zeta_{q}\right) / \mathbb{Q}}\left(x_{m} \overline{x_{m}}\right) & \geq 2 q\left(\sum_{\ell=0}^{q-2}\left(p h_{\ell}\right) h_{\ell}\right)-2\left(\sum_{\ell=0}^{q-2} p h_{\ell}\right)\left(\sum_{\ell=0}^{q-2} h_{\ell}\right) \\
& =2 p\left(q\left(\sum_{\ell=0}^{q-2} h_{\ell}^{2}\right)-\left(\sum_{\ell=0}^{q-2} h_{\ell}\right)^{2}\right)
\end{aligned}
$$

that is,

$$
\sum_{m=0}^{p-2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(x_{m} \overline{x_{m}}\right) \geq 2 p \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right)
$$

Observe also that

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(\left(\sum_{m=0}^{p-2} x_{m}\right)\left(\overline{\sum_{m=0}^{p-2} x_{m}}\right)\right) & =\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}(\lambda(\xi) \overline{\lambda(\xi)}) \\
& =\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(\left(t_{0} p\right)\left(\overline{t_{0} p}\right)\right)=p^{2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right)
\end{aligned}
$$

Lemma 2.1 and the latter equality yield

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q} Q}(\xi \bar{\xi}) & =p\left(\sum_{m=0}^{p-2} \operatorname{Tr}_{\mathbb{O}\left(\zeta_{q}\right) / \mathbb{Q}}\left(x_{m} \overline{x_{m}}\right)\right)-\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(\left(\sum_{m=0}^{p-2} x_{m}\right)\left(\sum_{m=0}^{p-2} x_{m}\right)\right) \\
& \geq p\left(2 p \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q} \mathbf{Q}}\left(t_{0} \overline{t_{0}}\right)\right)-p^{2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right)=p^{2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right)
\end{aligned}
$$

For $i \leq \frac{p-1}{2}$, we obtain

$$
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}}\left(x_{0} \overline{x_{0}}\right) \geq p(p-1) \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q} \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right) \geq 2 p i \operatorname{Tr}_{\mathbb{O}\left(\zeta_{q}\right) / \mathbb{Q}}\left(t_{0} \overline{t_{0}}\right) \geq 4 p q i j
$$

where the latter inequality follows from Lemma 2.5
Proof of Claim 2.8 Let $\xi^{\prime} \in \mathcal{M}_{0}$, and consider the representations

$$
\xi^{\prime}=\sum_{m=0}^{p-2} x_{m} \zeta_{p}^{m} \text { and } \xi^{\prime}=\sum_{\ell=0}^{q-2} y_{\ell} \zeta_{q}^{\ell}
$$

where $x_{m}=\sum_{\ell=0}^{q-2} a_{m, \ell} \zeta_{q}^{\ell}$ and $y_{\ell}=\sum_{m=0}^{p-2} a_{m, \ell} \zeta_{p}^{m}$. From Lemma2.2.

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q} 2}(\xi \bar{\xi}) & =p\left(\sum_{m=0}^{p-2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(x_{k} \overline{x_{k}}\right)\right)-\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(\left(\sum_{m=0}^{p-2} x_{m}\right)\left(\overline{\sum_{m=0}^{p-2} x_{m}}\right)\right) \\
& =p\left(\sum_{m=0}^{p-2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{\zeta}\right) / \mathbb{Q}}\left(x_{m} \overline{x_{m}}\right)\right)
\end{aligned}
$$

as $\lambda_{q}(x)=0$. Regarding the latter summation, observe that

$$
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q} Q}\left(x_{m} \overline{x_{m}}\right)=q\left(\sum_{\ell=0}^{q-2} a_{m, \ell}^{2}\right)-\left(\sum_{\ell=0}^{q-2} a_{m, \ell}\right)^{2}=q\left(\sum_{\ell=0}^{q-2} a_{m, \ell}^{2}\right)
$$

because

$$
\lambda_{q}\left(\xi^{\prime}\right)=\sum_{m=0}^{p-2} x_{m}=\sum_{m=0}^{p-2} \sum_{\ell=0}^{q-2} a_{m, \ell} \zeta_{q}^{\ell}=\sum_{\ell=0}^{q-2}\left(\sum_{m=0}^{p-2} a_{m, \ell}\right) \zeta_{q}^{\ell}=0
$$

implies that $\sum_{m=0}^{p-2} a_{m, \ell}=0$. Thus, we obtain the following expression:

$$
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}}(\xi \bar{\xi})=p q\left(\sum_{\ell=0}^{q-2} \sum_{m=0}^{p-2} a_{m, \ell}^{2}\right)
$$

By way of contradiction, suppose that $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}}(x \bar{x})<4 p q i j$. This is equivalent to

$$
\begin{equation*}
\sum_{\ell=0}^{q-2} \sum_{m=0}^{p-2} a_{m, \ell}^{2}<4 i j \tag{2.5}
\end{equation*}
$$

Therefore, for the matrix of coefficients $A=\left(a_{m \ell}\right)$, exactly one of the following two statements is true:
(i) There is a row with fewer than $2 j$ nonzero elements.
(ii) There is a column with fewer than $2 i$ nonzero elements.

If that were not the case, then each row and each column of $\left(a_{m \ell}^{2}\right)$ would have at least $2 i$ and $2 j$ strictly positive entries, respectively. We would conclude that the sum of the entries is greater than or equal to $4 i j$; that is, $\sum_{\ell=0}^{q-2} \sum_{m=0}^{p-2} a_{m, \ell}^{2} \geq 4 i j$, which contradicts (2.5).

In what follows, we assume that (i) occurs. If (ii) occurs, the proof is analogous. Let m_{0} be an integer with $0 \leq m_{0} \leq p-2$, and $x_{m_{0}}=\sum_{\ell=0}^{q-2} a_{m_{0}, \ell} \zeta_{q_{2}}^{\ell}$, where the number ν of nonzero coefficients $a_{m_{0}, \ell}$ satisfies $\nu \leq 2 j-1$. Since $\sum_{\ell=0}^{q-2} a_{m_{0}, \ell}=0$, a parity verification shows that $\nu \neq 2 j-1$. Hence, $\nu \leq 2 e$ for some $e \leq j-1$. Consider the polynomial $f(X) \in \mathbb{Z}[X]$ such that $x_{m_{0}}=f\left(\zeta_{q}\right)$. We can write $f(X)$ as:

$$
f(X)=X^{s_{1}}+X^{s_{2}}+\cdots+X^{s_{e}}-\left(X^{t_{1}}+X^{t_{2}}+\cdots+X^{t_{c}}\right)
$$

where s_{k} and $t_{k} \in\{0, \ldots, q-2\}$ for $k=1, \ldots, e$. The exponents s_{k} and t_{k} may eventually repeat.

Since $x_{m_{0}} \in \mathfrak{Q}^{j}$, applying Lemma 2.4 to $f(X)$, the successive derivatives satisfy $f^{(k)}(1) \equiv 0(\bmod q)$ for $k=0, \ldots, j-1$. These congruences imply that

$$
\sum_{k=1}^{e} s_{k}^{u} \equiv \sum_{k=1}^{e} t_{k}^{u}(\bmod p)
$$

for $u=0, \ldots, j-1$. It follows that the elementary symmetric functions of the s_{k} and t_{k} of degree less than j coincide modulo q. Hence,

$$
\prod_{k=1}^{e}\left(X-s_{k}\right) \equiv \prod_{k=1}^{e}\left(X-t_{k}\right)(\bmod q)
$$

These polynomials have the same roots modulo q, so after reordering, we have $s_{k} \equiv t_{k}$ $(\bmod q)$. Recalling that $s_{k}, t_{k} \in\{0, \ldots, q-2\}$, we conclude that $s_{k}=t_{k}$ and, consequently, $f(X) \equiv 0$. This is impossible since $x_{m_{0}} \neq 0$. Therefore, $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p q}\right) / \mathbb{Q}}(\xi \bar{\xi}) \geq$ $4 p q i j$ holds true in this case.

3 Asymptotic Center Density of the Lattices $\sigma_{L}\left(\mathfrak{I}_{i j}\right)$

We start out by obtaining a lower bound for the center density of $\sigma_{L}\left(\mathfrak{J}_{i j}\right)$. This is easy now that we know that the packing radius ρ of $\sigma_{L}\left(\mathfrak{I}_{i j}\right)$ is lower bounded by $\sqrt{p q i j / 2}$; see Theorem 2.6, Together with elementary results concerning cyclotomic fields in [4], the formula in (1.2) yields

$$
\begin{align*}
\delta\left(\sigma_{L}\left(\mathfrak{J}_{i j}\right)\right) \geq \frac{2^{(p-1)(q-1) / 2} \cdot\left(\frac{p q i j}{2}\right)^{(p-1)(q-1) / 2}}{\frac{(p q))^{(p-1)(q-1) / 2}}{p^{(q-1) / 2} q^{(p-1) / 2}} \cdot p^{(q-1) i} q^{(p-1) j}} & = \tag{3.1}\\
& (i j)^{\frac{(p-1)(q-1)}{2}} p^{\frac{(q-1)(1-2 i)}{2}} q^{\frac{(p-1)(1-2 j)}{2}}
\end{align*}
$$

For fixed p and q, the latter expression is maximized when $i=[(p-1) /(2 \ln (p))]$ and $j=[(q-1) /(2 \ln (q))]$, where $[\cdot]$ represents the nearest integer function. Knowing the optimal values of i and j, now we can determine Δ_{n}, the density of $\sigma_{L}\left(\mathfrak{J}_{i j}\right)$, for large n.

Theorem 3.1 If i and j are chosen as above, we have

$$
\frac{1}{n} \log _{2} \Delta_{n} \gtrsim-\frac{1}{2} \log _{2} \log _{2}, n
$$

where $n=(p-1)(q-1)$ is sufficiently large.
Proof The proof is carried out assuming that both p and q approach infinity independently. We remark that, in a similar manner, one can prove the theorem's statement in the case where p (respectively, q) is kept constant while q (respectively, p) approaches infinity.

Let $\delta_{n}=\delta\left(\sigma_{L}\left(\mathfrak{I}_{i j}\right)\right)$. From $\Delta_{n}=V_{n} \delta_{n}$, it follows that $\log _{2} \Delta_{n}=\log _{2} V_{n}+\log _{2} \delta_{n}$ where $\log _{2} V_{n}=-\frac{n}{2} \log _{2} \frac{n}{2 \pi e}-\frac{1}{2} \log _{2}(n \pi)-\epsilon$ with $0<\epsilon<\frac{\log _{2} e}{6 n}$; see [1, p. 9]. Thus

$$
\frac{1}{n} \log _{2} V_{n}=-\frac{1}{2} \log _{2} \frac{n}{2 \pi e}-\frac{1}{2 n} \log _{2}(n \pi)-\frac{\epsilon}{n}
$$

Since $n=(p-1)(q-1)$, we have from (3.1) that

$$
\begin{aligned}
& \frac{1}{n} \log _{2} \delta_{n} \geq \\
& \frac{1}{n}\left(\frac{(p-1)(q-1)}{2} \log _{2}(i j)+\frac{(q-1)(1-2 i)}{2} \log _{2} p+\frac{(p-1)(1-2 j)}{2} \log _{2} q\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \quad \frac{1}{n} \log _{2} \Delta_{n} \geq \\
& \frac{1}{2} \log _{2}\left(\frac{i j}{n}\right)+\frac{1-2 i}{2(p-1)} \log _{2} p+\frac{1-2 j}{2(q-1)} \log _{2} q-\frac{1}{2 n} \log _{2}(n \pi)-\frac{\epsilon}{n}+\frac{1}{2} \log _{2}(2 \pi e)
\end{aligned}
$$

By substituting the optimal values of i and j in the latter expression, one can show that for sufficiently large p and q,

$$
\frac{1}{n} \log _{2} \Delta_{n} \geq-\frac{1}{2} \log _{2} \log _{2} n+\kappa
$$

where κ is a positive constant.

References

[1] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups. Third edition, Grundlehren der Mathematischen Wissenschaften, 290, Springer-Verlag, New York, 1999.
[2] J. C. Interlando, A. L. Flores, and T. P. da Nóbrega Neto, A family of asymptotically good lattices having a lattice in each dimension. Int. J. Number Theory 4(2008), no. 1, 147-154. doi:10.1142/S1793042108001262
[3] R. A. Mollin, Algebraic number theory. CRC Press Series on Discrete Mathematics and its Applications, Chapman \& Hall/CRC, Boca Raton, FL, 1999.
[4] L. C. Washington, Introduction to cyclotomic fields. Second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.

Departamento de Matemática, Universidade Federal de Alagoas, Arapiraca, AL, Brazil e-mail: andreflores_br@yahoo.com.br

Department of Mathematics and Statistics, San Diego State University, San Diego, CA, U.S.A. e-mail: carmelo.interlando@sdsu.edu

Departamento de Matemática, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil e-mail: trajano@ibilce.unesp.br

[^0]: Received by the editors October 20, 2008.
 Published electronically March 10, 2011.
 AMS subject classification: 11H31, 11H55, 11H50, 11R18, 11R04.
 Keywords: geometry of numbers, lattice packing, Craig's lattices, quadratic forms, cyclotomic fields.

