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We study the dynamics of a cavitation bubble near beds of sand of different grain sizes.
We use high-speed imaging to observe the motion of the bubble and the sand for different
values of the stand-off parameter γ (dimensionless bubble-boundary distance) between
0.3 and 5.3. Compared with a rigid boundary, we find that a granular boundary leads
to bubbles with shorter lifetimes and reduced centroid displacements. Above γ ≈ 1.3,
the behaviour of the bubble is almost independent of the granularity of the sand. When
the stand-off parameter lies between 0.6 and 1.3, a mound of sand develops beneath the
bubble, which can force the latter to assume a conical shape as it collapses. For γ � 0.6,
the bubble develops a bell-shaped form, leading to the formation of thin and surprisingly
fast micro-jets (vjet > 1000 m s−1). Moreover, between γ ≈ 1.3 and γ ≈ 0.3, granular jets
erupt from the sand surface following the bubble collapse. We additionally develop a
simple numerical model, based on the boundary integral method, to predict the dynamics
of a cavitation bubble near a bed of sand, which we replace by an equivalent liquid.
The simulations are remarkably consistent with experimental observations for values of
γ down to 1.3. We also show how the anisotropy parameter ζ , a dimensionless version of
the Kelvin impulse, can be adapted for the case of a nearby bed of sand and predict the
displacement of the bubble centroid for ζ � 0.08.

Key words: bubble dynamics, cavitation, wet granular material

1. Introduction

Decades of research on controlled cavitation bubble dynamics have revealed that
anisotropies in the liquid pressure field affect the bubbles behaviour. Such anisotropies
have different causes. In still liquids, they are often due to the presence of nearby
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boundaries, be they solid (Naudé & Ellis 1961; Benjamin & Ellis 1966; Lauterborn &
Bolle 1975; Vogel & Lauterborn 1988), gaseous (Chahine 1977; Blake & Gibson 1981;
Robinson et al. 2001), elastic (Shima et al. 1989; Brujan et al. 2001a,b; Curtiss et al. 2013)
or liquid (Chahine & Bovis 1980; Orthaber et al. 2020; Han et al. 2022). There, the degree
of anisotropy strongly depends on the stand-off parameter, γ = s/Rmax, where s is the
distance between the initial bubble centre and the boundary and Rmax is the maximum
bubble radius. The hydrostatic pressure is another source of anisotropy (Zhang et al. 2015;
Koukouvinis et al. 2016; Supponen et al. 2017a). In this case, the level of anisotropy is
directly related to the buoyancy parameter δ = √

ρgRmax/( p0 − pv), where ρ, g, Rmax, p0
and pv are the water density, gravitational acceleration, maximum bubble radius, ambient
pressure and vapour pressure, respectively. Values as small as δ ≈ 0.02 can affect the
bubble dynamics (Obreschkow et al. 2011). Compared with the perfectly spherical collapse
presented in Obreschkow et al. (2013), anisotropies in the flow field lead to aspherical
bubble collapses, which are often accompanied by the displacement of the bubble centroid,
a change in the oscillation periods and the formation of micro-jets, whose properties can be
fairly described by the unifying scaling laws introduced by Supponen et al. (2016). These
scaling laws are based on the anisotropy parameter ζ , the dimensionless equivalent of the
Kelvin impulse (Benjamin & Ellis 1966; Blake 1988; Blake, Leppinen & Wang 2015),
and are valid for ζ < 0.1. A derivation of ζ for various boundaries yields the following
expressions:

ζ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.195γ −2n solid surface,
0.195γ −2n free surface,
−ρgRmax�p−1 gravitational field,

−0.195γ −2(ρ1 − ρ2)(ρ1 + ρ2)
−1n liquid–liquid interface.

(1.1)

Here n is the inward-facing unit normal vector, ρ1 and ρ2 are the two densities across the
liquid–liquid interface and �p = p0 − pv .

While the dynamics of a cavitation bubble exposed to the above anisotropy sources are
well described in the literature, the effects of a granular boundary are poorly documented.
Krieger & Chahine (2005) studied the dynamics of a spark-generated bubble near a bed
of sand. Their study mainly focused on the acoustic signature of an oscillating bubble
near different interfaces including a rigid surface, a free surface and a bed of sand. While
the authors found no significant impact of a sand bottom on the bubble’s first oscillation
period compared with a rigid boundary, they reported a ‘swallowing’ of the bubble by the
sand and a weakened rebound for stand-off distances smaller than one. However, this study
focused primarily on the acoustic signature of the bubbles and lacks a detailed description
of the bubble dynamics and subsequent sand movement, as well as the influence of
sand grain size on the bubble dynamics. A thorough analysis and understanding of
the bubble dynamics near a granular interface is particularly important for underwater
explosions when charges are detonated near the sand bed. Such explosions can have
a variety of origins, such as military exercises, detonation of unexploded ordnances or
blast fishing, and often have severe effects on the surrounding marine fauna (Dahl et al.
2020; Hampton-Smith, Bower & Mika 2021; Salomons et al. 2021). The blast-generated
bubble exhibits successive cycles of growth and collapse that produce measurable sonic
pulses through the water. An accurate knowledge of the timing of these pulses provides
valuable information about the magnitude of the explosion (Cole 1948; Krieger & Chahine
2005; Gong et al. 2010), making it important to adequately assess the dynamics of the
bubble oscillations near the sandbed. In addition to the practical application to underwater
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explosions, such a study also represents a compelling scientific interest that remains largely
unexplored.

In the present work we investigate the dynamics of millimetric laser-induced cavitation
bubbles in the vicinity of beds of sand. Although laser-induced bubbles and bubbles
originating from underwater explosions differ in magnitude and gas content, the related
fluid dynamics remain mostly similar (Best 1991; Chahine et al. 1995; Krieger & Chahine
2005; Gong et al. 2010; Hung & Hwangfu 2010; Zhang et al. 2015). A direct extrapolation
would nonetheless be limited if the buoyancy parameter is not kept constant. To study
the sand-bubble interactions, we select three different granularities of sand and consider
various bubble sizes, and, thus, bubble energies defined as Eb = (4π/3)R3

max�p. Our
objective is to investigate not only the bubble dynamics at different stand-off distances, but
also the dynamics of the sand itself. As a baseline comparison, we undertake additional
measurements where the same bubble evolves in the vicinity of a well-known and
well-documented test case: the rigid surface. This paper is structured as follows: the
experimental set-up and procedure are first introduced. We then introduce a simple, yet
efficient numerical method intended to model the bubble dynamics close to a bed of sand
over a limited range of stand-off distances. We follow up with a description of the bubble
dynamics classified in three different oscillatory regimes and a presentation of the sand
motion following the bubble collapse. Finally, we analyse two key parameters of the bubble
dynamics: the oscillation periods and the centroid displacement.

2. Methods

2.1. Experimental set-up
A schematic of the experimental set-up is shown in figure 1. Single and highly reproducible
cavitation bubbles are created by focusing a frequency-doubled Q-switched Nd:YAG
pulsed laser inside a 18 × 18 × 19 cm transparent test chamber, filled with distilled water.
The laser generates 9 ns pulses at 532 nm that can reach energies up to 200 mJ. The laser
beam is first expanded to a diameter of 43 mm by a custom-made Galilean beam expander,
composed of a concave lens of focal length, fc = −30 mm, and an achromatic doublet
with focal length, fd = 200 mm. The collimated pulse is then focused into the water using
an immersed aluminium off-axis parabolic mirror with a high convergence angle (45◦) to
generate a plasma from which the bubble explosively emerges. By using a parabolic mirror
with a high convergence angle, the laser-induced plasma is nearly point-like, creating a
bubble with high sphericity as illustrated in figure 2(a). This in turn allows us to study
bubbles over a wide range of stand-off distances, even at large γ where the pressure
field anisotropies are weak. The bubble size is modulated by varying the laser energy. In
this experiment, we consider three levels of energy which yield bubbles having a mean
unbounded maximum radius Rmax of 4.44 mm, 3.72 mm and 2.97 mm (averaged over
more than 30 bubbles), and a standard deviation for all laser energies of approximately
1.5 % of the bubbles maximum radius. The dynamics of the bubble is recorded with the
Photron Fastcam Mini AX200 and the Shimadzu HPV-X high-speed cameras. A framing
rate of 67 500 frames s−1 is chosen for most of the investigated bubbles. Additional
visualisations, at framing rates ranging between 200 000 and 5 millions frames s−1, are
conducted for selected test cases requiring a finer temporal resolution. Illumination is
provided either by high-intensity flash lamps to observe the bubble surface and interior, or
by backlighting with a collimated LED to perform shadowgraphs. The bubble oscillation
periods are estimated from the shock waves emitted upon bubble generation and collapses
using a laser-beam deflection probe (Robert et al. 2007). The system consists of a 15 mW
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Figure 1. (a) Top and (b) side schematics of the experimental set-up.

continuous wave laser whose beam is reduced by a series of lenses to produce a collimated
0.75 mm beam in the test chamber. The beam intensity is monitored with a fast photodiode
(1 ns rise time). An example of the photodiode signal is illustrated in figure 2(c).

The bubble is generated over a bed of sand with which it interacts. The granular beds
consist of spherical soda lime glass beads having a density ρs ≈ 2.5, g cm−3. Three sizes
of beads are considered independently, with diameters 90 ± 20 μm, 200 ± 50 μm and
350 ± 50 μm. These are later referred to as fine, medium and coarse sand, respectively.
The beads are carefully poured into a cylindrical container previously filled with water to
avoid trapping air pockets. The container has a diameter of 5.3 cm and a depth of 1.5 cm.
To assess the effects of the container size on the bubble behaviour, we have conducted
additional tests with larger containers and obtained similar results. The sand surface is then
smoothed flat so that its height precisely matches the one of the container walls. Whenever
the sand interface is deformed by an oscillating bubble, extra sand is added and the surface
is flattened again. We measure the porosity of the granular interfaces by pouring sand into
a container filled with water, weighing the mixture and then drying it during 36 h in an
oven at 50 ◦C. We make sure that all the water has evaporated by monitoring the mixture
mass evolution at regular intervals. The mass of the dried out sand is then used to evaluate
the porosity with β = 1 − ms/(ρsV), where ms and ρs are the dry mass and density of
the beads, and V is the volume of the container. We found that β = 0.385 ± 0.005 for
all tested granularities. However, we note that due to the interactions of the oscillating
bubble with the sand, residual gas could remain trapped in the granular boundary and
affect its properties. Nevertheless, we did not observe any significant change in the bubble
and sand dynamics over several hours of measurements, suggesting that the amount of
trapped gas is small. Yet, this could become relevant if multiple bubbles interact with a
granular boundary over multiple oscillation cycles. Finally, we study the interaction of a
bubble with a rigid boundary by replacing the cylindrical container with an aluminium
disc with a diameter of 6 cm and a thickness of 0.7 cm.
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Figure 2. Dynamics of bubbles in an unbounded liquid. (a) Selected instants of the bubble dynamics with
Rmax ≈ 3.72 mm and interframe time 0.95 ms. (b) Radial evolution of bubbles with different maximum
radii and (c) signal of the laser-beam deflection probe as recorded for a bubble with maximum radius
Rmax ≈ 3.72 mm with snapshots at bubble generation and collapse. The length scales are normalized by
the bubble maximum radius, Rmax, and the time scales are normalized by the Rayleigh collapse time tR =
0.915Rmax(ρ/�p)0.5. The first upward peak in the photodiode signal is due to the laser plasma and indicates
the bubble generation. The delay between the laser plasma and the generation shock is caused by the shock
wave propagation between the bubble centre and continuous wave laser beam. The black lines indicate the
2 mm scale.

To characterise the proximity of the bubble to the boundary, we use the so-called
stand-off parameter γ = s/Rmax. While the distance s is readily defined and accurately
adjusted using a linear translation stage, the definition of the maximum bubble radius
needs clarification. In an unbounded liquid, and if buoyancy effects are negligible, the
bubble remains spherical. Therefore, its maximum radius may be directly estimated
from the high-speed recording or indirectly through the duration of its first oscillation
period, tc0, which is assumed to be twice the Rayleigh collapse time, tc0 = 2tR =
1.83Rmax(ρ/�p)0.5 (Rayleigh 1917). We validate the latter approach by comparing
the Rayleigh model (mirrored across the axis t = tR) with the radial evolution of the
unbounded bubble, normalized by its maximum radius Rmax and the corresponding
Rayleigh collapse time tR. Figure 2(b) reveals that the bubble growth and collapse phases
are nearly symmetric in time and the unbounded bubble dynamics is closely approximated
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by the Rayleigh model. This result not only shows that the unbounded bubble lifetime
can be used to determine its maximum radius but also suggests that the effects of surface
tension and viscosity have a limited impact on the dynamics of the bubbles considered
in this work. When a bubble evolves in the vicinity of a boundary, however, it loses
its sphericity as it grows and collapses, and the duration of its first oscillation period
is modified. Under these circumstances, the Rayleigh equation no longer holds, and a
direct determination of Rmax from the high-speed recording is hindered. The maximum
bubble radius may however still be determined from its lifetime with Rayleigh’s equation,
provided that a correction factor is applied as suggested by Vogel & Lauterborn (1988).
An alternative, employed by authors such as Hsiao et al. (2014) and Zeng et al. (2018),
considers the equivalent radius of a sphere deduced from the maximum volume of the
deformed bubble, Requ

max. Another option is to define Rmax as the maximum radius the
bubble would attain in a free liquid, remaining spherical (Han et al. 2015; Lauterborn
et al. 2018; Lechner et al. 2019). We choose the latter definition for Rmax because a clear
distinction between the bubble at maximum volume and the sand is no longer possible
at γ � 1.0, which prevents an accurate estimate of Requ

max. An uncertainty may arise when
normalizing the bubble distance to the boundary by the hypothetical maximum radius it
would reach in an unbounded liquid, as small fluctuations in the deposited laser energy
can cause different bubbles generated in the same situation to vary in size. However, since
the standard deviation of the maximum radius of the unbounded bubbles is only 1.5 % for
a constant laser pulse energy, the resulting bubbles are very reproducible and the value
of Rmax is robust. The normalization we choose is thus sound and can be applied to the
entire parameter space of our experiment, but it is worth noting that differences arise when
Rmax is considered in place of Requ

max. By taking the maximum unbounded bubble radius for
normalization, one neglects the effects of shock waves reflected from the boundaries onto
the bubble and ignores the energy dissipation due to the interaction of the bubble with
the granular interface. These effects lead to a decrease of Requ

max with respect to Rmax as
s is decreased. At γ ≈ 1.0, we measure a 2–4 % reduction in the equivalent maximum
bubble radius, leading to a similar difference in the estimate of the stand-off parameter.
This difference decreases when the stand-off distance is increased, but is likely to increase
for γ < 1.0.

The studied range of stand-off distances is between γ ≈ 0.3 and γ ≈ 5.3. We did not
investigate smaller stand-off distances as to avoid forming a granular crater from laser
ablation (Marston & Pacheco-Vázquez 2019).

2.2. Numerical model
In the absence of analytical solutions for the dynamics of non-spherical bubbles, we
propose a simple numerical model to describe the dynamics of a cavitation bubble in
the vicinity of a bed of sand. The method is based on the axisymmetric boundary integral
method (BIM), which is commonly used in modelling a single cavitation bubble (Blake,
Taib & Doherty 1986; Robinson et al. 2001; Klaseboer & Khoo 2004a,b; Wang et al.
2005; Supponen et al. 2016) and can be adapted to account for the dynamics of a cavitation
bubble evolving near different types of boundaries. Our model considers that the bubble
develops in water whose flow is inviscid, incompressible, irrotational and has a density
ρw. Therefore, the velocity field, uw, can be written as the gradient of a potential with
uw = ∇φw and satisfies Laplace’s equation ∇ · uw = ∇2φw = 0. We model the bulk
behaviour of the sand by approximating it as an equivalent incompressible fluid. A similar
simplification can be used to model dense granular flows (Jop, Forterre & Pouliquen 2006;
Tankeo, Richard & Canot 2013) or to explain the collapse of a cavity created by the
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Figure 3. Schematic of the numerical domain.

impact and penetration of a steel ball into loose sand (Lohse et al. 2004) for instance.
We then determine the equivalent density of the water-saturated sand aggregate with a
mixture law (Biot 1956), ρm = (1 − β)ρs + βρw, where β is the sand porosity, and ρs
and ρw are the sand grain and water densities, respectively. We neglect the dissipation
of energy due to friction between the sand grains and between different sand layers,
so that the equivalent fluid can be considered inviscid. No external force influences the
system and, therefore, we assume that the flow remains irrotational. As for the case of
the water, the incompressible, inviscid and irrotational nature of the flow implies that the
velocity potential of the water–sand mixture is given by um = ∇φm and satisfies Laplace’s
equation ∇ · um = ∇2φm = 0. Consequently, the bubble oscillates in a fluid of density ρw
above a second fluid of density ρm. The two fluids share an infinite boundary at their
interface whose motion is dictated by the oscillating dynamics of the bubble. A schematic
of the numerical domain is provided in figure 3.

Since Laplace’s equation is assumed valid in each of the fluids, the potential can be
represented by integrals over the boundaries of the domain to derive the corresponding
normal velocities, ∂φ/∂n. For the water, we have a domain Dw with a boundary ∂Dw that
includes the surface of the bubble ∂B, and the fluid–fluid interface ∂I so that, for any point
y ∈ ∂Dw,

2πφw(y) +
∫

x∈∂Dw

φw(x)
∂G(y, x)

∂n
ds =

∫
x∈∂Dw

G(y, x)
∂φw(x)

∂n
. (2.1)

The domain of the water-saturated sand, Dm, is bounded only by the fluid–fluid interface
∂I and, thus, for any point y ∈ ∂I,

2πφm(y) +
∫

x∈∂I
φm(x)

∂G(y, x)

∂n
ds =

∫
x∈∂I

G(y, x)
∂φm(x)

∂n
, (2.2)

where G(y, x) = 1/|y − x| is the Green function.
We discretise the bubble interface ∂B into Nb + 1 nodes and the fluid–fluid interface

∂I in Ni + 1 nodes. The nodes are connected by cubic splines in which case (2.1) and
(2.2) can be rewritten as a (Nb + Ni + 2, Nb + Ni + 2) system of equations and solved
numerically to derive the normal velocities at the boundaries. With knowledge of φw,m at
the interfaces ∂B and ∂I, the tangential velocity ∂φ/∂s along the boundaries is also known
and the kinematic condition dx/dt = ∇φ = (∂φ/∂n, ∂φ/∂s) is used to update the nodes
position of all surfaces.

We consider a bubble with constant vapour pressure inside, so that the time evolution of
the potential on its surface is given by the Bernoulli equation (Blake et al. 1986; Robinson

947 A39-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

69
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.698


A.B. Sieber, D.B. Preso and M. Farhat

et al. 2001; Supponen et al. 2016),

Dφw

Dt
= 1 + |uw|2

2
+ δ2(zw − γ ), (2.3)

where zw is the vertical coordinate (perpendicular to the liquid–liquid interface), γ is the
stand-off parameter and δ is the buoyancy parameter. To match our experimental data,
we use δ = 0.019, derived from a bubble with maximum radius Rmax = 3.72 mm. We
nonetheless note that this value of buoyancy parameter has a marginal effect on the results.
Following a method introduced by Klaseboer & Khoo (2004a,b), we consider the normal
velocities and pressures continuous at the liquid–liquid interface. This yields the following
equation for the time evolution of the potential on that interface:

D
Dt

(φm − αφw) =
(

uw · um − |um|2
2

− α
|uw|2

2

)
. (2.4)

Here α = ρw/ρm is the ratio of the densities of the two fluids. Based on the mixture law,
the ratio of the water density to the sand mixture density is α = 0.52. To model a rigid
surface, we use α = 10−3 (Klaseboer & Khoo 2004a).

Our model computes the bubble dynamics up to the point of jet impact, i.e. when the
bubble becomes toroidal, which we consider sufficient to capture most of the properties
of the first bubble oscillation. However, to estimate the time of the bubble collapse more
accurately, we follow a procedure proposed by Supponen et al. (2016). The collapse of
the torus is calculated using a vortex ring model (Wang et al. 2005) in which the actual
torus shape is replaced by a circular torus with identical volume, radius, circulation and
initial collapse velocity. The dynamics of the collapsing circular torus is then estimated by
a Rayleigh-type ordinary differential equation given in Chahine & Genoux (1983).

In our simulations, all lengths are scaled with respect to the unbounded bubble
maximum radius Rmax, the time is scaled by Rmax(ρw/( p0 − pv))

0.5. The initial shape of
the bubble is taken as a sphere of radius R0 = 0.1Rmax with initial time, t0, and potential,
φb,0. The initial time corresponds to the times it takes a Rayleigh bubble to grow from
inception to R0 and φb,0 is derived from the Rayleigh bubble solution at R0 (Blake
et al. 1986). The liquid–liquid interface is initially taken as flat with φm,0 = φw,0 = 0.
Finally, the nodes position and (2.3) and (2.4) are integrated in time using a second-order
Runge–Kutta scheme with adaptive time stepping similar to Wang et al. (1996).

Simplifying the complex nature of a granular boundary by a continuous Newtonian
medium naturally leads to limitations of the numerical model. Of the basic assumptions we
made, the inviscid nature of the granular media is probably the most subject to criticism.
It implies that the sand motion is driven solely by inertia and that the grain-to-grain
interactions, which are governed in part by frictional laws, are neglected. Thus, the
formation of force chains in the material, the occurrence of jamming or the different
responses of the granular interface to compressive or tensile stresses are not considered.
Consequently, the model overestimates the deformation of the sand interface as the bubble
grows and underestimates it when the bubble collapses, which ultimately affects the
dynamics of the bubble itself. Given these limitations, it is therefore reasonable to restrict
the scope of applicability of this simple model to a lower bound of stand-off distances
where the motion of the sand interface is limited, and the behaviour of the bubble
remains well predicted. For the medium and fine sands, we found that the solver provides
results consistent with the experimental observations for γ � 1.3. At stand-off distances
greater than γ ≈ 1.3, the sand is not only weakly deformed by the bubble oscillations,
but we observe no significant effect of sand grain size on the bubble dynamics, which
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is consistent with our numerical model in which the influence of sand granularity is
neglected. However, at stand-off distances smaller than γ ≈ 1.3, the interaction between
the sand and the bubble becomes important and eventually leads to the formation of
sand mounds or craters, which significantly affect the bubble dynamics. Our simplified
numerical model does not allow us to model such features of the granular boundary and,
therefore, cannot predict an accurate bubble profile. Nevertheless, since the coarse sand is
much less affected by the bubble dynamics, we note that the BIM succeeds in adequately
predicting the bubble profile as it interacts with this sand down to γ ≈ 1.0. A direct
comparison of the numerical and experimental results is provided in the Appendix for
a bubble located at γ = 1.27.

3. Results and discussion

3.1. Classification of bubble-sand interaction regimes
The dynamics of a cavitation bubble and its interaction with a granular boundary strongly
vary with the stand-off parameter γ . A distinctive feature of this interaction is that the
oscillating bubble can be ‘swallowed’ by the sand. We consider that this ‘swallowing’
occurs as soon as the last moments of the bubble’s initial or rebound collapse takes place
under the sand interface. Based on this definition, we introduce a classification of the
bubble-sand interactions into three regimes associated with three ranges of γ . At large
stand-off distances (1.3 � γ � 5.3), the bubble is not ‘swallowed’ by the sand over its
first two periods of oscillation. The sand grain size does not significantly affect the bubble
dynamics, and a comparison with a similar bubble developing near a rigid boundary shows
that the bubble interacting with a granular boundary exhibits similar features: aspherical
first collapse and formation of a micro-jet directed toward the boundary. However, the
bubble oscillation periods are shorter, and the displacement of its centroid is smaller. At
intermediate stand-off distances (γ � 0.6 and γ � 1.3), the final instants of the bubble’s
first collapse occur above the granular boundary, but its rebound is ‘swallowed’ by the
sand. When the bubble collapses for the first time, the sand forms a distinctive mound
that can force the bubble to assume a conical shape. The extent of the mound, which
affects the bubble dynamics and shape, depends on the grain size and γ . At small stand-off
distances (0.3 � γ � 0.6), the bubble is in direct contact with the granular interface when
it collapses and is eventually ‘swallowed’ in the final instants of the collapse. During their
first oscillation period, the bubble develops a bell-shaped form leading to the formation
of a thin and very fast micro-jet. The sand granularity dictates the minimum stand-off
distance where this behaviour is observable.

In the following sections this classification is discussed in detail by introducing bubble
dynamics representative of each regime. The bubbles considered have a maximum radius
Rmax ≈ 4.44 mm. However, it is worth noting that we found no significant effect of Rmax on
the bubble dynamics if the value of γ is maintained. We additionally show the dynamics
of bubbles close to a rigid boundary in order to provide a baseline for comparison and
highlight the differences.

3.1.1. Bubble-sand interaction at large stand-off distances: γ ≈ 5.3 – γ ≈ 1.3
At stand-off distances greater than γ ≈ 1.3, the bubble dynamics in the vicinity of all
three granularities of sand show a similar behaviour to the one illustrated in figure 4,
which depicts the dynamics of bubbles evolving at γ ≈ 2.6.

Immediately after plasma generation, the bubble grows until it reaches a maximum
radius (figure 4, frames 1–2) and then collapses toward its centre due to the driving
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Figure 4. Selected instants of the bubble dynamics near the different investigated boundaries at γ ≈ 2.6:
(a) coarse sand (dg = 350 μm), (b) medium sand (dg = 200 μm), (c) fine sand (dg = 90 μm) and (d) rigid
boundary. All image sequences are initiated 0.13 ms after the bubble generation and the time interval between
successive images is 0.22 ms.The black line indicates the 2 mm scale.

surrounding pressure, retaining much of its spherical symmetry (figure 4, frames 2–4).
In the last instants of the collapse, the bubble becomes elongated in the direction normal
to the boundary, a downward micro-jet forms and pierces the opposite wall of the bubble.
The micro-jet occurrence is clearly evidenced by the appearance of a conical vapour hull
travelling toward the boundary during the bubble rebound (figure 4, frame 5–6). The
hull eventually disintegrates into tiny bubbles whose remnants are illustrated on frame
6. When the bubble collapses for a second time, a bump is observed at the site where the
micro-jet is initiated (figure 4, frame 6). Similar bumps were observed in Supponen et al.
(2016) for bubbles oscillating near a free surface. Their high-speed visualisation suggests
that such a bulge could be explained by the break-up and subsequent retraction of the
jet within the rebounding bubble. The bubble developing over a rigid surface essentially
assumes a resembling shape and dynamics to that of a bubble near a granular interface.
Nonetheless, the presence of a solid boundary results in longer first and second oscillation
periods. This difference is most notable during the bubble’s rebound (figure 4, frame 5–6),
where the magnitude and duration of the second oscillation period are significantly larger
for a bubble developing near a rigid boundary, as shown in figure 5(a). We explain this
difference in the rebound as follows. The bubble rebound carries the remaining energy of
the bubble after its initial collapse. At very large stand-off distances, the bubble almost
collapses spherically and most of the energy dissipation between successive rebounds
can be attributed to acoustic radiation in the form of shock or pressure waves (Vogel &
Lauterborn 1988; Supponen et al. 2017b). As the anisotropy in the fluid increases, usually
due to the presence of a near boundary, less energy is radiated in the form of shock waves
and the bubble rebound energy increases, even though part of the bubble kinetic energy is
transferred to the fluid to form the micro-jet, (Supponen et al. 2017b). It was also shown
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Figure 5. (a) Normalized temporal evolution of the bubble equivalent radius and (b) normalized displacement
of its centre of gravity over two periods of oscillation at γ ≈ 2.6. The length scales are normalized by the
unbounded bubble maximum radius, Rmax, and the time scales are normalized by twice the Rayleigh collapse
time tc0 = 1.83Rmax(ρ/�p)0.5. The negative values of �z/Rmax indicate that the bubbles are moving toward
the boundaries.

by Supponen, Obreschkow & Farhat (2018) that, for bubbles subjected to buoyancy with
0.03 < δ < 0.3 and located near a free surface at 1.4 < γ < 14, the increase of the bubble
rebound energy scales logarithmically with the anisotropy number ζ and is independent of
the anisotropy source. From this, it can be inferred that the smaller bubble rebound near
the granular interface is due to a stronger first collapse that dissipated more energy. This,
in turn, suggests that the sand produces a somewhat weaker anisotropy in the pressure
field than a rigid boundary, which is only visible in the final moments of collapse and
during rebound. We additionally show in figure 5(b) the translation of the bubble centre
of mass during its first two oscillation periods. Over the first oscillation period, the bubble
near a rigid surface exhibits a slightly larger displacement toward the boundary than the
bubbles near the granular boundaries. As Supponen et al. (2016) have shown for bubbles
exposed to different sources of anisotropy, the bubble centroid migration increases with
the anisotropy of the pressure field. The difference in centroid displacements therefore also
suggests that the presence of a rigid surface leads to stronger pressure field anisotropies
than a granular boundary for an identical stand-off distance. Over the second oscillation
period, however, the bubble in the vicinity of a solid boundary exhibits a significantly
larger migration toward the boundary. This is likely due to the position of the bubble
relative to the boundaries after collapse, sR, and the amplitude of its rebound, Rmax,R.
Indeed, the anisotropy felt by the bubble at rebound has changed and should be redefined
considering these new parameters, γR = sR/Rmax,R. Since the bubble located near a rigid
surface collapses closer to the boundary and has a greater rebound than its counterparts
that develop near a granular boundary, we have at rebound, γR,wall < γR,sand. The larger
migration that occurs over the first bubble oscillation period is therefore amplified over the
second oscillation period.

3.1.2. Bubble-sand interaction at intermediate stand-off distances: γ ≈ 1.3 – γ ≈ 0.6
When the bubble is generated closer to the boundary, the interactions between the bubble
and the sand give rise to interesting new features that lead to significantly different bubble
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Figure 6. Selected instants of the bubble dynamics near the different investigated boundaries at γ ≈ 0.8:
(a) coarse sand (dg = 350 μm), (b) medium sand (dg = 200 μm), (c) fine sand (dg = 90 μm) and (d) rigid
boundary. All image sequences are initiated 0.27 ms after the bubble generation and the time interval between
successive images is 0.1 ms.The white line indicates the 2 mm scale.

dynamics than those observed near a rigid surface. To illustrate this, we show in figures 6
and 7 the dynamics of a cavitation bubble evolving at a stand-off distance of γ ≈ 0.8.
Figure 6 provides an overview of the bubble dynamics and subsequent sand motion, and
figure 7 shows the final instants of the bubble’s first collapse.

During the bubble growth phase (figure 6, frame 1–3), the granular beds undergo a
weak local compaction, and the sand particles are slightly pushed radially outwards. This
motion strictly follows the bubble dynamics and can therefore be attributed to the pressure
and velocity fields generated by the expanding bubble. Although all sand sizes appear
to follow a similar motion, the granularity of the nearby sand beds impacts the bubble
growth differently. While the coarse sand allows the bubble to maintain an almost spherical
shape, the finer sand forces the bubble’s lower hemisphere to flatten. The former dynamics
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Figure 7. Final phase of the bubble collapse near the different granular boundaries at γ ≈ 0.8: (a) coarse sand
(dg = 350 μm), (b) medium sand (dg = 200 μm) and (c) fine sand (dg = 90 μm). All image sequences are
initiated 0.77 ms after the bubble generation and the time interval between successive images is 15 μs. The
white line indicates the 2 mm scale.

suggests the liquid is allowed to flow through the granular medium whereas the latter
dynamics resemble the one imposed by a rigid, impermeable boundary. Consequently, one
can deduce a direct relation between sand grain size and the permeability of the granular
interface. To support this hypothesis, we turn to the well-established Ergun correlation
(Ergun 1952) that evaluates the pressure drop, �P, of a steady-state fluid flow across
porous media of length L,

�P
L

= A
μ(1 − β)2vs

d2β3 + B
ρ(1 − β)v2

s

dβ3 , (3.1)

where β is the porosity of the medium, d the mean sand grain diameter, μ and ρ are
the fluid dynamics viscosity and density, respectively, and vs is the superficial velocity.
The constants A and B are determined empirically and have been a subject of debate
(Macdonald et al. 1979; Foumeny et al. 1993; Nemec & Levec 2005). The first term on
the right-hand side of (3.1) represents the viscous energy losses that primarily occur in
laminar flows and the second term denotes the energy losses in turbulent flow regimes.
Assuming that vs is mostly independent of the sand grain size since the flows are driven
by identical bubbles, and given that we measured similar porosities β for all three granular
interfaces, (3.1) yields a pressure drop that scales as �P ∼ d−2 in the laminar flow regime
and as �P ∼ d−1 in the turbulent flow regime. In either case, a finer grain size results
in a larger flow resistance in a steady-state regime, which can be associated with a lower
permeability and could explain the different bubble dynamics.

After reaching a maximum radius (figure 6, frame 3), the bubble collapses (figure 6,
frames 4–7). The previously radially displaced sand is now attracted by the retreating
bubble and eventually forms a mound whose size depends on the sand granularity.
The coarse sand scarcely forms a mound and the bubble simply becomes elongated
in a direction perpendicular to the granular bottom (figure 7a, frames 1–4). The lower
hemisphere flattens slightly due to the presence of the nearby sand bottom. The upper
hemisphere maintains a spherical shape until the very last instants of the bubble collapse
when it gently and gradually indents. This eventually results in the formation of a micro-jet
that strikes the opposite side of the bubble at an average speed of approximately 218 m s−1

(figure 7a, frame 5), whereupon the remaining torus collapses (figure 7a, frame 6). Close to
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the medium and fine sands, the collapse dynamics differ. The bubble’s lower hemisphere
flattens rapidly, and the sand is drawn toward the retreating bubble, leaving a thin film
of fluid between the bubble and the sand interface (figure 6b,c, frames 6). Due to the
proximity of the bubble to the granular interface, the fluid flow beneath the bubble is
hindered. As a result, its upper hemisphere collapses faster, leading to the formation of
a cone-shaped bubble (figure 7b,c, frames 1–3). Subsequently, a high-velocity micro-jet
directed toward the boundary is formed (figure 7b,c, frame 4). This micro-jet reaches an
average speed of 289 m s−1 for a bubble near the medium sand and 328 m s−1 for a bubble
near the fine sand. As a comparison, a similar bubble evolving near a rigid boundary
develops an average jet speed of 87 m s−1. The aforementioned micro-jet velocities are
evaluated by tracking the position of the jet tip as it moves through the bubble, taking into
account the optical refraction at the bubble surface using Snell’s law (Koch et al. 2021).
Depending on the velocity of the jet and the visibility of the bubble interior, at least 15
consecutive points can be collected from the 5 millions frames s−1 recording. We find a
near-linear evolution of the micro-jet tip position with time and, therefore, evaluate the
averaged jet velocity by fitting a linear regression to our measurements. Note that we can
only track the positions of the micro-jet in the upper hemisphere of the bubble, since the
reflection of the granular interface on its lower hemisphere masks the jet. The difference in
micro-jet velocity can be explained by the shape that the bubble assumes before its upper
hemisphere indents. In the case of a bubble interacting with the fine or medium sand, the
contraction of its lateral sides is significantly greater than it is for a bubble close to the
coarse sand (figure 7, frames 2–3). The upper hemisphere of the bubble therefore exhibits
a greater curvature before indentation which, in turn, yields thinner and faster micro-jets,
as illustrated in figure 8(e). The size of the bubble at jet impact is also illustrated in figure 8.
Bubbles interacting with a finer sand exhibit a larger volume at jet impact. This is because
the height of the sand mound depends on the sand granularity: a finer sand yields higher
mounds. Consequently, the bubble near a finer sand becomes locally closer to the granular
interface which causes the jet to form earlier in the collapse phase, similar to the case
of bubbles that are initiated nearer and nearer to a rigid boundary (Lechner et al. 2020).
Before proceeding further, we should mention that bubbles generated at γ > 1 near the
fine and medium sands do not develop a conical shape, but simply elongate in a direction
perpendicular to the granular boundary. This is probably because the distance between the
collapsing bubble and the sand mound is too great to sufficiently impede the fluid flow
beneath the bubble.

After the collapse, the difference between the bubble dynamics close to a granular
boundary and a rigid boundary is still striking (figure 6, frames 8–12). Near a rigid
surface, the bubble rebound stretches over the boundary. However, when the bubble hits
a granular interface, the sand ‘swallows’ the bubble, which then bounces back within
the porous medium. This rebound is evidenced by the shock waves generated when the
bubble collapses a second time. Following the first collapse of the bubble, the coarse
sand is explosively ejected in random directions, pushed away radially by the rebound
of the bubble. The fine sand, on the other hand, shows a completely different behaviour.
The mound that had previously formed settles slowly, in a fluid-like cohesive fashion,
suggesting that the bubble rebound is cushioned by the sand. The medium sand behaves
in an intermediate manner: the upper layer of sand is thrown upward, again probably due
to bubble rebound, but the lower layers begin to settle similarly to the fine sand. The
difference in behaviour can be explained by the relative position of the bubble to the
boundary. As a bubble evolves close to the coarse granular boundary, the sand is barely
lifted. Therefore, the distance between the collapsing bubble and the sand is kept large
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Figure 8. Observation of the micro-jets driven by the nearby boundaries at γ ≈ 0.8: (a) fine sand (dg =
90 μm), (b) medium sand (dg = 200 μm), (c) coarse sand (dg = 350 μm) and (d) rigid boundary. The white
line indicates the 2 mm scale. (e) The associated averaged jet speeds measured between jet formation and
opposite bubble wall impact, and the curvatures of the bubbles upper hemispheres measured before the
micro-jet formation.

enough so that, during the first phase of the rebound, the bubble is not entirely ‘swallowed’
by the sand. However, the mounding of the medium and fine sands forces the bubble to
collapse closer to the granular interfaces. Consequently, the rebounding bubble is almost
immediately ‘swallowed’ by the granular media, resulting in a less violent rebound and
less pronounced ejection of sand grains. This reasoning is supported by the duration of
the bubble’s second oscillation period. We indeed measured a significantly longer second
oscillation period for the bubble evolving close to the coarser sand, thus suggesting a larger
and more energetic rebound.

3.1.3. Bubble-sand interaction at small stand-off distances: γ ≈ 0.6 – γ ≈ 0.3
Further reducing the stand-off distance leads to stronger bubble-sand interactions. To
illustrate this behaviour, we show in figures 9 and 10 the dynamics of a bubble evolving
at γ ≈ 0.5 from the considered interfaces. Figure 9 provides an overview of the bubble’s
lifetime and figure 10 shows the final instants of its first collapse.

Near the granular boundaries, the bubble sticks to the boundary early in its growth
phase and initially maintains a spherical shape, in contrast to the bubble near the rigid
interface, whose lower hemisphere quickly flattens (figure 9, frame 1–2). As discussed in
§ 3.1.2, this difference of dynamics suggests that the part of the liquid displaced by the
bubble can flow through the permeable granular medium, allowing the bubble to retain a
higher symmetry. As the bubble continues to grow (figure 9, frames 2–5), the sand is first
compacted downwards and is then pushed radially outwards. This combined motion of the
granular media leads to the formation of a crater in which the bubble evolves. The shape
and size of the crater is nevertheless highly dependent upon the sand grain size. The fine
and medium sand deform greatly, leading to the formation of a notable rim encircling the
bubble towards the end of its growth and during its collapse phase. The coarse sand, on
the other hand, is weakly displaced, resulting in a significantly less pronounced crater rim
(figure 10, frames 1–4). The formation of a crater also likely allows the lower hemisphere
of the bubble to continue to grow downwards while preventing it from stretching along
the granular boundary, in contrast to a bubble near a rigid boundary that expands along
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Figure 9. Selected instants of the bubble dynamics near the different investigated boundaries at γ ≈ 0.5:
(a) coarse sand (dg = 350 μm), (b) medium sand (dg = 200 μm), (c) fine sand (dg = 90 μm) and (d) rigid
boundary. Image sequences are initiated between 0.05 and 0.06 ms after the bubble generation and the time
interval between successive images is 0.1 ms. The 0.01 ms jitter between the onset of the image sequences
was chosen so that the first collapse of the bubble and the shock wave emission occurs for all three granular
boundaries on frame 9 and, for the rigid boundary, on frame 10. This offset corresponds to approximately 1.2 %
of the bubble first oscillation period. The white line indicates the 2 mm scale.

the solid wall and assumes a hemispherical shape. These differences in the growth phase
ultimately affect the collapse of the bubble.

During the collapse phase (figure 9, frames 5–9) the presence of the granular boundary
impedes the liquid flow below the bubble. This leads to the delay of the lower hemisphere
collapse with respect to the upper one. For the coarse sand, the resulting effect is similar
to the one observed at γ ≈ 0.8: a faster contraction of the bubble’s lateral sides (figure 9a,
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Figure 10. Final phase of the bubble collapse near the different granular boundaries at γ ≈ 0.5: (a) coarse
sand (dg = 350 μm), (b) medium sand (dg = 200 μm) and (c) fine sand (dg = 90 μm). All image sequences
are initiated 0.76 ms after the bubble generation and the time interval between successive images is 20 μs. The
white line indicates the 2 mm scale.

frame 8) followed by a gradual collapse of the upper hemisphere (figure 10a, frames 1–4)
that eventually indents, resulting in the formation of a micro-jet impacting the bubble’s
opposite wall (figure 10a, frames 5–6). A local measurement of the jet velocity yields
a speed of approximately 227 m s−1, considering the optical refraction at the bubble
interface. In contrast, for the medium and fine sands, the formation of a larger rim
surrounding the bubble leads to a drastically different collapse. The bubble’s surface
indentation is now visible on its lateral sides (figure 9b,c, frames 7–8). This is likely
the result of an annular flow converging toward the bubble’s axis of symmetry. As the
bubble continues to collapse, it develops a bell-shaped form with a spherical cap, an
annular indentation and a conical flank (figure 10b,c, frames 1–3). The cap’s lateral
sides collapse first suggesting the annular flow is faster than the axial flow. When the
annular flow collides, a shock wave is emitted in the liquid phase and a fast micro-jet is
accelerated downwards, as illustrated in figure 11. Considering the micro-jet is initiated
upon the liquid collision (Reuter & Ohl 2021), we estimate its velocity by measuring
the distance travelled by the jet between its initiation (i.e. cap collapse) and the location
at which the jet tip goes past the granular rim, still considering the optical refraction
at the bubble interface. Particularly high jet velocities are measured that range between
1083 m s−1 and 1138 m s−1. Resembling dynamics with similarly fast micro-jets have
already been described for bubbles that collapse extremely close to a solid boundary.
Lechner et al. (2019, 2020) computed jet velocities ranging between 1000 m s−1 and
2000 m s−1 depending on the stand-off distance (γ = 0.05 − 0.2), Koch et al. (2021)
successfully compared the micro-jet dynamics of a laser-induced bubble at γ = 0.04
with a ray-traced numerical simulation, which yielded a fast micro-jet velocity of over
700 m s−1, and Reuter & Ohl (2021) measured a lower bound on the jet velocity of
850 m s−1 for a bubble collapsing at a stand-off distance γ = 0.05. It is not clear why a
bubble generated at a distance γ ≈ 0.5 close to a bed of sand develops similar dynamics.
However, a possible explanation could be found in the elevation of the granular boundary,
since its upward displacement causes a local change of the stand-off distance that could
lead to the bubble dynamics mentioned above. Before moving forward, we should mention
that a bubble generated over the coarse sand exhibits the same bell-shaped profile at
γ ≈ 0.3, while the one developing over the fine sand adopts these dynamics at γ ≈ 0.6
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Figure 11. Snapshots of the shock waves emitted upon cap collapse (a,b) and resulting micro-jets (c,d) for the
medium sand (a,c) and fine sands (b,d) at γ ≈ 0.5. All images were taken 1.2 μs after the cap collapse. The
white line indicates the 2 mm scale.

already. This behaviour is consistent with the premise that the finer the sand grains, the
larger the interface deformation, and, thus, the stronger its impact on the bubble dynamics.
After collapsing, the bubble is ‘swallowed’ by the sand inside which it rebounds. Again,
the presence of the rebound is confirmed by the shock waves emitted when the bubble
collapses a second time. Immediately after collapse (figure 9, frames 9–12), the sand
grains are gradually lifted. The extent and cohesion of this movement depends on the
grain size. While the finer sand shows a slow but cohesive upward movement, the coarser
sand rises rapidly in a scattered manner. The difference in dynamics could be explained by
the amplitude of the bubble rebound. We indeed measure that the bubble rebound in the
coarser sand lasts longer than the one in the finer sand, implying a more energetic rebound
that can propel the sand particles farther away.

Following the bubble collapse, the sand motion continues on a much longer time scale
(several tens of milliseconds, compared with the bubble lifetime of approximately 1 ms).
To illustrate this motion, we show in figure 12, the dynamics of the sand induced by a
bubble collapsing at γ ≈ 0.6 for all three grain sizes. In all three cases, the sand motion is
driven by a bubble with a maximum radius Rmax ≈ 4.44 mm. The first frame in figure 12
is taken 1 ms after the bubble generation. To put these images in a temporal context,
it should be noted that the bubble’s first oscillation period lasts approximately 860 μs
and its second oscillation period lasts between 380 μs and 560 μs, depending on the
grain size (a larger grain size leads to a longer rebound at γ ≈ 0.6). This means that
the bubble has already collapsed once after 1 ms and is rebounding within the sand. The
occurrence of the bubble rebound below the sand surface is confirmed by the presence
of shock waves emitted during its second collapse, as illustrated in figure 13. The dashed
line in 12 frame 1 indicates the height of the sand mound at the time of the bubble’s
first collapse. As illustrated in frame 1, all three mounds have risen from this position.
The dynamics of the coarse sand continues as follows. The sand grains ejected from the
rebounding bubble are propelled further (frames 2–3). As these particles slow down, a
granular jet can be observed shooting upwards in the centre of the ejecta (frames 4–5).
The jet eventually reaches a maximum height and the sand grains rain down to the ground
(frame 6). The fine sand dynamics also exhibit a jetting behaviour, but, its dynamics differ
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Figure 12. Granular jet dynamics following the bubble collapse. The bubble driving the jets is generated
at γ ≈ 0.6 and has a maximum radius Rmax ≈ 4.44 mm. (a) Coarse sand (dg = 350 μm), (b) medium sand
(dg = 200 μm) and (c) fine sand (dg = 90 μm). The white dashed line indicates the elevation of the granular
mounds at the bubble first collapse and the white solid line indicates the 3 mm scale.

(a)

1.21 ms

(b)

1.42 ms

Figure 13. Evidence of the bubble rebound below the sand surface from the shock waves emitted during its
second collapse. The bubble is generated at γ ≈ 0.6 with Rmax ≈ 4.44 mm. (a) Coarse sand (dg = 350 μm)
and (b) fine sand (dg = 90 μm). The associated bubble first oscillation period approximately lasts 0.86 ms for
both the coarse and fine sands and the white solid line indicates the 2 mm scale.

from the one described above. Immediately after the bubble collapse, the mound, which
had risen slightly (frame 1), collapses radially back inwards (frame 2). This is followed
by the formation of a thin jet that migrates away from the boundary and forms a vortex
ring (frame 3–5). After reaching a maximum height the collimated thin jet disperses
and the sand grains fall back onto the granular surface (frame 6). The medium sand
exhibits an intermediate behaviour between the coarse and fine sands. The velocity and
height of the jets depend on the grain size. While the fine sand jet quickly reaches a
considerable height of 15.2 mm in 60 ms, the coarse sand reaches 9.7 mm after 60 ms and
the medium sand 10.8 mm after 60 ms. Both the medium and fine sand jets reach heights
beyond the available field of view (15.8 mm). The coarse sand jet only reaches a height of
approximately 10.1 mm.

Similar sand jets have already been observed in air when a solid sphere impacts and
penetrates a bed of loose sand, leaving a cavity in its path (Thoroddsen & Shen 2001;
Lohse et al. 2004; Royer et al. 2005; Caballero et al. 2007), or when a pressurised gas
cavity explodes and collapses inside a bed of sand (Loranca-Ramos, Carrillo-Estrada &
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Pacheco-Vazquez 2015). In both cases, the jetting is attributed to the collapse under gravity
of the cavity that is left within the sand. Therefore, we believe that the sand jets we observe
could be attributed to a similar phenomenon taking place when the bubble bounces back
below the sand surface. As the bubble rebounds, the sand would presumably be forced
radially outwards, creating a cavity in the granular medium, and then converge radially
back inward to fill the created void. The sand grains would eventually collide and form a
jet that rises upwards. Alternatively, the jetting behaviour could also be attributed to the
flow field induced by the collapse of the rebound bubble. This reasoning is derived from
the work of Reuter et al. (2017) who have shown that when a bubble oscillates near a solid
surface at 0.5 � γ � 1.3, large upward fluid displacements are produced by an ascending
vortex ring that forms after the toroidal second collapse of the bubble. By tracking the
fluid displacement caused by this bubble collapse, the authors identified very similar
flow patterns to those observed here via the displacement of the medium and fine sand
particles: a vortex ring gradually migrating away from the boundary. Both explanations
have their merits, and the actual jet driving mechanism could be a combination of the
two. A definitive answer would nonetheless be provided by investigating the dynamics of
the bubble and sand particles under the granular surface using, for instance, high-speed
X-ray radiography, as performed by Royer et al. (2005) in the case of a sphere impacting a
granular boundary.

Our observations suggest that the jetting phenomenon discussed above mainly occurs for
γ � 1.3, i.e. when the bubble’s second collapse takes place below the sand bed. However,
the detailed dynamics of these granular jets (velocity, height, width, etc.) appear to depend
on all three parameters modulated in this study: bubble energy, grain size and the initial
distance between the bubbles and the sand surface. A future study would therefore be
needed to thoroughly correlate the bubble properties with their effects on the sand jets.
At γ � 1.3, the movement of the granular boundary is predominantly characterised by an
upward ejection of the surface sand particles, likely due to a momentum transfer between
the liquid flow, accelerated by the bubble dynamics, and the sand bed.

3.2. Analysis of key bubble dynamics parameters
In the following sections we present two key parameters of the bubble dynamics: the
bubble oscillation periods and the displacement of its centroid. The presented data include
the entire parameter space covered by the experiment, i.e. bubble energies and stand-off
distances. The experimental data are compared against the simulation results obtained
from the BIM.

3.2.1. Bubble oscillation periods
The bubble oscillation periods are an important characteristic of the bubble dynamics
as they vary with both the stand-off distance and the nature of the nearby boundary. In
figure 14 we show the evolution of the bubbles first and second oscillation periods as a
function of the stand-off distance γ and the anisotropy parameter ζ . For comparison, the
results for bubbles developing near a rigid surface are also included. The bubbles first
oscillation period, tc1, is measured with the laser-beam deflection probe (see § 2.1). The
second oscillation period, tc2, is also mainly determined with the same probe. However,
when a bubble is generated close to the granular boundary (γ � 1.0), its second collapse
takes place within the sand, resulting in a weaker emitted shock wave that the probe
is unable to detect. Instead, the timing of the second collapse shock wave is visually
determined through the high-speed recording (hollow markers in figure 14). The latter
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Figure 14. (a) Normalized first oscillation and (b) second oscillation periods of the bubbles as a function of
the stand-off distance γ . The solid symbols indicate the values estimated through the laser-beam deflection
probe. The hollow symbols indicate the values visually estimated through high-speed recording by identifying
the shock waves emitted upon collapse. (c) Second oscillation period as a function of ζ .

measurement is only conducted for the largest bubble energy. For the convenience of
comparison, the collapse times are normalized by twice the Rayleigh collapse time of the
unbounded bubble, tc0 = 1.83Rmax(ρ/�p)0.5 (Rayleigh 1917). We also include in figure 14
the results of the BIM simulation. Overall, the general trends are well predicted by the
numerical model, although the simulations slightly overestimate the collapse times for
both the solid and sand boundaries test cases, with a root-mean-square error of 2.6 % for
the sand boundary and of 3.8 % for the rigid boundary over the considered data range
(1.0 < γ < 6.0). These discrepancies could be attributed to effects of viscosity, surface
tension or compressibility that are neglected in the simulations.

As illustrated in figure 14(a), the presence of a granular boundary leads to a
gradual increase of tc1 as the bubble is generated closer and closer to the interfaces.
Interestingly, the grain size has no significant impact on the bubble lifetime within the
measurement’s uncertainties. Bubbles close to a rigid boundary follow a similar trend,

947 A39-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

69
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.698


A.B. Sieber, D.B. Preso and M. Farhat

but the prolongation of their first oscillation periods is significantly more pronounced. At
large stand-off distances, the bubbles oscillation times approach that of the unbounded
spherical bubbles, that is, tc1/tc0 → 1. In figure 14(b) we present the bubbles second
oscillation periods as a function of γ . The results show that a decrease of the stand-off
distance results in longer rebounds until a maximum is reached at γ ≈ 1.1 for the granular
interfaces and γ ≈ 1.3 for a rigid boundary. As discussed in § 3.1.1, this lengthening
can be explained by the increasing anisotropy of the pressure field, leading to weaker
first collapses and, thus, more energetic and larger rebounds. The sand grain size has
no significant impact on the bubbles’ second oscillation period for γ � 1.1. At stand-off
distances γsand � 1.1 and γrigid � 1.3, the rebound oscillation times decrease with γ . We
believe this behaviour is due to the stronger physical interactions between the bubbles
and the nearby boundaries, resulting in greater energy losses. We also find that the sand
grain size affects the rebounding dynamics between 0.3 � γ � 1.1. Within this range of
stand-off distances, the bubble is ‘swallowed’ by the granular boundary and consistently
exhibits shorter second oscillation periods when it develops in sands with finer grain sizes.

Considering that the rebound dynamics is correlated to the anisotropy of the pressure
field, we show in figure 14(c) the second oscillation periods of the bubbles as a function
of the dimensionless anisotropy parameter ζ (see (1.1)). For bubbles near a granular
interface, we use the same assumptions as for the numerical model and consider the
sand as a liquid whose density is defined by a mixture law. The anisotropy parameter
is therefore given by ζ = 0.195(ρm − ρw)(ρm + ρw)−1γ −2 ≈ 0.0616γ −2. Bubbles near
a rigid surface are characterized by an anisotropy given by ζ = 0.195γ −2. Considering
the anisotropy parameter instead of the stand-off parameter, we find that the duration
of the bubble rebounds strongly depends on the pressure field anisotropy and is almost
independent of the anisotropy source (i.e. rigid or granular boundary) for ζ � 0.06, which
roughly corresponds to γsand ≈ 1.1.

3.2.2. Bubble translation
Another important feature of the bubble dynamics is the displacement of its centroid, as
the potentially damaging micro-jets and shock waves generated during collapse are closely
related to the bubble migration. We present in figure 15 the bubble centroid translation, �z,
as a function of the stand-off parameter γ and the dimensionless anisotropy parameter ζ ,
for all the investigated sand granularities and bubble energies. The centroid displacement
is defined as the distance travelled by the bubble centre of mass between its generation and
collapse, which is taken as the moment when the bubble reaches its minimum volume.
We normalize the displacement by the unbounded bubble maximum radius, �z/Rmax,
so that different bubbles can be compared. The solid symbols in figure 15 indicate the
displacement measured through the camera recordings. As γ is decreased below 0.6,
however, the uplifting of the sand bottom masks the final instants of the bubble collapse
and prevents an accurate assessment of its location. Instead, we fit circles to the shock
waves emitted upon the bubble collapse to estimate its location. These results are indicated
by hollow symbols in figure 15. The latter measurement was only conducted for the largest
bubble energy. In addition, figure 15(a) shows the data computed with the BIM. The
results show a good agreement with the experimental data. Over the range of simulated
data (1.0 < γ < 6.0), the root-mean-square error of the bubbles migration predictions is
roughly 6.1 % for both the granular and the solid boundary. The discrepancies between the
numerical and experimental data are more pronounced at large values of γ . This is because
the limited temporal and spatial resolution of the high-speed recording makes it difficult
to accurately determine the position of the bubble when it reaches a minimum volume at
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Figure 15. Normalized bubble centroid displacement from generation to the first collapse as a function of the
stand-off parameter γ (a) and anisotropy parameter ζ (b). The solid symbols indicate values estimated through
the high-speed camera recording, the hollow symbols indicate the displacements found by fitting circles to the
shock waves emitted upon collapse to estimate the collapse location.

large stand-off distances. Overall, the migration trends are well estimated by the simple
and efficient numerical method.

As shown in figure 15(a), the bubble migration near a granular boundary at large
stand-off distances is barely notable and approaches that of an unbounded spherical
bubble, �z/Rmax → 0. As the stand-off distance is decreased, we observe an increase of
the bubble migration that is independent of the bubble energy and the sand granularity.
This trend is due to a gradual increase of the pressure field anisotropy and continues
until γ ≈ 0.6 where the presence of the near boundary prevents any further bubble
displacement and �z/Rmax decreases. A comparison with the solid boundary shows that
the bubbles undergo a similar trend. The magnitude of the displacement is nonetheless
significantly higher for bubbles near a rigid boundary. The difference in the magnitude
of the displacement between bubbles near the sand and a rigid boundary is explained by
the weaker anisotropy in the pressure field caused by the granular boundary. To further
exploit the dependance of the bubble migration on the flow field anisotropy, we show
in figure 15(b) the bubble translation as a function of ζ , using the flat rigid boundary
definition for the solid boundary and the liquid–liquid boundary definition for the granular
boundary (see (1.1)). This procedure leads to a near overlap of the displacement curves and
illustrates the independence of the bubble translation from the anisotropy source (i.e. rigid
or granular boundary) for anisotropy numbers up to ζ ≈ 0.08. This limit agrees well with
the work of Supponen et al. (2016), who showed that important parameters of the bubble
dynamics, such as micro-jets physics and bubble displacements, were independent of the
anisotropy source for ζ < 0.1. These authors additionally derived a power law to predict
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the normalized displacement of the bubble centroid, �z/Rmax = 2.5ζ 3/5. Their choice
of the exponent is based on the premise that, in a scale-free framework, all lengths scale
proportionally to the characteristic bubble radius at the final collapse stage, r ≡ R(t)/Rmax,
which itself scales as r ∼ ζ 2/3 (a thorough explanation of this derivation can be found in
Supponen et al. 2016). Hence, the bubble displacement scales as �z ∼ r ∼ ζ 2/3 = ζ 0.667

when the centroid motion uniquely occurs at the final collapse stage. However, to account
for the fact that part of the bubble migration takes place before the final collapse instants,
the authors corrected this scaling to �z ∼ ζ 3/5 = ζ 0.6. As illustrated in figure 15(b),
we however find that the power law �z/Rmax = 2.5ζ 2/3 fits our experimental data well,
without the need for a correction to the exponent. We believe this difference can be
explained by the choice of definition for the bubble centroid at collapse. While Supponen
et al. (2016) defined the centroid position at collapse as the position of the micro-jet tip at
impact with the opposite bubble wall, we consider the centre of mass of the bubble when
it reaches its minimum volume. Our definition leads to smaller bubble displacements,
which is consistent with our choice of exponent for ζ < 0.1. We also note that our
definition of Rmax for normalization may lead to slight discrepancies compared with the
results of Supponen et al. (2016), as the authors considered the maximum bubble radius
and we consider the maximum unbounded bubble radius. Nonetheless, at ζ ≈ 0.08 (i.e.
γsand ≈ 0.9 and γrigid ≈ 1.6), we estimated this difference to be of the order of 2-4 % (see
§ 2.1).

4. Conclusion

This study focused on the dynamics of laser-induced cavitation bubbles near beds of sand
composed of spherical soda lime glass beads. We considered three different sand grain
sizes and performed high-speed visualisations of the bubbles and sands dynamics, varying
the stand-off distance between γ ≈ 0.3 and γ ≈ 5.3.

The observed bubble behaviour can be divided into three regimes associated with
specific ranges of stand-off parameter. For 1.3 � γ � 5.3, the sand grain size has a weak
influence on the bubble dynamics which resemble that of a similar bubble developing
over a rigid boundary. At intermediate stand-off distances, between γ ≈ 1.3 and γ ≈ 0.6,
the sand is lifted during the bubble collapse and eventually forms a mound, whose size
depends upon the distance of the bubble to the sand and its granularity. The bubble
rebound is ‘swallowed’ by the sand. At small stand-off distances, below γ ≈ 0.6, the
bubble develops a bell-shaped form as it collapses, resulting in the formation of a thin
and very fast micro-jet. The sand granularity dictates the minimum stand-off distance
where this behaviour is observable. In this regime, the bubble is ‘swallowed’ by the sand
in the last instants of its first collapse. Compared with a rigid boundary, we found that the
bubble lifetime is shortened with a reduced centroid displacement for all tested γ values.
Between γ ≈ 1.3 and γ ≈ 0.3, we additionally observed granular jets erupting from the
sand surface after the bubble has collapsed.

Defining the sand as an equivalent liquid with a mixture law, we found that the
dimensionless anisotropy parameter ζ could be used to predict the bubble centroid
displacement with a scaling law for ζ � 0.08. The use of the anisotropy parameter also
proved to be a particularly suitable means of comparing the duration of the bubbles first
rebound between a rigid surface and a granular interface for ζ � 0.06.

Moreover, we developed a numerical model based on the BIM to predict and explain
the bubble dynamics close to a granular boundary. The BIM simulations successfully
reproduce the bubbles behaviour in the range of stand-off distances where the bubble
dynamics is largely independent of the sand grain size, i.e. for γ � 1.3.
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The presented results might be useful in the field of underwater explosions, especially
when the charges are detonated near the sandy bottom. In addition to such an application,
this study also presents a compelling scientific interest that remains largely unexplored
and will hopefully pave the way for future interest and research in the area. For
example, the dynamics of a cavitation bubble in a granular medium could be further
examined to gain a better understanding of the mechanisms involved in ultrasonic
deagglomeration/dispersion, where the interactions of the bubbles with the particles could
be important.
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Appendix. Boundary integral method and experiments comparison

Figure 16(a) shows a comparison of the bubble profiles between the experimental
observations (left halves of the frames) and the BIM simulation (right halves of the
frames) for a stand-off distance γ = 1.27 near the medium sand. It should be noted that
the simulation profiles are two-dimensional cross-sections of the bubble along its axis of
symmetry, while the experimental profiles are shadowgraphs obtained with backlighting.
The spatiotemporal evolution of the bubble motion is closely reproduced by the BIM
between frames 1 and 5 (growth phase). Nonetheless, the simulation slightly overestimates
the bubble maximum radius and, since the bubble oscillation period is proportional to the
maximum radius, the collapse is delayed with respect to the experimental observations.
We measured this delay to be 29 μs, which roughly corresponds to a relative error of
3.5 % with respect to the experiment. Therefore, to compare the bubble profiles during
the collapse phase, we shifted the times of the numerical simulation by 29 μs on frames
6–9 (right halves). With this temporal correction the bubble profile is also well reproduced
over the collapse phase. However, we note that the extent of the lower hemisphere of the
bubble is overestimated in the simulation, likely due to the overestimation of the downward
sand displacement. Immediately before the micro-jet hits the opposite bubble wall (frame
9), the simulation results show a bubble shape and position that agree remarkably well
with the experimental observations. To further illustrate the independence of the bubble
dynamics from the sand grain size at γ � 1.3, we also show in figure 16(a) the profiles of
the bubble near the coarse and fine sands before micro-jet impact, and compare them with
the BIM. Performing a similar temporal correction, the simulation results are found to
nearly overlap the experimental observations. Figure 16(b) shows the time evolution of the
equivalent bubble radii for both the BIM simulations and the experimental observations.
We find a close agreement between the obtained radii, but notice a small temporal shift,
which we explain by the delayed bubble collapse in the simulation. In figure 16(c) we
show the temporal evolution of the bubble centre of gravity. The overall agreement is
good, although the simulation predicts the bubble centroid closer to the boundaries than
in the experiments.

Considering the complexity of the simulated bubble dynamics problem and the
simplicity and computational efficiency of the numerical model, we believe that the
consistency between the numerical and experimental results is remarkably good.
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Figure 16. Comparison of bubble dynamics between BIM and experiments at a stand-off distance γ = 1.27.
(a) Growth and collapse of a bubble in the vicinity of the medium sand: experiment (left) and BIM (right).
The dimensional times of the numerical simulation are: 0.01, 0.11, 0.21, 0.32, 0.42, 0.56, 0. 66, 0.76, 0. 87
(in ms). The final instants of a bubble evolving close to the coarse sand (simulation time 0.86 ms) and the
fine sand (simulation time 0.87 ms) are also included. The black line indicates the 2 mm scale. (b) The time
evolution of the equivalent bubble radius and (c) the centroid displacement are compared with the BIM results.
The experimental bubbles are generated at z ≈ 5.64 mm above the boundaries and their maximum radius is
Rmax ≈ 4.44 mm.
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