Classification of Simple Weight Modules over the Schrödinger Algebra

V. V. Bavula and T. Lu

Abstract

A classification of simple weight modules over the Schrödinger algebra is given. The Krull and the global dimensions are found for the centralizer $C_{\mathcal{S}}(H)$ (and some of its prime factor algebras) of the Cartan element H in the universal enveloping algebra \mathcal{S} of the Schrödinger (Lie) algebra. The simple $C_{\mathcal{S}}(H)$-modules are classified. The Krull and the global dimensions are found for some (prime) factor algebras of the algebra \mathcal{S} (over the centre). It is proved that some (prime) factor algebras of \mathcal{S} and $C_{\mathcal{S}}(H)$ are tensor homological/Krull minimal.

1 Introduction

In this paper, module means a left module, \mathbb{K} is a field of characteristic zero, $\mathbb{K}^{*}=$ $\mathbb{K} \backslash\{0\}, \mathbb{N}=\{0,1,2, \ldots\}$, and $\mathbb{N}_{+}=\{1,2, \ldots\}$.

The Schrödinger (Lie) algebra $\mathfrak{s}=\operatorname{sl} 2 \ltimes \mathcal{H}$ is a semidirect product of the Lie algebras

$$
\begin{aligned}
\mathrm{sl} 2 & =\mathbb{K}\langle E, F, H \mid[H, E]=2 E,[H, F]=-2 F,[E, F]=H\rangle, \\
\mathcal{H} & =\mathbb{K}\langle X, Y, Z \mid[X, Y]=Z,[Z, X]=0,[Z, Y]=0\rangle,
\end{aligned}
$$

where \mathcal{H} is the 3-dimensional Heisenberg (Lie) algebra. The ad-action of the Lie algebra sl 2 on \mathcal{H} is given by the rule:

$$
\begin{array}{llll}
{[H, X]=X,} & {[E, X]=0,} & {[F, X]=Y,} & {[\mathfrak{s}, Z]=0} \\
{[H, Y]=-Y,} & {[E, Y]=X,} & {[F, Y]=0} &
\end{array}
$$

So, by definition, Z is a central element of the Lie algebra $\mathfrak{s s}$. The relations above together with the defining relations of the Lie algebras sl 2 and \mathcal{H} are defining relations of the Lie algebra \mathfrak{s}. Let $\mathcal{S}=U(\mathfrak{s})$ be the universal enveloping algebra of the Lie algebra \mathfrak{s}.

An \mathfrak{s}-module M is called a weight \mathfrak{s}-module if $M=\oplus_{\lambda \in \mathbb{K}} M_{\lambda}$ where

$$
M_{\lambda}:=\{m \in M \mid H m=\lambda m\}
$$

is called the weight subspace/component of weight μ provided $M_{\mu} \neq 0$. The aim of this paper is to classify simple weight \mathfrak{s}-modules (Proposition 3.3(ii) and Theorem 3.4. A first step was done in [20] where simple highest/lowest weight \mathcal{S}-modules were classified. In [18], a classification of simple weight \mathcal{S}-modules with finite dimensional weight spaces were classified over \mathbb{C}. Every weight component $M_{\mu} \neq 0$ of a weight \mathcal{S}-module M is a module over the centralizer $C_{\mathcal{S}}(H):=\{a \in \mathcal{S} \mid a H=H a\}$ of the

[^0]Cartan element H in \mathcal{S}. If, in addition, the \mathcal{S}-module M is simple, then every weight component M_{μ} is a simple $C_{\mathcal{S}}(H)$-module. So, the problem of classification of simple weight \mathcal{S}-modules consists of three steps:
Step 1: To classify all the simple $C_{S}(H)$-modules.
Step 2: How to reassemble some of the simple $C_{S}(H)$-modules into a single simple S-module.
Step 3: To decide whether two simple weight \mathcal{S}-modules are isomorphic.
What has just been said is true in a more general situation: a Lie algebra and its abelian subalgebras or an algebra A and its commutative (finitely generated) subalgebra \mathscr{H} where an A-module is called weight if it is a semisimple \mathscr{H}-module (e.g., \mathcal{S} and $\mathscr{H}=\mathbb{K}[H])$. As a rule, the centralizer $C_{A}(\mathscr{H})$ has a very rich and complex structure that is a reflection of richness of the category of weight modules. The problem of finding explicit generators and defining relations for the centralizer $C_{A}(\mathscr{H})$ is a challenging one. A reason for that is that generators for $C_{A}(\mathscr{H})$ are (linear combinations of) products of generators of the algebra A of high degree and, as a result, defining relations are also of high degree and are very complex (it is a real Noncommutative Geometry).

A problem of classification of simple weight \mathcal{S}-modules is essentially reduced to the one for its factor algebras $\mathcal{S}(\lambda):=\mathcal{S} /(Z-\lambda)$ where $\lambda \in \mathbb{K}$. A classification of simple weight $\mathcal{S}(0)$-modules was given in [14]. The case $\lambda \neq 0$ is considered in this paper. For the algebra $\mathcal{S}(\lambda)$ where $\lambda \in \mathbb{K}^{*}$, the centralizer $C_{\mathcal{S}(\lambda)}(H)$ turns out to be a generalized Weyl algebra (which is a Noetherian domain of Gelfand-Kirillov dimension 4), and the centre of $C_{\mathcal{S (\lambda)}}(H)$ is a polynomial algebra in two variables H and $\Delta_{\lambda}^{\prime}$ (Proposition 2.13(ii)). So, the problem of classification of simple $C_{\mathcal{S}(\lambda)}(H)$ modules is reduced to the problem of classification of simple modules over the factor algebras $C_{\lambda}^{\mu, v}:=C_{s(\lambda)}(H) /\left(H-\mu, \Delta_{\lambda}^{\prime}-v\right)$ where $\mu, v \in \mathbb{K}$. The algebras $C_{\lambda}^{\mu, v}$ are generalized Weyl algebras with coefficients from a Dedekind domain (more precisely, $\mathbb{K}[H])$. A classification of all simple modules for such generalized Weyl algebras was obtained in [3|6]. Then the set of simple weight \mathcal{S}-modules are partitioned into several classes, and each of them is dealt separately with different techniques; see Section 3

In Section 2 , we compute the Krull and global dimensions of the algebra $C_{\mathcal{S}(\lambda)}(H)$ (Proposition 2.13) and some of its (prime) factor algebras $C_{\lambda}^{v}:=C_{\delta(\lambda)}(H) /\left(\Delta_{\lambda}^{\prime}-v\right)$ (Lemma 2.16) and $C_{\lambda}^{\mu, v}$ (Corollary 2.14). In more detail (\mathcal{K} denotes the Krull dimension),

$$
\begin{array}{ll}
\mathcal{K}\left(C_{\mathcal{S}(\lambda)}(H)\right)=3 & \text { and } \quad \operatorname{gldim} C_{\mathcal{S}(\lambda)}(H)=4 . \\
\mathcal{K}\left(C_{\lambda}^{v}\right)=2 & \text { and } \quad \operatorname{gldim} C_{\lambda}^{v}= \begin{cases}\infty & \text { if } v=-1, \\
3 & \text { if } v \in\{n(n+2) \mid n=0,1,2, \ldots\}, \\
2 & \text { otherwise. }\end{cases} \\
\mathcal{K}\left(C_{\lambda}^{\mu, v}\right)=1 \quad \text { and } \quad \text { gldim } C_{\lambda}^{\mu, v}= \begin{cases}\infty & \text { if } v \in \Lambda^{\infty}(\mu), \\
2 & \text { if } v \in \Lambda^{f}(\mu) \backslash \Lambda^{\infty}(\mu), \\
1 & \text { otherwise },\end{cases}
\end{array}
$$

where

$$
\begin{aligned}
& \Lambda^{f}(\mu)=\left\{\left(2 i+\mu-\frac{1}{2}\right)\left(2 i+\mu+\frac{3}{2}\right),\left(2 i+\mu+\frac{1}{2}\right)\left(2 i+\mu-\frac{3}{2}\right),\right. \\
& \left.j^{2}-1 \mid i \in \mathbb{Z} \backslash\{0\}, j=1,2, \ldots\right\} \\
& \Lambda^{\infty}(\mu)=\left\{\left(\mu-\frac{1}{2}\right)\left(\mu+\frac{3}{2}\right),\left(\mu+\frac{1}{2}\right)\left(\mu-\frac{3}{2}\right),-1\right\}
\end{aligned}
$$

Similarly (see Proposition 2.13 (iii)(iv) and Lemma 2.15 (iii)(iv)),

$$
\begin{aligned}
& \mathcal{K}(\mathcal{S}(\lambda))=3 \quad \text { and } \quad \operatorname{gldim} \mathcal{S}(\lambda)=4 \\
& \mathcal{K}(\mathcal{S}(\lambda, v))=2 \quad \text { and } \quad \operatorname{gldim} \mathcal{S}(\lambda, v)= \begin{cases}\infty & \text { if } v=-1 \\
3 & \text { if } v \in\{n(n+2) \mid n=0,1,2, \ldots\} \\
2 & \text { otherwise }\end{cases}
\end{aligned}
$$

It follows directly from the classification of simple weight \mathcal{S}-modules (given in this paper) that the Finite-Infinite Dimensional Dichotomy holds for them (Theorem 3.12): For a simple weight \mathcal{S}-module all its weight spaces are either finite or infinite dimensional. As a corollary, we obtain a short different proof of the result of Dubsky about classification of simple weight \mathcal{S}-modules with finite dimensional weight spaces (Theorem 3.14) over an arbitrary algebraically closed field \mathbb{K} not necessarily $\mathbb{K}=\mathbb{C}$ as in [18]. Corollary 3.15 (i) gives a classification of simple weight \mathcal{S}-modules where all the weight components have the same finite dimensions. This result strengthens the result obtained in [29], which states: let V be a simple \mathcal{S}-module but not a simple sl2-module, if V is neither a highest weight nor a lowest weight module then $\mathrm{Wt}(V)=\mu+\mathbb{Z}$ for any $\mu \in \mathrm{Wt}(V)$ and all the weight spaces of V have the same dimension. Corollary 3.15 (ii) gives a classification of simple weight \mathcal{S}-modules where all the weight components are uniformly bounded (by a constant). In [19], the category \mathcal{O} of the Schrödinger algebra was studied. In [30], a classification of simple Whittaker \mathcal{S}-module was given.

A classification of simple weight modules over the spatial ageing algebra is given by Lü, Mazorchuk, and Zhao [22]. Classification of simple weight modules and various classes of torsion simple modules over the quantum spatial ageing algebra are given in [11] and [13], respectively. Classification of prime ideals and simple weight modules over the Euclidean algebra are obtained in [12].

2 The Global and Krull Dimensions

The aim of this section is to study the centralizer $C_{\mathcal{S}(\lambda)}(H)$ of the Cartan element H in the algebra $\mathcal{S}(\lambda)=\mathcal{S} /(Z-\lambda)$, where $\lambda \in \mathbb{K}^{*}$ and the (prime) factor algebra $\mathcal{S}(\lambda, v)$ where $v \in \mathbb{K}$. The case $\lambda=0$ was done in [14], and the cases $\lambda \neq 0$ and $\lambda=0$ are quite different. We find the Krull and the global dimensions of the algebras $C_{S_{(\lambda)}}(H)$ (Proposition 2.13(v)(vi)), C_{λ}^{v} (Lemma 2.16 (iii)(iv)), $C_{\lambda}^{\mu, v}$ (Lemma 2.14 (iv)(v)), $\mathcal{S}(\lambda)$ (Proposition 2.13 (iii)(iv)), and $\mathcal{S}(\lambda, v)$ (Lemma 2.15(iii)(iv)). We show that the algebras $C_{\mathcal{S}(\lambda)}(H)$ (Proposition $2.13(\mathrm{i})$), C_{λ}^{v} (Lemma 2.16 (i)) and $C_{\lambda}^{\mu, v}$ (Corollary 2.14(i)) are generalized Weyl algebras and find their centres. We also show that some of these
algebras are tensor homological minimal and tensor Krull minimal with respect to some classes of left Noetherian algebras.

At the beginning of this section, we collect some known results about the universal enveloping algebra $\mathcal{S}=U(\mathfrak{s})$ of the Lie algebra \mathfrak{s}. Let \mathcal{S}_{Z} be the localization of the algebra \mathcal{S} at the powers of the central element Z of \mathcal{S}. The algebra \mathcal{S}_{Z} contains the Weyl algebra $A_{1}:=\mathbb{K}\langle\mathscr{X}, Y \mid[\mathscr{X}, Y]=1\rangle$ where $\mathscr{X}:=Z^{-1} X$.

Lemma 2.1 (|15, Lemma 2.2]) (i) Let $E^{\prime}:=E-\frac{1}{2} Z^{-1} X^{2}, F^{\prime}:=F+\frac{1}{2} Z^{-1} Y^{2}$, and $H^{\prime}:=H+Z^{-1} X Y-\frac{1}{2}$. Then the following commutation relations hold in the algebra S_{Z} :

$$
\left[H^{\prime}, E^{\prime}\right]=2 E^{\prime}, \quad\left[H^{\prime}, F^{\prime}\right]=-2 F^{\prime}, \quad\left[E^{\prime}, F^{\prime}\right]=H^{\prime}
$$

i.e., the Lie algebra $\mathbb{K} F^{\prime} \oplus \mathbb{K} H^{\prime} \oplus \mathbb{K} E^{\prime}$ is isomorphic to sl 2 . Moreover, the subalgebra U^{\prime} of \mathcal{S}_{Z} generated by H^{\prime}, E^{\prime}, and F^{\prime} is isomorphic to the enveloping algebra $U(\mathrm{sl} 2)$. Furthermore, the elements E^{\prime}, F^{\prime}, and H^{\prime} commute with X and Y.
(ii) The localization \mathcal{S}_{Z} of the algebra \mathcal{S} at the powers of Z is $\mathcal{S}_{Z}=\mathbb{K}\left[Z^{ \pm 1}\right] \otimes U^{\prime} \otimes A_{1}$.

The algebra $U^{\prime} \simeq U(\mathrm{sl} 2)$ in Lemma 2.1 (i) is called the hidden $U(\mathrm{sl} 2)$. The centre $Z\left(U^{\prime}\right)$ of the algebra U^{\prime} is a polynomial algebra $\mathbb{K}\left[\Delta^{\prime}\right]$ where $\Delta^{\prime}:=4 F^{\prime} E^{\prime}+H^{\prime 2}+2 H^{\prime}$ is the Casimir element. One can check that

$$
\Delta^{\prime}=4 F E+H^{2}+H+2 Z^{-1}\left(E Y^{2}+H X Y-F X^{2}\right)-\frac{3}{4}
$$

Let

$$
\begin{equation*}
C:=Z \Delta^{\prime}+\frac{3}{4} Z=Z\left(4 F E+H^{2}+H\right)+2\left(E Y^{2}+H X Y-F X^{2}\right) \tag{2.1}
\end{equation*}
$$

By Lemma 2.1(ii), $Z(\mathcal{S})=\mathbb{K}[Z, C]$ is a polynomial algebra (see [15, Proposition 2.5]). This result was known before with various degrees of details (for example, the element C appeared in [24]). It seems that a complete proof was given in [19] where a different approach was taken (the proof is much more involved).

The Factor Algebra $\mathcal{S} /(Z)$

The 1-dimensional space $\mathbb{K} Z$ is an ideal of the Schrödinger (Lie) algebra. The Lie algebra $\mathfrak{s} / \mathbb{K} Z$ is canonically isomorphic to the semidirect product sl $2 \ltimes V_{2}$ of the Lie algebra sl 2 with its (unique) 2-dimensional simple sl 2 -module V_{2} (treated as an abelian Lie algebra). By (2.1), the element $\mathrm{c}:=F X^{2}-H X Y-E Y^{2}$ belongs to the centre of the universal enveloping algebra $A:=U\left(\operatorname{sl} 2 \ltimes V_{2}\right)$ of the Lie algebra sl $2 \ltimes V_{2}$. In fact, $Z(A)=\mathbb{K}[\mathrm{c}]$ (see [14]).

Generalized Weyl Algebra

Definition 2.2 (|2|6|) Let D be a ring, let σ be an automorphism of D, and let a be an element of the centre of D. The generalized Weyl algebra $A:=D(\sigma, a):=D[X, Y ; \sigma, a]$ is a ring generated by D, X, and Y subject to the defining relations:
$X \alpha=\sigma(\alpha) X \quad$ and $\quad Y \alpha=\sigma^{-1}(\alpha) Y$ for all $\alpha \in D, \quad Y X=a \quad$ and $\quad X Y=\sigma(a)$.
The algebra $A=\oplus_{n \in \mathbb{Z}} A_{n}$ is \mathbb{Z}-graded where $A_{n}=D v_{n}, v_{n}=X^{n}$ for $n>0, v_{n}=Y^{-n}$ for $n<0$ and $v_{0}=1$.

Global Dimension of GWAs

Let R be a commutative Noetherian ring and σ be its automorphism. An ideal \mathfrak{p} of R is called a σ-semistable ideal if $\sigma^{n}(\mathfrak{p})=\mathfrak{p}$ for some $n \geqslant 1$. If there is no such n, the ideal \mathfrak{p} is called σ-unstable.

Theorem 2.3 ([7, Theorem 3.7]) Let R be a commutative Noetherian ring of global dimension $n<\infty$, let $T=R(\sigma, a)$ be a GWA, and let a be a regular element of R that $\operatorname{gldim}(T)<\infty$. Then $\operatorname{gldim}(T)=\sup \{\operatorname{gldim} R$, ht $\mathfrak{p}+1$, ht $\mathfrak{q}+1 \mid \mathfrak{p}$ is a σ unstable prime ideal of R for which there exist distinct integers i and j with $a \in \sigma^{i}(\mathfrak{p})$ and $a \in \sigma^{j}(\mathfrak{p}) ; \mathfrak{q}$ is a σ-semistable prime ideal of $\left.R\right\}$.

In this paper, the following theorem is used in many proofs about the global dimension of algebras.

Theorem 2.4 ($[8$. Theorem 1.6]) Let $A=D(\sigma, a)$ be a $G W A, D$ be a commutative Dedekind ring, $D a=\mathfrak{p}_{1}^{n_{1}} \cdots \mathfrak{p}_{s}^{n_{s}}($ if $a \neq 0)$ where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ are distinct maximal ideals of D. Then the global dimension of the algebra A is

$$
\operatorname{gldim} A= \begin{cases}\infty & \text { if } a=0 \text { or } n_{i} \geqslant 2 \text { for some } i, \\
2 & \text { if } a \neq 0, n_{1}=\cdots=n_{s}=1, s \geqslant 1 \text { or } a \text { is a unit and } \sigma^{k}\left(\mathfrak{p}_{i}\right)=\mathfrak{p}_{j} \\
\text { for some } k \geqslant 1 \text { and } i, j \text { or } \sigma^{k}(\mathfrak{q})=\mathfrak{q} \text { for some maximal ideal } \mathfrak{q} \text { of } D, \\
1 & \begin{array}{l}
\text { otherwise. }
\end{array}\end{cases}
$$

Example 2.5 The Weyl algebra A_{1} is a GWA $\mathbb{K}[h](\sigma, a=h)$ where $\sigma(h)=h-1$. Hence,

$$
\operatorname{gldim} A_{1}= \begin{cases}1 & \text { if } \operatorname{char} \mathbb{K}=0 \\ 2 & \text { if } \operatorname{char} \mathbb{K} \neq 0\end{cases}
$$

This result is due to Reinhart [25]; his proof is different from this one.
Corollary 2.6 ([2, 6, 21]) Let \mathbb{K} be an algebraically closed field of characteristic zero, let $A=\mathbb{K}[H](\sigma, a)$ be a $G W A$ where $\sigma(H)=H-1$, and let $\lambda_{1}, \ldots, \lambda_{s}$ be the roots of the polynomial $a \in \mathbb{K}[H]$ provided $a \notin \mathbb{K}$. Then

$$
\operatorname{gldim} A= \begin{cases}\infty & \text { if } a=0 \text { or a has a repeated root, } \\ 2 & \text { if the roots of } a \neq 0 \text { are distinct and } \lambda_{i}-\lambda_{j} \in \mathbb{Z} \text { for some } i \neq j \\ 1 & \text { otherwise. }\end{cases}
$$

The algebra $U(v):=U(\operatorname{sl2}) /(\Delta-v)=\mathbb{K}[H]\left(\sigma, a=\frac{1}{4}(v-H(H+2))\right)$ (where $\sigma(H)=H-2)$ is a particular example of the GWA in Theorem 2.4. Applying Theorem 2.4 we obtain the result of Stafford [28] (his proof is different),

$$
\operatorname{gldim} U(v)= \begin{cases}\infty & \text { if } v=-1 \tag{2.2}\\ 2 & \text { if } v \in\{n(n+2) \mid n=0,1,2, \ldots\} \\ 1 & \text { otherwise }\end{cases}
$$

Tensor Homological/Krull Minimal Algebras

Let d be one of the following dimensions: the weak (homological) dimension wd , the left homological dimension lgd, or the left Krull dimension \mathcal{K}. For $d=\mathrm{wd}, \mathcal{K}$ (resp., lgd), $d(A \otimes B) \geqslant d(A)+d(B)$ for all (resp., left Noetherian) algebras A and B; see [1, 23]. In general, a strict inequality holds. Let $Q_{n}=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ be the field of rational functions and $d=\operatorname{lgd}, \mathcal{K}$. Then $n=d\left(Q_{n} \otimes Q_{n}\right)>d\left(Q_{n}\right)+d\left(Q_{n}\right)=0+0=0$.

Definition 2.7 ([8]) An algebra A is called a tensor d-minimal algebra with respect to some class of algebras Ω if

$$
d(A \otimes B)=d(A)+d(B) \quad \text { for all } B \in \Omega
$$

For $d=\operatorname{lgd}$ (resp., $d=\mathcal{K}$), we say that the algebra A is tensor homological minimal (THM) (resp., tensor Krull minimal (TKM)).

Example 2.8 Let \mathbb{K} be an algebraically closed uncountable field of characteristic zero. Then the GWA $\mathbb{K}[H](\sigma, a)$ where $\sigma(H)=H-\mu$ (where $\mu \in \mathbb{K}^{*}$) is a tensor homological minimal algebra with respect to the class $\mathcal{L F} \mathcal{N}$ of left Noetherian, finitely generated algebras [8 Corollary 1.5.(1)]. The Weyl algebra A_{1} and all factor algebras $U(v)=U(\operatorname{sl2}) /(\Delta-v)$ (where $v \in \mathbb{K}$ and Δ is the Casimir element) are examples of such GWAs. In particular, they are THM with respect to the class $\mathcal{L F} \mathcal{N}$.

Krull Dimension of GWAs

Theorem 2.9 ([16. Theorem 1.2]) Let R be a commutative Noetherian ring with $\mathcal{K}(R)<\infty$ and $T=R(\sigma, a)$ be $a G W A$. Then $\mathcal{K}(T)=\sup \{\mathcal{K}(R)$, ht $\mathfrak{p}+1$, ht $\mathfrak{q}+1 \mid \mathfrak{p}$ is a σ-unstable prime ideal of R for which there exists infinitely many $i \in \mathbb{Z}$ with $a \in \sigma^{i}(\mathfrak{p})$; \mathfrak{q} is a σ-semistable prime ideal of $R\}$.

Note The ideals \mathfrak{p} and \mathfrak{q} in Theorem 2.9 can be assumed to be maximal of height $\mathcal{K}(R)$. The case when the ring R is not necessarily commutative is considered in [9] where explicit formulae for the Krull dimension are obtained.

Example 2.10 The algebra $U(\mathrm{sl} 2)$ is the GWA $\mathbb{K}[H, \Delta]\left(\sigma, a=\frac{1}{4}(\Delta-H(H+2))\right)$. Clearly, there are no maximal ideals \mathfrak{p} and \mathfrak{q} as in Theorem 2.9 . Hence, $\mathcal{K}(U(\mathrm{sl} 2))=$ $\mathcal{K}(\mathbb{K}[H, \Delta])=2$. The result is due to Smith [27]; his proof is based on a different approach.

Example 2.11 The Weyl algebra $A_{1}=\mathbb{K}\langle\partial, X \mid[\partial, X]=1\rangle$ is a GWA $\mathbb{K}[h](\sigma, a=$ h). Similarly, $\mathcal{K}\left(A_{1}\right)=\mathcal{K}(\mathbb{K}[h])=1$ as there are no maximal ideals \mathfrak{p} and \mathfrak{q} as in Theorem 2.9 The result is due to Rentschler and Gabriel [26]; they used a different approach.

The next result shows that many GWAs are THM with respect to the class of countably generated left Noetherian algebras. This fact allows one to compute effectively their Krull dimension as well as their tensor products.

Theorem 2.12 ([10, Theorem 2.2]) Let $T=\bigotimes_{i=1}^{n} T_{i}$ be a tensor product of GWAs of the form $T_{i}=\bar{D}_{i}\left(\sigma_{i}, a_{i}\right)$, where each D_{i} is an affine commutative algebra over an algebraically closed uncountable field \mathbb{K}. Then T is a tensor Krull minimal algebra with respect to the class of countably generated left Noetherian algebras; that is,

$$
\mathcal{K}(T \otimes B)=\mathcal{K}(T)+\mathcal{K}(B)=\sum_{i=1}^{n} \mathcal{K}\left(T_{i}\right)+\mathcal{K}(B)
$$

for any countable dimensional left Noetherian algebra B. In particular, $\mathcal{K}\left(\otimes_{i=1}^{n} T_{i}\right)=$ $\sum_{i=1}^{n} \mathcal{K}\left(T_{i}\right)$.

The Weyl algebra $A_{1}=\mathbb{K}\langle\mathscr{X}, Y \mid[\mathscr{X}, Y]=1\rangle$ is a GWA,

$$
\begin{equation*}
A_{1}=\mathbb{K}[h][Y, \mathscr{X} ; \sigma, h] \tag{2.3}
\end{equation*}
$$

where $\sigma(h)=h-1$. In particular, $h=\mathscr{X} Y$. The Weyl algebra $A_{1}=\oplus_{i \in \mathbb{Z}} A_{1, i}$ is a \mathbb{Z}-graded algebra where $A_{1, i}=\mathbb{K}[h] v_{i}$ and

$$
v_{i}= \begin{cases}Y^{i} & \text { if } i \geqslant 1 \\ 1 & \text { if } i=0 \\ \mathscr{X}^{-i} & \text { if } i \leqslant-1\end{cases}
$$

The algebra $U=U(\mathrm{sl2})$ is a GWA, $U=\mathbb{K}[H, \Delta]\left[E, F ; \sigma, a=\frac{1}{4}(\Delta-H(H+2))\right.$, where $\mathbb{K}[H, \Delta]$ is a polynomial algebra and $\sigma(H)=H-2$ and $\sigma(\Delta)=\Delta$. Furthermore, $\Delta=4 F E+H(H+2)$ is the Casimir element of the algebra U, and the centre of U is equal to $Z(U)=\mathbb{K}[\Delta]$.

For $\lambda \in \mathbb{K}$, let $\mathcal{S}(\lambda):=\mathcal{S} / \mathcal{S}(Z-\lambda)$. Clearly, $\mathcal{S}(0) \simeq A$. If $\lambda \neq 0$, then by Lemma 2.1(ii), the algebra

$$
\begin{equation*}
\mathcal{S}(\lambda)=\mathcal{S}_{Z} / \mathcal{S}_{Z}(Z-\lambda)=U_{\lambda}^{\prime} \otimes A_{1}(\lambda) \tag{2.4}
\end{equation*}
$$

is a tensor product of algebras U_{λ}^{\prime} and $A_{1}(\lambda)$, which are the images of the algebra U^{\prime} and A_{1} in $\mathcal{S}(\lambda)$ under the epimorphism $\mathcal{S}_{Z} \rightarrow \mathcal{S}_{Z} / \mathcal{S}_{Z}(Z-\lambda)=\mathcal{S}(\lambda)$. The algebra U_{λ}^{\prime} is canonically isomorphic to the algebra $U=U($ sl2 $)$. The elements

$$
H_{\lambda}^{\prime}:=H+\lambda^{-1} X Y-\frac{1}{2}, \quad E_{\lambda}^{\prime}:=E-\frac{1}{2} \lambda^{-1} X^{2}, \quad F_{\lambda}^{\prime}:=F+\frac{1}{2} \lambda^{-1} Y^{2},
$$

which are the images of the elements H^{\prime}, E^{\prime}, and F^{\prime}, respectively, are canonical generators for the algebra U_{λ}^{\prime}. The algebra $A_{1}(\lambda)=\mathbb{K}\left\langle\mathscr{X}_{\lambda}, Y \mid\left[\mathscr{X}_{\lambda}, Y\right]=1\right\rangle$ is isomorphic to the Weyl algebra A_{1} where $\mathscr{X}_{\lambda}=\lambda^{-1} X$ and Y are the images of the elements $\mathscr{X}=Z^{-1} X$ and Y in $\mathcal{S}(\lambda)$. By (2.3), the algebra $A_{1}(\lambda)$ is a GWA,

$$
\begin{equation*}
A_{1}(\lambda)=\mathbb{K}\left[h_{\lambda}\right]\left[Y, \mathscr{X}_{\lambda} ; \sigma, h_{\lambda}\right] \tag{2.5}
\end{equation*}
$$

where $\sigma\left(h_{\lambda}\right)=h_{\lambda}-1$ and $h_{\lambda}=\mathscr{X}_{\lambda} Y=\lambda^{-1} X Y$. In particular, $A_{1}(\lambda)=\oplus_{i \in \mathbb{Z}} A_{1}(\lambda)_{i}$ is a \mathbb{Z}-graded algebra where $A_{1}(\lambda)_{i}=\mathbb{K}\left[h_{\lambda}\right] v(\lambda)_{i}$ where

$$
v(\lambda)_{i}= \begin{cases}Y^{i} & \text { if } i \geqslant 1 \tag{2.6}\\ 1 & \text { if } i=0 \\ \mathscr{X}_{\lambda}^{-i} & \text { if } i \leqslant-1\end{cases}
$$

The algebra U_{λ}^{\prime} is a GWA,

$$
\begin{equation*}
U_{\lambda}^{\prime}=\mathbb{K}\left[H_{\lambda}^{\prime}, \Delta_{\lambda}^{\prime}\right]\left[E_{\lambda}^{\prime}, F_{\lambda}^{\prime} ; \sigma^{\prime}, a_{\lambda}^{\prime}=\frac{1}{4}\left(\Delta_{\lambda}^{\prime}-H_{\lambda}^{\prime}\left(H_{\lambda}^{\prime}+2\right)\right)\right] \tag{2.7}
\end{equation*}
$$

where $\sigma^{\prime}\left(H_{\lambda}^{\prime}\right)=H_{\lambda}^{\prime}-2, \sigma\left(\Delta_{\lambda}^{\prime}\right)=\Delta_{\lambda}^{\prime}$, and $\Delta_{\lambda}^{\prime}:=4 F_{\lambda}^{\prime} E_{\lambda}^{\prime}+H_{\lambda}^{\prime}\left(H_{\lambda}^{\prime}+2\right)$ is the image of the Casimir element Δ^{\prime} in $\mathcal{S}(\lambda)$. The algebra $U_{\lambda}^{\prime}=\bigoplus_{i \in \mathbb{Z}} U_{\lambda, i}^{\prime}$ is a \mathbb{Z}-graded algebra where $U_{\lambda, i}^{\prime}=\mathbb{K}\left[H_{\lambda}^{\prime}, \Delta_{\lambda}^{\prime}\right] v_{i}^{\prime}$ and

$$
v_{i}^{\prime}= \begin{cases}E_{\lambda}^{\prime i} & \text { if } i \geqslant 1 \\ 1 & \text { if } i=0 \\ F_{\lambda}^{\prime-i} & \text { if } i \leqslant-1\end{cases}
$$

The Centralizer $C_{S(\lambda)}(H)$

Recall that for an element a of an algebra A, we denote by $C_{A}(a):=\{b \in A \mid a b=b a\}$ the centralizer of a in A. The next proposition is about generators and defining relations of the centralizer $C_{\mathcal{S}(\lambda)}(H)$ of the element H in the algebra $\mathcal{S}(\lambda)$, the global and Krull dimensions of the algebra $\mathcal{S}(\lambda)$. If, for an algebra A, the left and right global dimension are equal, the common value is denoted by $\operatorname{gldim}(A)$.

Proposition 2.13 Suppose that $\lambda \in \mathbb{K}^{*}$. Let $x:=E_{\lambda}^{\prime} Y^{2}$ and $y:=F_{\lambda}^{\prime} \mathscr{X}_{\lambda}^{2}$.
(i) The algebra $C_{\mathcal{S}(\lambda)}(H)$ is a GWA,

$$
C_{\mathcal{S}(\lambda)}(H)=D_{\lambda}\left[x, y ; \tau, \mathrm{a}_{\lambda}=a_{\lambda}^{\prime} \cdot h_{\lambda}\left(h_{\lambda}+1\right)\right]
$$

where $D_{\lambda}=\mathbb{K}\left[H, \Delta_{\lambda}^{\prime}, h_{\lambda}\right]$ is a polynomial algebra and $\tau(H)=H, \tau\left(\Delta_{\lambda}^{\prime}\right)=\Delta_{\lambda}^{\prime}$ and $\tau\left(h_{\lambda}\right)=h_{\lambda}-2$. The algebra $C_{\mathcal{S}(\lambda)}(H)$ is a Noetherian domain of GelfandKirillov dimension 4.
(ii) The centre of the algebra $C_{\mathcal{S}(\lambda)}(H)$ is the polynomial algebra $\mathbb{K}\left[H, \Delta_{\lambda}^{\prime}\right]$.
(iii) \mathbb{K} is an algebraically closed uncountable field). The (left or right) global dimension of the algebra $\mathcal{S}(\lambda)$ is equal to gldim $S(\lambda)=4$.
(iv) \mathbb{K} is an algebraically closed uncountable field). The Krull dimension of the algebra $\mathcal{S}(\lambda)$ is 3. The algebra $\mathcal{S}(\lambda)$ is a tensor Krull minimal algebra with respect to the class of countably generated left Noetherian algebras.
(v) $\left(\mathbb{K}\right.$ is an algebraically closed field) gldim $C_{\mathcal{S}(\lambda)}(H)=4$.
(vi) $\left(\mathbb{K}\right.$ is an algebraically closed field) $\mathcal{K}\left(C_{\mathcal{S}(\lambda)}(H)\right)=3$.

Proof (i) Using the fact that the algebras U_{λ}^{\prime} and $A_{1}(\lambda)$ are GWA's (see 2.5) and (2.7), we have

$$
\mathcal{S}(\lambda)=U_{\lambda}^{\prime} \otimes A_{1}(\lambda)=\bigoplus_{i, j \in \mathbb{Z}} D_{\lambda} v_{i}^{\prime} v(\lambda)_{j}
$$

Using the equalities $\left[H, v_{i}^{\prime}\right]=2 i v_{i}^{\prime}$ and $\left[H, v(\lambda)_{j}\right]=-j v(\lambda)_{j}$, we see that

$$
C_{\delta(\lambda)}(H)=\underset{i \in \mathbb{Z}}{\oplus} D_{\lambda} v_{i}^{\prime} v(\lambda)_{2 i}=\underset{i \geqslant 1}{\oplus} D_{\lambda} y^{i} \oplus D_{\lambda} \oplus \underset{i \geqslant 1}{\oplus} D_{\lambda} x^{i}=D_{\lambda}\left[x, y ; \tau, \mathrm{a}_{\lambda}\right] .
$$

(ii) Statement (ii) follows from statement (i).
(iii) The Weyl algebra $A_{1}(\lambda)$ is a THM with respect to the class $\mathcal{L F \mathcal { N }}$ and $U_{\lambda}^{\prime} \in$ $\mathcal{L F} \mathcal{N}$. Hence, by (2.4), gldim $\mathcal{S}(\lambda)=\operatorname{gldim} U_{\lambda}^{\prime} \otimes A_{1}(\lambda)=\operatorname{gldim} U_{\lambda}^{\prime}+\operatorname{gldim} A_{1}(\lambda)=$ $3+1=4$.
(iv) By Theorem 2.12 $\mathcal{K}(\mathcal{S}(\lambda))=\mathcal{K}\left(U_{\lambda}^{\prime} \otimes A_{1}(\lambda)\right)=\mathcal{K}\left(U_{\lambda}^{\prime}\right)+\mathcal{K}\left(A_{1}(\lambda)\right)=2+1=3$, and the algebra $\mathcal{S}(\lambda)$ is a TKM algebra with respect to the class of countably generated left Noetherian algebras.
(v) The algebra $\mathcal{S}(\lambda)=\oplus_{i \in \mathbb{Z}} \mathcal{S}(\lambda)_{i}$ is a \mathbb{Z}-graded algebra where

$$
\mathcal{S}(\lambda)_{i}:=\{a \in \mathcal{S}(\lambda) \mid[H, a]=i a\} \quad \text { and } \quad C_{\mathcal{S}(\lambda)}(H)=\mathcal{S}(\lambda)_{0}
$$

Therefore, gldim $C_{\mathcal{S}(\lambda)}(H) \leqslant \operatorname{gldim} \mathcal{S}(\lambda)=4<\infty$, by statement (iii). Notice that $\operatorname{gldim} D_{\lambda}=3$. By Theorem 2.3 gldim $C_{\mathcal{S}(\lambda)}(H)=4$ as there is a maximal ideal \mathfrak{p} of D_{λ} that satisfies the conditions of Theorem 2.3. e.g., $\mathfrak{p}=\left(H-\mu, \Delta_{\lambda}^{\prime}-\left(i^{2}-1\right), h_{\lambda}+\right.$ $\mu+\frac{1}{2}+i$) for $i \in \mathbb{Z} \backslash\{0\}$; see Case 1 of the proof of Corollary 2.14 (iii).
(vi) By Theorem $2.9 \mathcal{K}\left(C_{\mathcal{S}(\lambda)}(H)\right)=\mathcal{K}\left(D_{\lambda}\right)=3$ as there are no maximal ideals \mathfrak{p} and \mathfrak{q} that satisfy the conditions of Theorem 2.9 .

The Algebras $C_{\lambda}^{\mu, v}$

By Proposition 2.13 for every pair $\mu, v \in \mathbb{K}$, we can consider the factor algebra

$$
C_{\lambda}^{\mu, v}:=C_{S(\lambda)}(H) /\left(H-\mu, \Delta_{\lambda}^{\prime}-v\right)
$$

The algebras $C_{\lambda}^{\mu, v}$ and all their simple modules play an important role in a classification of the simple weight modules over the Schrödinger algebra. Roughly speaking, the problem of classification of simple weight $\mathcal{S}(\lambda)$-modules is reduced to the problem of classification of all simple modules for the algebras $C_{\lambda}^{\mu, v}$. In general, there is little connection between the global dimension of an algebra and its factor algebras. The next corollary is an example of this fact.

The next corollary presents a simplicity criterion for the algebra $C_{\lambda}^{\mu, v}$; it also computes values for the Krull and global dimensions of the algebra $C_{\lambda}^{\mu, \nu}$.

Corollary 2.14 Let $\lambda \in \mathbb{K}^{*}$ and $\mu, v \in \mathbb{K}$. Then
(i) The algebra $C_{\lambda}^{\mu, v}$ is isomorphic to the algebra $C_{\mathcal{S}(\lambda)}(H) /\left(H-\mu, \Delta_{\lambda}^{\prime}-v\right)$, which is a GWA,

$$
C_{\lambda}^{\mu, v}=\mathbb{K}\left[h_{\lambda}\right]\left[x, y ; \tau, \mathrm{a}_{\lambda}^{\mu, v}=\frac{1}{4}\left(v-\left(h_{\lambda}+\mu-\frac{1}{2}\right)\left(h_{\lambda}+\mu+\frac{3}{2}\right)\right) h_{\lambda}\left(h_{\lambda}+1\right)\right]
$$

where $\tau\left(h_{\lambda}\right)=h_{\lambda}-2$ and $\mathrm{a}_{\lambda}^{\mu, v} \equiv \mathrm{a}_{\lambda} \bmod \left(H-\mu, \Delta_{\lambda}^{\prime}-v\right)$.
(ii) The algebra $C_{\lambda}^{\mu, v}$ is a central Noetherian domain of Gelfand-Kirillov dimension 2.
(iii) The algebra $C_{\lambda}^{\mu, v}$ is simple if and only if

$$
\begin{aligned}
& v \notin \Lambda^{f}(\mu):=\left\{\left(2 i+\mu-\frac{1}{2}\right)\left(2 i+\mu+\frac{3}{2}\right),\right. \\
& \left.\qquad\left(2 i+\mu+\frac{1}{2}\right)\left(2 i+\mu-\frac{3}{2}\right), j^{2}-1 \mid i \in \mathbb{Z} \backslash\{0\}, j=1,2, \ldots\right\} .
\end{aligned}
$$

(iv) The (left or right) global dimension of the algebra $C_{\lambda}^{\mu, v}$ is equal to

$$
\operatorname{gldim} C_{\lambda}^{\mu, v}= \begin{cases}\infty & \text { if } v \in \Lambda^{\infty}(\mu) \\ 2 & \text { if } v \in \Lambda^{f}(\mu) \backslash \Lambda^{\infty}(\mu) \\ 1 & \text { otherwise }\end{cases}
$$

where $\Lambda^{\infty}(\mu):=\left\{\left(\mu-\frac{1}{2}\right)\left(\mu+\frac{3}{2}\right),\left(\mu+\frac{1}{2}\right)\left(\mu-\frac{3}{2}\right),-1\right\}$. The algebra $C_{\lambda}^{\mu, v}$ is a tensor homological minimal algebra with respect to the class of left Noetherian,
finitely generated algebras (provided \mathbb{K} is an algebraically closed and uncountable field).
(v) The (left or right) Krull dimension of the algebra $C_{\lambda}^{\mu, v}$ is 1 . The algebra $C_{\lambda}^{\mu, v}$ is a tensor Krull minimal algebra with respect to the class of countably generated left Noetherian algebras (provided the field \mathbb{K} is algebraically closed and uncountable).

Proof Statements (i) and (ii) follow from Proposition 2.13
(iii) By $[5.6]$, the GWA $C_{\lambda}^{\mu, v}$ is not simple if and only if there are two distinct roots of the polynomial $\mathrm{a}_{\lambda}^{\mu, v}$, say λ_{1} and λ_{2}, such that $\lambda_{2}=\lambda_{1}+2 i$ for some $i \in \mathbb{Z} \backslash\{0\}$. There are three cases to consider.
Case 1: λ_{1} and λ_{2} are roots of the polynomial $P=\left(h_{\lambda}+\mu-\frac{1}{2}\right)\left(h_{\lambda}+\mu+\frac{3}{2}\right)-v$, i.e., $P=\left(h_{\lambda}-\lambda_{1}\right)\left(h_{\lambda}-\lambda_{1}-2 i\right)$. This is possible if and only if

$$
\left\{\begin{array}{l}
2 \lambda_{1}+2 i=-2 \mu-1 \\
v=\left(\mu-\frac{1}{2}\right)\left(\mu+\frac{3}{2}\right)-\lambda_{1}\left(\lambda_{1}+2 i\right)
\end{array}\right.
$$

if and only if $\lambda_{1}=-\mu-\frac{1}{2}-i$ and $v=i^{2}-1$.
Case 2: $\lambda_{1}=0$ and λ_{2} is a root of P, i.e,

$$
0=P\left(\lambda_{2}\right)=P(0+2 i) \Leftrightarrow v=\left(2 i+\mu-\frac{1}{2}\right)\left(2 i+\mu+\frac{3}{2}\right) .
$$

Case 3: $\lambda_{1}=-1$ and λ_{2} is a root of P, i.e.,

$$
0=P\left(\lambda_{2}\right)=P(-1+2 i) \Leftrightarrow v=\left(2 i+\mu-\frac{3}{2}\right)\left(2 i+\mu+\frac{1}{2}\right) .
$$

(iv) Let $\left\{\lambda_{i} \mid i=1, \ldots, s\right\}$ be the roots of the polynomial $\mathrm{a}_{\lambda}^{\mu, v}$. By Theorem 2.4
$\operatorname{gldim} C_{\lambda}^{\mu, v}= \begin{cases}\infty & \text { if } a_{\lambda}^{\mu, v} \text { has a repeated root, } \\ 2 & \text { if } a_{\lambda}^{\mu, v} \text { has no repeated root, } \lambda_{i}-\lambda_{j} \in 2 \mathbb{Z} \backslash\{0\} \text { for some } i \neq j, \\ 1 & \text { otherwise. }\end{cases}$
By [8. Corollary 1.5.(1)], the algebra $C_{\lambda}^{\mu, v}$ is a tensor homological minimal algebra with respect to the class of left Noetherian, finitely generated algebras (provided \mathbb{K} is an algebraically closed and uncountable field).
(a) The polynomial $\mathrm{a}_{\lambda}^{\mu, v}$ has a repeated root if and only if $v \in \Lambda^{\infty}(\mu)$: We have to consider the cases 1-3 in the proof of statement (iii) where $i=0$, i.e., $\lambda_{1}=\lambda_{2}$. This gives $v \in \Lambda^{\infty}(\mu)$.
(b) By the proof of statement (ii), gldim $C_{\lambda}^{\mu, v}=2$ if and only if $v \in \Lambda^{f}(\mu) \backslash \Lambda^{\infty}(\mu)$.

Statement (v) follows from Theorems 2.9 and 2.12

The Algebra $\mathcal{S}(\lambda, v)$

Let $\lambda \in \mathbb{K}^{*}$ and $v \in \mathbb{K}$. By $\sqrt{2.4}$, the factor algebra

$$
\begin{equation*}
\mathcal{S}(\lambda, v):=\mathcal{S}(\lambda) /\left(\Delta_{\lambda}^{\prime}-v\right) \simeq \mathcal{S} /\left(Z-\lambda, \Delta^{\prime}-v\right) \simeq U_{\lambda}^{\prime}(v) \otimes A_{1}(\lambda) \tag{2.8}
\end{equation*}
$$

is a tensor product of algebras where

$$
U_{\lambda}^{\prime}(v):=U_{\lambda}^{\prime} /\left(\Delta_{\lambda}^{\prime}-v\right)=\mathbb{K}\left[H_{\lambda}^{\prime}\right]\left[E_{\lambda}^{\prime}, F_{\lambda}^{\prime} ; \sigma^{\prime}, a_{\lambda}^{\prime v}:=\frac{1}{4}\left(v-H_{\lambda}^{\prime}\left(H_{\lambda}^{\prime}+2\right)\right)\right]
$$

is a GWA where $\sigma^{\prime}\left(H_{\lambda}^{\prime}\right)=H_{\lambda}^{\prime}-2$. The algebra $\mathcal{S}(\lambda, v)$ is a Noetherian domain of Gelfand-Kirillow dimension 4. The algebra $\mathcal{S}(\lambda, v)$ is a GWA of rank 2 as it is a tensor product of two GWAs U_{λ}^{\prime} and $A_{1}(\lambda)$. The problem of classification of weight \mathcal{S} modules are essentially about the problem of classification of simple weight $\mathcal{S}(\lambda, v)$ modules. The next lemma gives a simplicity criterion for the algebra $\mathcal{S}(\lambda, v)$ and computes the Krull and global dimensions of the algebra $\mathcal{S}(\lambda, v)$.

Lemma 2.15 Let $\lambda \in \mathbb{K}^{*}$ and $v \in \mathbb{K}$.
(i) The algebra $\mathcal{S}(\lambda, v)$ is a central Noetherian domain of Gelfand-Kirillov dimension 4.
(ii) The algebra $\mathcal{S}(\lambda, v)$ is simple if and only if the algebra $U_{\lambda}^{\prime}(v)$ is simple if and only if $v \notin\{n(n+2) \mid n=0,1,2, \ldots\}$.
(iii) \mathbb{K} is an algebraically closed and uncountable field). The (left or right) global dimension of the algebra $\mathcal{S}(\lambda, v)$ is equal to

$$
\begin{aligned}
\operatorname{gldim} \mathcal{S}(\lambda, v) & =\operatorname{gldim} U_{\lambda}^{\prime}(v)+\operatorname{gldim} A_{1}(\lambda) \\
& = \begin{cases}\infty & \text { if } v=-1 \\
3 & \text { if } v \in\{n(n+2) \mid n=0,1,2, \ldots\} \\
2 & \text { if } v \notin\{n(n+2) \mid n=-1,0,1,2, \ldots\}\end{cases}
\end{aligned}
$$

The algebra $\mathcal{S}(\lambda, v)$ is a tensor homological minimal algebra with respect to the class of left Noetherian, finitely generated algebras.
(iv) \mathbb{K} is an algebraically closed and uncountable field). The (left or right) Krull dimension of the algebra $\mathcal{S}(\lambda, v)$ is 2. The algebra $\mathcal{S}(\lambda, v)$ is a tensor Krull minimal algebra with respect to the class of countably generated left Noetherian algebras.

Proof (i) The algebra $\mathcal{S}(\lambda, v)$ is a central algebra as a tensor product of central algebras, by (2.8.
(ii) Statement (ii) follows from (2.8) and the fact that the Weyl algebra $A_{1}(\lambda)$ is a central simple algebra.
(iii) The Weyl algebra $A_{1}(\lambda)$ is a tensor homological minimal algebra with respect to the class $\mathcal{L F N}[8$. Corollary 1.5.(1)], hence

$$
\begin{aligned}
\operatorname{gldim} \mathcal{S}(\lambda, v) & =\operatorname{gldim} U_{\lambda}^{\prime}(v) \otimes A_{1}(\lambda)=\operatorname{gldim} U_{\lambda}^{\prime}(v)+\operatorname{gldim} A_{1}(\lambda) \\
& =\operatorname{gldim} U_{\lambda}^{\prime}(v)+1
\end{aligned}
$$

Now, the result follows from (2.2).
(iv) The Weyl algebra $A_{1}(\lambda)$ is a tensor Krull minimal algebra with respect to the class of countably generated left Noetherian algebras ([10. Theorem 2.2]), hence

$$
\mathcal{K}(\mathcal{S}(\lambda, v))=\mathcal{K}\left(U_{\lambda}^{\prime}(v) \otimes A_{1}(\lambda)\right)=\mathcal{K}\left(U_{\lambda}^{\prime}(v)\right)+\mathcal{K}\left(A_{1}(\lambda)\right)=1+1=2 .
$$

By Theorem 2.12 the algebra $\mathcal{S}(\lambda, v)$ is a tensor Krull minimal algebra with respect to the class of countably generated left Noetherian algebras.

The Algebras C_{λ}^{v}

Let $C_{\lambda}^{v}:=C_{S(\lambda, v)}(H)$. The next lemma describes the centre of the algebra C_{λ}^{v} and computes the Krull and global dimensions of C_{λ}^{v}.

Lemma 2.16 Suppose that $\lambda \in \mathbb{K}^{*}$ and $v \in \mathbb{K}$.
(i) The algebra C_{λ}^{v} is isomorphic to the algebra $C_{S(\lambda)}(H) /\left(\Delta_{\lambda}^{\prime}-v\right)$, which is a $G W A$,

$$
C_{\lambda}^{v}=\mathbb{K}\left[H, h_{\lambda}\right]\left[x, y ; \tau, a_{\lambda}^{\prime v} \cdot h_{\lambda}\left(h_{\lambda}+1\right)\right]
$$

where $a_{\lambda}^{\prime v}:=\frac{1}{4}\left(v-H_{\lambda}^{\prime}\left(H_{\lambda}^{\prime}+2\right)\right)=\frac{1}{4}\left(v-\left(H+h_{\lambda}-\frac{1}{2}\right)\left(H+h_{\lambda}+\frac{3}{2}\right)\right), \tau(H)=H$ and $\tau\left(h_{\lambda}\right)=h_{\lambda}-2$.
(ii) The centre of the algebra C_{λ}^{v} is $\mathbb{K}[H]$, and the algebra C_{λ}^{v} is a Noetherian domain of Gelfand-Kirillov dimension 3.
(iii) The (left or right) global dimension of C_{λ}^{v} is equal to

$$
\operatorname{gldim} C_{\lambda}^{v}= \begin{cases}\infty & \text { if } v=-1 \\ 3 & \text { if } v \in\{n(n+2) \mid n=0,1,2, \ldots\} \\ 2 & \text { otherwise }\end{cases}
$$

(iv) The (left or right) Krull dimension of C_{λ}^{v} is 2. The algebra C_{λ}^{v} is a tensor Krull minimal algebra with respect to the class of countably generated, left Noetherian algebras (provided \mathbb{K} is an algebraically closed uncountable field).

Proof Statement (i) follows from Proposition 2.13 (i).
Statement (ii) follows from statement (i).
(iii) The algebra $\mathcal{S}(\lambda, v)=\oplus_{i \in \mathbb{Z}} \mathcal{S}(\lambda, v)_{i}$ is a \mathbb{Z}-graded algebra where $\mathcal{S}(\lambda, v)_{i}:=$ $\{a \in \mathcal{S}(\lambda, v) \mid[H, a]=i a\}$ and $C_{\lambda}^{v}=\mathcal{S}(\lambda, v)_{0}$. Therefore, gldim $C_{\lambda}^{v} \leqslant \operatorname{gldim} \mathcal{S}(\lambda, v)$. By Lemma 2 (iii), gldim $C_{\lambda}^{v}<\infty$ if $v \neq-1$. If $v \neq-1$, then by Theorem 2.3 .

$$
\operatorname{gldim} C_{\lambda}^{v}= \begin{cases}3 & \text { if } v \in\{n(n+2) \mid n=0,1,2, \ldots\} \\ 2 & \text { if } v \notin\{n(n+2) \mid n=-1,0,1,2, \ldots\} .\end{cases}
$$

Claim $\operatorname{gldim} C_{\lambda}^{-1}=\infty$. The set $S=\mathbb{K}\left[h_{\lambda}\right] \backslash\{0\}$ is an Ore set of the domain C_{λ}^{-1} such that the localization

$$
S^{-1} C_{\lambda}^{-1}=\mathbb{K}\left(h_{\lambda}\right)[H]\left[x, y ; \tau, a_{\lambda}^{\prime \nu} \cdot h_{\lambda}\left(h_{\lambda}+1\right)\right]
$$

is a GWA and the algebra $\mathbb{K}\left(h_{\lambda}\right)[H]$ is a Dedekind ring. For $v=-1$,

$$
a_{\lambda}^{\prime v}=-\frac{1}{4}\left(H+h_{\lambda}+\frac{1}{2}\right)^{2}
$$

hence gldim $S^{-1} C_{\lambda}^{-1}=\infty$, by Theorem 2.4 Since gldim $C_{\lambda}^{-1} \geqslant \operatorname{gldim} S^{-1} C_{\lambda}^{-1}$, we must have gldim $C_{\lambda}^{-1}=\infty$.
(iv) By Theorem 2.9. $\mathcal{K}\left(C_{\lambda}^{v}\right)=\mathcal{K}\left(\mathbb{K}\left[H, h_{\lambda}\right]\right)=2$. If, in addition, the field \mathbb{K} is algebraically closed and uncountable then the algebra C_{λ}^{v} is a TKM algebra with respect to the class of countably generated, left Noetherian algebras.

3 Classification of Simple Weight \mathcal{S}-modules with Nonzero Central Charge

In this section, \mathbb{K} is an algebraically closed field of characteristic zero. In this section, a classification of simple weight \mathcal{S}-modules is obtained. The set \widehat{S} (weight) of isomorphism classes of simple weight \mathcal{S}-modules is presented as a disjoint union of subsets each of which is dealt separately.

For an algebra A, we denote by \widehat{A} the set of isomorphism classes of simple A-modules and for an A-module M we denote by [M] its isomorphism classes. If P is a property of simple modules that is invariant under isomorphisms of modules (e.g., being weight), then $\widehat{A}(P)$ stands for the set of all isomorphism classes of simple A modules that satisfy P. Clearly,

$$
\begin{aligned}
\widehat{\mathcal{S}}(\text { weight }) & =\widehat{\mathcal{S}(0)}(\text { weight }) \sqcup \underset{\lambda \in \mathbb{K}^{*}}{\sqcup} \widehat{\mathcal{S}(\lambda)}(\text { weight }), \\
\widehat{\mathcal{S}(\lambda)}(\text { weight }) & =\underset{v \in \mathbb{K}}{ } \widehat{\mathcal{S}(\lambda, v)}(\text { weight }) .
\end{aligned}
$$

The set $\widehat{\mathcal{S}(0)}$ (weight) was described in $14 \mid$. So in this section, we assume that $\lambda \neq 0$. In order to finish the classification of simple weight \mathcal{S}-modules, it remains to classify simple weight $\mathcal{S}(\lambda, v)$-modules for all $v \in \mathbb{K}$.

The Sets $\widehat{\mathcal{S}(\lambda, v)}(X$-torsion $)$ and $\widehat{\mathcal{S}(\lambda, v)}$ (Y-torsion)
The sets $S_{X}:=\left\{X^{i} \mid i \in \mathbb{N}\right\}$ and $S_{Y}:=\left\{Y^{i} \mid i \in \mathbb{N}\right\}$ are Ore sets of the domain \mathcal{S}. Each \mathcal{S}-module M contains the so-called X-torsion and Y-torsion submodules

$$
\begin{aligned}
\operatorname{tor}_{S_{X}}(M) & :=\left\{m \in M \mid X^{i} m=0 \text { for some } i \in \mathbb{N}\right\} \\
\operatorname{tor}_{S_{Y}}(M) & :=\left\{m \in M \mid Y^{i} m=0 \text { for some } i \in \mathbb{N}\right\}
\end{aligned}
$$

respectively. The module M is called X-torsion (resp., Y-torsion) if $M=\operatorname{tor}_{S_{X}}(M)$ (resp., $M=\operatorname{tor}_{S_{Y}}(M)$). First, we classify all the simple X-torsion $/ Y$-torsion $\mathcal{S}(\lambda, v)$-modules (Theorem 3.1), and as a result we obtain a classification of simple weight X-torsion $/ Y$-torsion $\mathcal{S}(\lambda, v)$-modules (Corollary 3.2 .

For $\lambda \neq 0$, the following theorem gives classifications of simple $\mathcal{S}(\lambda, \mu)$-modules that are either X-torsion or Y-torsion.

Theorem 3.1 Let $\lambda \in \mathbb{K}^{*}$ and $v \in \mathbb{K}$. Then
(i) $\overline{\mathcal{S}(\lambda, v)}(X$-torsion $)=\widehat{U_{\lambda}^{\prime}(v)} \otimes\left[\frac{A_{1}(\lambda)}{A_{1}(\lambda) X}\right]=\left\{\left.\left[M \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) X}\right] \right\rvert\,[M] \in \widehat{U_{\lambda}^{\prime}(v)}\right\}$
and $S(\lambda, v)$-modules $M \otimes A_{1}(\lambda) / A_{1}(\lambda) X$ and $M^{\prime} \otimes A_{1}(\lambda) / A_{1}(\lambda) X$ are isomorphic if and only if $[M]=\left[M^{\prime}\right]$.
(ii) $\overline{\mathcal{S}(\lambda, v)}\left(Y\right.$-torsion $=\widehat{U_{\lambda}^{\prime}(v)} \otimes\left[\frac{A_{1}(\lambda)}{A_{1}(\lambda) Y}\right]=\left\{\left.\left[M \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) Y}\right] \right\rvert\,[M] \in \widehat{U_{\lambda}^{\prime}(v)}\right\}$
and $\mathcal{S}(\lambda, v)$-modules $M \otimes A_{1}(\lambda) / A_{1}(\lambda) Y$ and $M^{\prime} \otimes A_{1}(\lambda) / A_{1}(\lambda) Y$ are isomorphic if and only if $[M]=\left[M^{\prime}\right]$.

$$
\begin{equation*}
\widehat{\mathcal{S}(\lambda, v)}(X \text {-torsion }) \cap \widehat{\mathcal{S}(\lambda, v)}(Y \text {-torsion })=\varnothing . \tag{iii}
\end{equation*}
$$

Proof (i) The $A_{1}(\lambda)$-module $V:=A_{1}(\lambda) / A_{1}(\lambda) X$ is a simple $A_{1}(\lambda)$-module with $\operatorname{End}_{A_{1}(\lambda)}(V)=\mathbb{K}$. Recall that $\mathcal{S}(\lambda, v)=U_{\lambda}^{\prime}(v) \otimes A_{1}(\lambda)$. Every simple X-torsion $\mathcal{S}(\lambda, v)$-module \mathcal{M} is an epimorphic image of the $\mathcal{S}(\lambda, v)$-module $\mathcal{V}:=$ $\mathcal{S}(\lambda, v) / \mathcal{S}(\lambda, v) X=U_{\lambda}^{\prime}(v) \otimes V$. Each $\mathcal{S}(\lambda, v)$-submodule of \mathcal{V} is equal to $I \otimes V$ for some left ideal I of the algebra $U_{\lambda}^{\prime}(v)$, and so $\mathcal{M} \simeq M \otimes V$ for some simple $U_{\lambda}(v)$-module M, and statement (i) follows.

Statement (ii) can be proved in a similar way as statement (i) (by replacing X by Y).

Statement (iii) follows from statements (i) and (ii), since the $A_{1}(\lambda)$-modules $A_{1}(\lambda) / A_{1}(\lambda) X$ and $A_{1}(\lambda) / A_{1}(\lambda) Y$ are not isomorphic.

We obtain classifications of simple weight $\mathcal{S}(\lambda, v)$-modules that are X-torsion or Y-torsion as a corollary of Theorem 3.1 .

Corollary 3.2 Let $\lambda \in \mathbb{K}^{*}$ and $v \in \mathbb{K}$.
(i)

$$
\begin{aligned}
\overline{\mathcal{S}(\lambda, v)}(\text { weight, } X \text {-torsion }) & =\overline{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime} \text { - weight }\right) \otimes\left[\frac{A_{1}(\lambda)}{A_{1}(\lambda) X}\right] \\
& =\left\{\left.\left[M \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) X}\right] \right\rvert\,[M] \in \overline{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime} \text {-weight }\right)\right\}
\end{aligned}
$$

and $S(\lambda, v)$-modules $M \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) X}$ and $M^{\prime} \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) X}$ are isomorphic if and only if $[M]=\left[M^{\prime}\right]$.
(ii)

$$
\begin{aligned}
\widehat{\mathcal{S}(\lambda, v)}(\text { weight, } Y \text {-torsion }) & =\widehat{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime} \text {-weight }\right) \otimes\left[\frac{A_{1}(\lambda)}{A_{1}(\lambda) Y}\right] \\
& =\left\{\left.\left[M \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) Y}\right] \right\rvert\,[M] \in \widehat{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime} \text {-weight }\right)\right\}
\end{aligned}
$$

and $\mathcal{S}(\lambda, v)$-modules $M \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) Y}$ and $M^{\prime} \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) Y}$ are isomorphic if and only if $[M]=\left[M^{\prime}\right]$.
(iii) $\overline{\mathcal{S}(\lambda, v)}$ (weight, X-torsion) $\cap \widehat{\mathcal{S}(\lambda, v)}$ (weight, Y-torsion) $=\varnothing$.

Proof (i) Recall that $H_{\lambda}^{\prime}=H+\lambda^{-1} X \cdot Y-\frac{1}{2}=H+Y \cdot \lambda^{-1} X+\frac{1}{2}$. Every simple, weight, X-torsion $\mathcal{S}(\lambda, v)$-module is an epimorphic image of the $\mathcal{S}(\lambda, v)$-module (for some $\mu \in \mathbb{K}$)

$$
\begin{aligned}
\mathcal{S}(\lambda, v) / \mathcal{S}(\lambda, v)(H-\mu, X) & =\mathcal{S}(\lambda, v) / \mathcal{S}(\lambda, v)\left(H_{\lambda}^{\prime}-\mu-\frac{1}{2}, X\right) \\
& \simeq \frac{U_{\lambda}^{\prime}(v)}{U_{\lambda}^{\prime}(v)\left(H_{\lambda}^{\prime}-\mu-\frac{1}{2}\right)} \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda) X}=: \mathcal{M}(\mu)
\end{aligned}
$$

which is a H_{λ}^{\prime}-weight module. Conversely, any module from

$$
\widehat{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime}-\text { weight }\right) \otimes\left[\frac{A_{1}(\lambda)}{A_{1}(\lambda) X}\right]
$$

is an epimorphic image of the weight $\mathcal{S}(\lambda, v)$-module $\mathcal{M}(\mu)$ for some μ. Now statement (i) follows from Theorem 3.1'i).

Statement (ii) can be proved in a similar obvious way.
Statement (iii) follows from Theorem 3.1 (iii).
The Set $\overline{\mathcal{S}(\lambda, v)}$ (weight, T-torsion)
Let $\lambda \in \mathbb{K}^{*}$. The elements $\left\{h_{\lambda}-i \mid i \in \mathbb{Z}\right\}$ generate an Ore set in $C_{\lambda}^{\mu, \nu}$, and the algebra

$$
T^{-1} C_{\lambda}^{\mu, v}=\left(T^{-1} \mathbb{K}\left[h_{\lambda}\right]\right)\left[x, y ; \sigma, \mathrm{a}_{\lambda}^{\mu, v}\right]
$$

is a GWA where $\sigma\left(h_{\lambda}\right)=h_{\lambda}-2$. By Corollary 2.14 (ii), the algebra $T^{-1} C_{\lambda}^{\mu, v}$ is central with Gelfand-Kirillov dimension 2. The set T is an Ore set in the Weyl algebra $A_{1}(\lambda)$ such that the localization

$$
T^{-1} A_{1}(\lambda)=\left(T^{-1} \mathbb{K}\left[h_{\lambda}\right]\right)\left[Y, Y^{-1} ; \sigma\right]
$$

is a skew Laurent polynomial algebra where $\sigma\left(h_{\lambda}\right)=h_{\lambda}-1$. By (2.4), the set T is also an Ore set of the algebras $\mathcal{S}(\lambda)$ and $\mathcal{S}(\lambda, v)$,

$$
T^{-1} \mathcal{S}(\lambda) \simeq U_{\lambda}^{\prime} \otimes T^{-1} A_{1}(\lambda) \quad \text { and } \quad T^{-1} \mathcal{S}(\lambda, v) \simeq U_{\lambda}^{\prime} /\left(\Delta_{\lambda}^{\prime}-v\right) \otimes T^{-1} A_{1}(\lambda)
$$

The next proposition together with Corollary 3.2 classifies the simple (weight) T-torsion $\mathcal{S}(\lambda, v)$-modules.

Proposition 3.3

$$
\begin{equation*}
\widehat{\mathcal{S}(\lambda, v)}(T \text {-torsion })=\widehat{\mathcal{S}(\lambda, v)}(X \text {-torsion }) \sqcup \widehat{\mathcal{S}(\lambda, v)}(Y \text {-torsion }) \tag{i}
\end{equation*}
$$

(ii) $\overline{\mathcal{S}(\lambda, v)}($ weight, T-torsion $)=\overline{\mathcal{S}(\lambda, v)}$ (weight, X-torsion)

$$
\sqcup \widetilde{\mathcal{S}(\lambda, v)} \text { (weight, } Y \text {-torsion). }
$$

Proof (i) By Theorem 3.1(iii), the union in statement (i) is a disjoint union. The equality in statement (i) follows from (2.8) and the equalities

$$
Y^{i} X^{i}=\lambda^{i}\left(h_{\lambda}-1\right)\left(h_{\lambda}-2\right) \cdots\left(h_{\lambda}-i\right) \quad \text { and } \quad X^{i} Y^{i}=\lambda^{i} h_{\lambda}\left(h_{\lambda}+1\right) \cdots\left(h_{\lambda}+i-1\right)
$$

for all $i \geqslant 1$.
(ii) Statement (ii) follows from statement (i).

We have that

$$
\widehat{\mathcal{S}(\lambda, v)}(\text { weight })=\widehat{\mathcal{S}(\lambda, v)}(\text { weight, } T \text {-torsion }) \sqcup \widehat{\mathcal{S}(\lambda, v)}(\text { weight, } T \text {-torsionfree })
$$

Corollary 3.2 (i)(ii) and Proposition 3.3 (ii) classify the set of simple, weight, T-torsion $\mathcal{S}(\lambda, v)$-modules. In order to finish a classification of simple weight \mathcal{S}-modules, it remains to classify elements of the set $\overline{\mathcal{S (\lambda , v)}}$ (weight, T-torsionfree).

The Set $\widehat{\mathcal{S}(\lambda, v)}$ (weight, T-torsionfree)
Notice that $T \subseteq C_{\lambda}^{v}$, and so

$$
\begin{align*}
T^{-1} \mathcal{S}(\lambda, v) & =C_{T^{-1} \mathcal{S}(\lambda, v)}(H)\left[Y, Y^{-1} ; \omega_{Y}\right]=\left(T^{-1} C_{\mathcal{S}(\lambda, v)}(H)\right)\left[Y, Y^{-1} ; \omega_{Y}\right] \tag{3.1}\\
& =\left(T^{-1} C_{\lambda}^{v}\right)\left[Y, Y^{-1} ; \omega_{Y}\right]
\end{align*}
$$

where $\omega_{Y}(c)=Y c Y^{-1}$. In particular, $\omega_{Y}(H)=H+1, \omega_{Y}\left(h_{\lambda}\right)=h_{\lambda}-1, \omega_{Y}(x)=x$ and $\omega_{Y}(y)=y\left(1-2\left(h_{\lambda}-1\right)^{-1}\right)$. In more detail,

$$
\begin{aligned}
\omega_{Y}(x) & =Y x Y^{-1}=Y E_{\lambda}^{\prime} Y^{2} Y^{-1}=E_{\lambda}^{\prime} Y^{2}=x \\
\omega_{Y}(y) & =Y y Y^{-1}=Y F_{\lambda}^{\prime} \mathscr{X}_{\lambda}^{2} Y^{-1}=F_{\lambda}^{\prime} Y \mathscr{X}_{\lambda}^{2} Y^{-1}=F_{\lambda}^{\prime}\left(\mathscr{X}_{\lambda}^{2} Y-2 \mathscr{X}_{\lambda}\right) Y^{-1} \\
& =y-2 F_{\lambda}^{\prime} \mathscr{X}_{\lambda} \mathscr{X}_{\lambda}\left(Y \mathscr{X}_{\lambda}\right)^{-1}=y\left(1-2\left(h_{\lambda}-1\right)^{-1}\right) .
\end{aligned}
$$

The group \mathbb{Z} acts in the obvious way on \mathbb{K} (by addition). For each $\mu \in \mathbb{K}, \mathcal{O}(\mu):=$ $\mu+\mathbb{Z}$ is the orbit of μ. Let \mathbb{K} / \mathbb{Z} be the set of all \mathbb{Z}-orbits. For each orbit $\mathcal{O} \in \mathbb{K} / \mathbb{Z}$, we fix a representative $\mu_{\mathcal{O}}$, i.e., $\mathcal{O}=\mu_{\mathcal{O}}+\mathbb{Z}$.

Let $[M] \in \widehat{\mathcal{S}(\lambda, v)}$ (weight, T-torsionfree). Then $\mathrm{Wt}(M) \subseteq \mathcal{O}$ for some orbit $\mathcal{O} \in$ \mathbb{K} / \mathbb{Z}. Since, in the algebra $\mathcal{S}(\lambda, v)$,

$$
\begin{aligned}
& Y^{i} X^{i}=\lambda^{i}\left(h_{\lambda}-1\right)\left(h_{\lambda}-2\right) \cdots\left(h_{\lambda}-i\right), \\
& X^{i} Y^{i}=\lambda^{i} h_{\lambda}\left(h_{\lambda}+1\right) \cdots\left(h_{\lambda}+i-1\right) \quad \text { for } i \geqslant 1,
\end{aligned}
$$

the maps $X_{M}: M \rightarrow M, m \mapsto X m$, and $Y_{M}: M \rightarrow M, m \mapsto Y m$, are injections. Therefore, $\mathrm{Wt}(M)=\mathcal{O}$. Hence,

$$
\widehat{\mathcal{S}(\lambda, v)}(\text { weight, } T \text {-torsionfree })=\underset{\mathcal{O} \in \mathbb{K} / \mathbb{Z}}{ } \widehat{\mathcal{S (\lambda , v)}}(\text { weight, } T \text {-torsionfree, } \mathcal{O})
$$

where the set $\overline{\mathcal{S}(\lambda, v)}$ (weight, T-torsionfree, \mathcal{O}) contains all the isomorphism classes of simple, weight, T-torsionfree $\mathcal{S}(\lambda, v)$-modules M such that $\mathrm{Wt}(M)=\mathcal{O}$.

The next theorem (together with Theorems 3.6 and 3.8) classifies the elements of the set $\overline{\mathcal{S}(\lambda, v)}$ (weight, T-torsionfree).

Theorem 3.4 Let $\lambda \in \mathbb{K}^{*}, v \in \mathbb{K}$ and $\mathcal{O} \in \mathbb{K} / \mathbb{Z}$. We fix an element $\mu_{\mathcal{O}} \in \mathcal{O}$, i.e., $\mathcal{O}=\mu_{\mathcal{O}}+\mathbb{Z}$. Then the map

$$
\widehat{\mathcal{S}(\lambda, v)}(\text { weight, } T \text {-torsionfree, } \mathcal{O}) \longrightarrow \widehat{C_{\lambda}^{\mu_{\mathcal{O}}, v}}(T \text {-torsionfree }), \quad[M] \longmapsto\left[M_{\mu_{\mathcal{O}}}\right]
$$

is a bijection with the inverse

$$
\begin{aligned}
{[N] \longmapsto \operatorname{soc}_{\mathcal{S}(\lambda, v)}\left(T^{-1} \mathcal{S}(\lambda, v) \otimes_{T^{-1} C_{\lambda}^{v}} T^{-1} N\right) } & =\bigoplus_{i \in \mathbb{Z}} \operatorname{soc}_{C_{\lambda}^{v}}\left(Y^{i} T^{-1} N\right) \\
& =\underset{i \in \mathbb{Z}}{\bigoplus_{\mathbb{Z}}} \operatorname{soc}_{C_{\lambda}^{v}}\left(X^{i} T^{-1} N\right)
\end{aligned}
$$

Proof (i) The map $[M] \mapsto\left[M_{\mu_{0}}\right]$ is well defined: It is obvious.
(ii) The map $[N] \mapsto\left[\operatorname{soc}_{\mathcal{S}(\lambda, v)}\left(T^{-1} \mathcal{S}(\lambda, v) \otimes_{T^{-1} C_{\lambda}^{v}} T^{-1} N\right)\right]=\oplus_{i \in \mathbb{Z}} \operatorname{soc}_{C_{\lambda}^{v}}\left(Y^{i} T^{-1} N\right)$ is well defined: By 3.1), the $T^{-1} \mathcal{S}(\lambda, v)$-module $\widetilde{N}:=T^{-1} \mathcal{S}(\lambda, v) \otimes_{T^{-1} C_{\lambda}^{v}} T^{-1} N$ is a direct sum $\oplus_{i \in \mathbb{Z}} Y^{i} T^{-1} N$. Clearly, the $T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}, v}$-module $T^{-1} N$ is simple. Moreover, for
each $i \in \mathbb{Z}$, the $T^{-1} C_{\lambda}^{v}$-module $Y^{i} T^{-1} N$ is isomorphic to the twisted $T^{-1} C_{\lambda}^{v}$-module $\omega_{Y^{i}}^{-1} T^{-1} N$ and, hence, is simple. So, ${ }^{\omega_{Y^{i}}^{-1}} T^{-1} N$ is a simple $T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}+i, v}$-module. By [6], $\operatorname{soc}_{C_{\lambda}^{\mu_{\mathcal{O}}+i, v}}\left(Y^{i} T^{-1} N\right)$ is a simple, T-torsionfree $C_{\lambda}^{\mu_{\mathcal{O}}+i, v}$-module/ C_{λ}^{v}-module, it is an essential C_{λ}^{v}-submodule of $Y^{i} T^{-1} N$, and so it is contained in every nonzero C_{λ}^{v}-submodule of $Y^{i} T^{-1} N$.

Claim $\operatorname{soc}_{\mathcal{S}(\lambda, v)}(\widetilde{N})=\oplus_{i \in \mathbb{Z}} \operatorname{soc}_{C_{\lambda}^{v}}\left(Y^{i} T^{-1} N\right)$: Let S be the direct sum of socles. Then it is contained in each $\mathcal{S}(\lambda, v)$-submodule of \widetilde{N}. The equality follows from the fact that S is an $\mathcal{S}(\lambda, v)$-module, since S is the intersection of all nonzero $\mathcal{S}(\lambda, v)$ submodules of \widetilde{N}. Let us give more details. Clearly, S is contained in the intersection, say S^{\prime}. In fact, $S=S^{\prime}$, since for each $i \in \mathbb{Z}$, the $\left(\mu_{\mathcal{O}}+i\right)$-th weight component of the $S(\lambda, v)$-submodule $\mathcal{S}(\lambda, v) \operatorname{soc}_{C_{\lambda}^{v}}\left(Y^{i} T^{-1} N\right)$ is precisely $\operatorname{soc}_{C_{\lambda}^{v}}\left(Y^{i} T^{-1} N\right)$. The proof of statement (ii) is complete. Clearly, the maps in statements (i) and (ii) are mutually inverse. Notice that, for all $i \in \mathbb{Z}, Y^{i} T^{-1} N=X^{-i} T^{-1} N$, since for all $j \geqslant 1, X^{j} Y^{j}$, $Y^{j} X^{j} \in T$. So the last equality of the theorem is obvious.

Below, we give a classification of simple $C_{\lambda}^{\mu_{\mathcal{O}}, v}$-modules (Theorems 3.6 and 3.8) and also give an explicit construction of the direct sum of socles in Theorem 3.4 (Theorem 3.10 and 3.11 .

Classification of Simple A-modules where $A=D(\sigma, a)$ and D is a Dedekind Ring

Let $A=D(\sigma, a)=D[x, y ; \sigma, a]$ be a GWA such that D is a Dedekind ring, $a \neq 0$, and the automorphism σ of D satisfies the condition that $\sigma^{i}(\mathfrak{p}) \neq \mathfrak{p}$ for all $i \in \mathbb{Z} \backslash\{0\}$ and all maximal ideals \mathfrak{p} of D.

Example $3.5 \quad A=\mathbb{K}[H](\sigma, a)$ where $\sigma(H)=H-\gamma, \gamma \in \mathbb{K}^{*}$ and $a \neq 0$. In particular, the algebras $C_{\lambda}^{\mu, v}$ are of this type. A classification of simple $\mathbb{K}[H](\sigma, a)$-modules is given in [3, 6].

Let us recall a classification of simple A-modules for the algebra $A=D(\sigma, a)$; see [3 4, 6] for details. Clearly

$$
\widehat{A}=\widehat{A}(D \text {-torsion }) \sqcup \widehat{A}(D \text {-torsionfree }) .
$$

The Set $\widehat{A}(D$-torsion $)=\widehat{A}($ weight $)$

The group $\langle\sigma\rangle \simeq \mathbb{Z}$ acts freely on the set $\operatorname{Max}(D)$ of maximal ideals of the Dedekind ring D. For each maximal ideal \mathfrak{p} of $D, \mathcal{O}(\mathfrak{p})=\left\{\sigma^{i}(\mathfrak{p}) \mid i \in \mathbb{Z}\right\}$ is its orbit. We use the bijection $\mathbb{Z} \rightarrow \mathcal{O}(\mathfrak{p}), i \mapsto \sigma^{i}(\mathfrak{p})$, to define the order \leqslant on each orbit $\mathcal{O}(\mathfrak{p}): \sigma^{i}(\mathfrak{p}) \leqslant$ $\sigma^{j}(\mathfrak{p})$ if and only if $i \leqslant j$. A maximal ideal of D is called marked if it contains the element a. There are only finitely many marked ideals. An orbit \mathcal{O} is called degenerated if it contains a marked ideal. Marked ideals, say $\mathfrak{p}_{1}<\cdots<\mathfrak{p}_{s}$, of a degenerated orbit \mathcal{O} partition it into $s+1$ parts,

$$
\Gamma_{1}=\left(-\infty, \mathfrak{p}_{1}\right], \quad \Gamma_{2}=\left(\mathfrak{p}_{1}, \mathfrak{p}_{2}\right], \ldots, \Gamma_{s}=\left(\mathfrak{p}_{s-1}, \mathfrak{p}_{s}\right], \quad \Gamma_{s+1}=\left(\mathfrak{p}_{s}, \infty\right)
$$

Two ideals $\mathfrak{p}, \mathfrak{q} \in \operatorname{Max}(D)$ are called equivalent $\mathfrak{p} \sim \mathfrak{q}$ if they belong either to a nondegenerated orbit or to some Γ_{i}. We denote by $\operatorname{Max}(D) / \sim$ the set of equivalence classes in $\operatorname{Max}(D)$.

An A-module V is called weight if $V=\bigoplus_{\mathfrak{p} \in \operatorname{Max}(D)} V_{\mathfrak{p}}$, where $V_{\mathfrak{p}}=\{v \in V \mid \mathfrak{p} v=0\}$, is the sum of all simple D-submodules of V which are isomorphic to D / \mathfrak{p}. The set $\operatorname{Supp}(V)=\left\{\mathfrak{p} \in \operatorname{Max}(D) \mid V_{\mathfrak{p}} \neq 0\right\}$ is called the support of V; elements of $\operatorname{Supp}(V)$ are called weights, and $V_{\mathfrak{p}}$ is called the component of V of weight \mathfrak{p}. Clearly, an A module is weight if and only if it is a semisimple D-module. Clearly,

$$
\widehat{A}(D \text {-torsion })=\widehat{A}(\text { weight }),
$$

i.e., a simple A-module is D-torsion if and only if it is weight.

Theorem 3.6 (|3, 4|6| (Classification of simple D-torsion/weight A-modules)) The map $\operatorname{Max}(D) / \sim \rightarrow \widehat{A}(D$-torsion), $\Gamma \mapsto[L(\Gamma)]$, is a bijection with the inverse $[M] \mapsto$ $\operatorname{Supp}(M)$ where
(i) if Γ is a non-degenerated orbit, then $L(\Gamma)=A / A \mathfrak{p}$ where $\mathfrak{p} \in \Gamma$;
(ii) if $\Gamma=(-\infty, \mathfrak{p}]$, then $L(\Gamma)=A / A(\mathfrak{p}, x)$;
(iii) if $\Gamma=\left(\sigma^{-n}(\mathfrak{p}), \mathfrak{p}\right]$ for some $n \geqslant 1$, then $L(\Gamma)=A / A\left(y^{n}, \mathfrak{p}, x\right)$; the D-length of $L(\Gamma)$ is $n ;$
(iv) if $\Gamma=(\mathfrak{p}, \infty)$, then $L(\Gamma)=A / A(\sigma(\mathfrak{p}), y)$.

The Set \widehat{A} (D-torsionfree)
For elements $\alpha, \beta \in D$, we write $\alpha<\beta$ if $\mathfrak{p}<\mathfrak{q}$ for all $\mathfrak{p}, \mathfrak{q} \in \operatorname{Max}(D)$ such that $\mathcal{O}(\mathfrak{p})=\mathcal{O}(\mathfrak{q}), \alpha \in \mathfrak{p}$ and $\beta \in \mathfrak{q}$. (We write $\alpha<\beta$ if there are no such ideals \mathfrak{p} and \mathfrak{q}). Recall that the GWA $A=\oplus_{i \in \mathbb{Z}} A_{i}$ is a \mathbb{Z}-graded algebra where $A_{i}=D v_{i}=v_{i} D$.

Definition 3.7 (|3|4|6|) An element $b=v_{-m} \beta_{-m}+v_{-m+1} \beta_{-m+1}+\cdots+\beta_{0} \in A$ (where $m \geqslant 1$, all $\beta_{i} \in D$ and $\beta_{-m}, \beta_{0} \neq 0$) is called a normal element if $\beta_{0}<\beta_{-m}$ and $\beta_{0}<a$.

The set $S:=D \backslash\{0\}$ is an Ore set of the domain A. Let $k:=S^{-1} D$ be the field of fractions of D. The algebra $B:=S^{-1} A=k\left[x, x^{-1} ; \sigma\right]$ is a skew Laurent polynomial ring that is a (left and right) principle ideal domain. So, any simple B-module is of type $B / B b$ for some irreducible element b of B. Two simple B-modules are isomorphic, $B / B b \simeq B / B c$, if and only if the elements b and c are similar (i.e., there exists an element $d \in B$ such that 1 is the greatest common right divisor of c and d, and $b d$ is a least common left multiple of c and d).

Theorem 3.8 ([3|4.6] (Classification of simple D-torsionfree A-modules))
$\widehat{A}(D$-torsionfree $)=\left\{\left[M_{b}:=A / A \cap B b\right] \mid b\right.$ is a normal irreducible element of $\left.B\right\}$.
The A-modules M_{b} and $M_{b^{\prime}}$ are isomorphic if and only if the elements b and b^{\prime} are similar.

For all nonzero elements $\alpha, \beta \in D$, the B-modules $S^{-1} M_{b}$ and $S^{-1} M_{\beta b \alpha^{-1}}$ are isomorphic. If an element $b=v_{-m} \beta_{-m}+\cdots+\beta_{0}$ is irreducible in B but not necessarily
normal, the next lemma shows that there are explicit elements α and β such that the element $\beta b \alpha^{-1}$ is normal and irreducible in B.

Lemma 3.9 ([3. Lemma 13] (Normalization procedure)) Given an element $b=$ $v_{-m} \beta_{-m}+\cdots+\beta_{0} \in A$ where $m \geqslant 1$, all $\beta_{i} \in D$ and $\beta_{-m}, \beta_{0} \neq 0$. Fix a natural number $s \in \mathbb{N}$ such that

$$
\sigma^{-s}\left(\beta_{0}\right)<\beta_{-m}, \quad \sigma^{-s}\left(\beta_{0}\right)<\beta_{0}, \quad \text { and } \quad \sigma^{-s}\left(\beta_{0}\right)<a
$$

Let $\alpha=\prod_{i=0}^{s} \sigma^{-i}\left(\beta_{0}\right)$ and $\beta=\prod_{i=1}^{s+m} \sigma^{-i}\left(\beta_{0}\right)$. Then the element $\beta b \alpha^{-1}$ is a normal element, which is called a normalization of b and denoted $b^{\text {norm }}$ (we can always assume that s is the least possible).

Explicit Construction of the Socle in Theorem 3.4

Every $\mathcal{S}(\lambda, v)$-module is also a $\mathbb{K}\left[h_{\lambda}\right]$-module (since $\mathbb{K}\left[h_{\lambda}\right] \subseteq \mathcal{S}(\lambda, v)$). Therefore, for each orbit $\mathcal{O} \in \mathbb{K} / \mathbb{Z}$,

$$
\begin{align*}
& \overline{\mathcal{S}(\lambda, v)}(\text { weight, } T \text {-torsionfree, } \mathcal{O})= \tag{3.2}\\
& \quad \widehat{\mathcal{S}(\lambda, v)}\left(\text { weight, } T \text {-torsionfree, } \mathcal{O}, \mathbb{K}\left[h_{\lambda}\right] \text {-torsion }\right) \\
& \quad \sqcup \overline{\mathcal{S}(\lambda, v)}\left(\text { weight, } \mathcal{O}, \mathbb{K}\left[h_{\lambda}\right] \text {-torsionfree }\right), \\
& \widehat{C_{\lambda}^{\mu_{0}, v}}(T \text {-torsionfree })= \tag{3.3}\\
& \widehat{C_{\lambda}^{\mu_{0}, v}}\left(T \text {-torsionfree, } \mathbb{K}\left[h_{\lambda}\right] \text {-torsion }\right) \sqcup \widehat{C_{\lambda}^{\mu_{0}, v}}\left(\mathbb{K}\left[h_{\lambda}\right] \text {-torsionfree }\right) .
\end{align*}
$$

The map $[M] \mapsto\left[M_{\mu_{O}}\right]$ in Theorem 3.4 respects the disjoint unions 3.2 and 3.3. Recall that for each orbit $\mathcal{O} \in \mathbb{K} / \mathbb{Z}$ we fixed its representative $\mu_{\mathcal{O}}$.

Theorem 3.10 Let $\lambda \in \mathbb{K}^{*}, v \in \mathbb{K}$, and $\mathcal{O} \in \mathbb{K} / \mathbb{Z}$. Then
$\overline{\mathcal{S}(\lambda, v)}$ (weight, T-torsionfree, $\mathcal{O}, \mathbb{K}\left[h_{\lambda}\right]$-torsion $)=$

$$
\underset{\mathcal{O}^{\prime} \in \mathbb{K} / \mathbb{Z}, \mathcal{O}^{\prime} \neq \mathbb{Z}}{ } \overline{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime} \text {-weight }\right) \otimes\left[W\left(\lambda, \mathcal{O}^{\prime}\right)\right]
$$

where $W\left(\lambda, \mathcal{O}^{\prime}\right):=A_{1}(\lambda) / A_{1}(\lambda)\left(h_{\lambda}-\mu_{\mathcal{O}^{\prime}}\right)$ and $\overline{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime}\right.$ - weight $) \otimes\left[W\left(\lambda, \mathcal{O}^{\prime}\right)\right]:=$ $\left\{\left[M \otimes W\left(\lambda, \mathcal{O}^{\prime}\right)\right] \mid M \in \overline{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime}\right.\right.$ - weight $\left.)\right\}$ and $S(\lambda, v)$-modules $M \otimes W\left(\lambda, \mathcal{O}^{\prime}\right)$, and $M^{\prime} \otimes W\left(\lambda, \mathcal{O}^{\prime}\right)$ are isomorphic if and only if the $U_{\lambda}^{\prime}(v)$-modules M and M^{\prime} are isomorphic.

Proof Recall that $H_{\lambda}^{\prime}=H+\lambda^{-1} X Y-\frac{1}{2}=H+h_{\lambda}-\frac{1}{2}$. Let

$$
[\mathcal{M}] \in \widehat{\mathcal{S}(\lambda, v)}\left(\text { weight, } T \text {-torsionfree, } \mathcal{O}, \mathbb{K}\left[h_{\lambda}\right] \text {-torsion }\right) .
$$

Then \mathcal{M} is an epimorphic image of the $\mathcal{S}(\lambda, v)$-module

$$
\begin{aligned}
& \mathcal{S}(\lambda, v) / \mathcal{S}(\lambda, v)\left(H-\mu, h_{\lambda}-\mu^{\prime}\right) \\
& \simeq \mathcal{S}(\lambda, v) / \mathcal{S}(\lambda, v)\left(H_{\lambda}^{\prime}-\mu-\mu^{\prime}+\frac{1}{2}, h_{\lambda}-\mu^{\prime}\right) \\
& \simeq \frac{U_{\lambda}^{\prime}(v)}{U_{\lambda}^{\prime}(v)\left(H_{\lambda}^{\prime}-\mu-\mu^{\prime}+\frac{1}{2}\right)} \otimes \frac{A_{1}(\lambda)}{A_{1}(\lambda)\left(h_{\lambda}-\mu^{\prime}\right)} \\
& \simeq \frac{U_{\lambda}^{\prime}(v)}{U_{\lambda}^{\prime}(v)\left(H_{\lambda}^{\prime}-\mu-\mu^{\prime}+\frac{1}{2}\right)} \otimes W\left(\lambda, \mu_{\mathcal{O}^{\prime}}\right),
\end{aligned}
$$

where $\mathcal{O}^{\prime}:=\mathcal{O}\left(\mu^{\prime}\right) \neq \mathbb{Z}$. Since $\operatorname{End}_{A_{1}(\lambda)} W\left(\lambda, \mu_{\mathcal{O}^{\prime}}\right)=\mathbb{K}$, the result follows.
The elements X and Y are units in the algebra $T^{-1} C_{\lambda}^{v}$. For each $i \in \mathbb{Z}$, the inner automorphism $\omega_{X^{-i}}=\omega_{X^{i}}^{-1}: T^{-1} C_{\lambda}^{v} \rightarrow T^{-1} C_{\lambda}^{v}$ induces the algebra isomorphism

$$
\omega_{X^{i}}^{-1}: C_{\lambda}^{\mu_{\mathcal{O}}, v} \longrightarrow C_{\lambda}^{\mu_{\mathcal{O}}+i, v}, \quad u \longmapsto X^{-i} u X^{i}
$$

(since $\left.X^{-i}\left(h_{\lambda}-\mu_{\mathcal{O}}\right) X^{i}=h_{\lambda}-i-\mu_{\mathcal{O}}\right)$. The localization of the GWA $C_{\lambda}^{\mu_{\mathcal{O}}, v}$ at the Ore set $S:=\mathbb{K}\left[h_{\lambda}\right] \backslash\{0\}$ is a skew polynomial algebra $B=\mathbb{K}\left(h_{\lambda}\right)\left[Y, Y^{-1}, \sigma\right]$ where $\sigma\left(h_{\lambda}\right)=h_{\lambda}-1$. Notice that $B=\mathbb{K}\left(h_{\lambda}\right)\left[X, X^{-1} ; \sigma^{-1}=\omega_{X}\right]$.

Let $M_{b}:=C_{\lambda}^{\mu_{\mathcal{O}}, v} / C_{\lambda}^{\mu_{\mathcal{O}}, v} \cap B b$ be a $\mathbb{K}\left[h_{\lambda}\right]$-torsionfree simple $C_{\lambda}^{\mu_{\mathcal{O}}, v}$-module where $b=X^{m} \beta_{-m}+X^{m-1} \beta_{-m+1}+\cdots+\beta_{0} \in C_{\lambda}^{\mu_{\mathcal{O}}, v}$ is a normal and irreducible element in $B\left(m \geqslant 1\right.$, all $\beta_{i} \in \mathbb{K}\left[h_{\lambda}\right]$, and $\left.\beta_{-m}, \beta_{0} \neq 0\right)$. For each $i \in \mathbb{Z}$, the C_{λ}^{v}-socle of the $T^{-1} C_{\lambda}^{v}$-module $/ C_{\lambda}^{v}$-module $/ C_{\lambda}^{\mu_{\mathcal{O}}-i, v}$-module
$X^{i} T^{-1} M_{b}=X^{i} \frac{T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}, v}}{T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}, v} \cap B b}={ }^{\omega_{X}^{-1}}\left(\frac{T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}, v}}{T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}, v} \cap B b}\right) \simeq \frac{T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}-i, v}}{T^{-1} C_{\lambda}^{\mu_{\mathcal{O}}-i, v} \cap B\left(X^{i} b X^{-i}\right)}$ is equal to $C_{\lambda}^{\mu_{\mathcal{O}}-i, v} / C_{\lambda}^{\mu_{\mathcal{O}}-i, v} \cap B\left(X^{i} b X^{-i}\right)^{\text {norm }}$. Now, the next theorem follows from Theorem 3.4

Theorem 3.11 Let $\lambda \in \mathbb{K}^{*}, v \in \mathbb{K}$, and $\mathcal{O} \in \mathbb{K} / \mathbb{Z}$. The map

$$
\begin{aligned}
\widehat{\mathcal{S}(\lambda, v)}\left(\text { weight, } \mathcal{O}, \mathbb{K}\left[h_{\lambda}\right] \text {-torsionfree }\right) & \longrightarrow \widehat{C_{\lambda}^{\mu_{\mathcal{O}}, v}}\left(\mathbb{K}\left[h_{\lambda}\right] \text {-torsionfree }\right), \\
{[M] } & \longmapsto\left[M_{\mu_{\mathcal{O}}}\right]
\end{aligned}
$$

is a bijection with the inverse

$$
\left[M_{b}:=\frac{C_{\lambda}^{\mu_{\mathcal{O}}, v}}{C_{\lambda}^{\mu_{\mathcal{O}}, v} \cap B b}\right] \longrightarrow \underset{i \in \mathbb{Z}}{\oplus} \operatorname{soc}_{C_{\lambda}^{v}}\left(X^{i} T^{-1} M_{b}\right)=\underset{i \in \mathbb{Z}}{\oplus} \frac{C_{\lambda}^{\mu_{\mathcal{O}}-i, v}}{C_{\lambda}^{\mu_{\mathcal{O}}-i, v} \cap B\left(X^{i} b X^{-i}\right)^{\mathrm{norm}}}
$$

where $b \in C_{\lambda}^{\mu_{\mathcal{O}}, v}$ is a normal and irreducible element in B and $\left(X^{i} b X^{-i}\right)^{\text {norm }} \in C_{\lambda}^{\mu_{\mathcal{O}}-i, v}$ is the normalization in $C_{\lambda}^{\mu_{\mathcal{O}}-i, v}$ of the irreducible element $X^{i} b X^{-i}$ in B.

The following result was proved in $[29]$ for $\mathbb{K}=\mathbb{C}$.
Theorem 3.12 For a simple weight \mathcal{S}-module all weight spaces are either finite or infinite dimensional.

Proof This follows directly from a classification of all simple weight \mathcal{S}-modules where $\lambda \neq 0$. For $\lambda=0$, this follows from the classification of simple modules obtained in [14].

The Set of Simple $\mathcal{S}(\lambda)$-modules $\widehat{U_{\lambda}^{\prime}} \otimes \widehat{A_{1}(\lambda)}$
By [2.4), $\mathcal{S}(\lambda)=U_{\lambda}^{\prime} \otimes A_{1}(\lambda)$. Given a U_{λ}^{\prime}-module $[M]$ and an $A_{1}(\lambda)$-module N. Their tensor product over $\mathbb{K}, M \otimes N$, is an $\mathcal{S}(\lambda)$-module. If, in addition, the modules M and N are simple, then $\operatorname{End}_{U_{\lambda}^{\prime}}(M)=\mathbb{K}$ and $\operatorname{End}_{A_{1}(\lambda)}(N)=\mathbb{K}$, and so $M \otimes N$ is a simple $\mathcal{S}(\lambda)$-module.

Proposition $3.13 \widehat{U_{\lambda}^{\prime}} \otimes \widehat{A_{1}(\lambda)}:=\left\{[M \otimes N] \mid M \in \widehat{U_{\lambda}^{\prime}}, N \in \widehat{A_{1}(\lambda)}\right\} \subseteq \widehat{\mathcal{S}(\lambda)}$, and $[M \otimes N]=\left[M^{\prime} \otimes N^{\prime}\right]$ if and only if $[M]=\left[M^{\prime}\right]$ and $[N]=\left[N^{\prime}\right]$.

Proposition 3.13 gives plenty of simple $\mathcal{S}(\lambda)$-modules, as the simple modules over the algebras U_{λ}^{\prime} and $A_{1}(\lambda)$ are classified; see [17] or Theorems 3.6 and 3.8

Classification of Simple Weight \mathcal{S}-modules with Finite Dimensional Spaces

Using the classification of simple \mathcal{S}-modules we can easily describe the set of isomorphism classes of simple weight \mathcal{S}-modules with finite dimensional weight spaces $\widehat{\mathcal{S}}$ (f. d. weight spaces). This was done by Dubsky for $\mathbb{K}=\mathbb{C}$ using a different approach [18]. The simple lowest weight \mathcal{S}-modules were classified earlier in [20]. Clearly,
$\widehat{\mathcal{S}}($ f. d. weight spaces $)=\widehat{\mathcal{S}(0)}($ f. d. weight spaces $) \sqcup \underset{\lambda \in \mathbb{K}^{*}}{ } \widehat{\widehat{\mathcal{S}}(\lambda)}$ (f. d. weight spaces).
It was shown that $\widehat{\mathcal{S}(0)}$ (f. d. weight spaces) $=\widehat{U(\mathrm{sl2})}$ (weight) 14.18. Clearly, for $\lambda \neq 0$,

$$
\widehat{\mathcal{S}(\lambda)}(\text { f. d. weight spaces })=\bigsqcup_{v \in \mathbb{K}} \widehat{\mathcal{S}(\lambda, v)} \text { (f. d. weight spaces). }
$$

For $\lambda \in \mathbb{K}^{*}$, we denote by $\widehat{U_{\lambda}^{\prime}}$ (fin. dim.) (resp., $\widehat{U_{\lambda}^{\prime}}(\mathrm{h} . \mathrm{w} . \operatorname{dim}=\infty)$; $\widehat{U_{\lambda}^{\prime}}(\mathrm{l} . \mathrm{w} . \operatorname{dim}=$ $\infty)$) the set of isomorphism classes of simple finite dimensional (resp., highest weight infinite dimensional; lowest weight infinite dimensional) U_{λ}^{\prime}-modules. Let $V^{+}(\lambda):=$ $A_{1}(\lambda) / A_{1}(\lambda) X$ and $V^{-}(\lambda):=A_{1}(\lambda) / A_{1}(\lambda) Y$. The next theorem classifies all the simple weight \mathcal{S}-modules with finite dimensional weight spaces.

Theorem 3.14

$$
\begin{aligned}
& \widehat{\mathcal{S}}(\text { f. d. weight spaces }) \\
& =\widehat{U(\operatorname{sl2})}(\text { weight }) \sqcup \sqcup_{\lambda \in \mathbb{K}^{*}}\{
\end{aligned} \begin{aligned}
& \widehat{U_{\lambda}^{\prime}}(\text { fin. } \operatorname{dim} .) \otimes \widehat{A_{1}(\lambda)}\left(\mathbb{K}\left[h_{\lambda}\right] \text {-torsion }\right) \\
& \sqcup \widehat{U_{\lambda}^{\prime}}(\text { h. w. } \operatorname{dim}=\infty) \otimes V^{+}(\lambda) \\
& \left.\sqcup \widehat{U_{\lambda}^{\prime}}(\text { l. w. } \operatorname{dim}=\infty) \otimes V^{-}(\lambda)\right\} .
\end{aligned}
$$

Proof Let $[\mathcal{M}] \in \widehat{\mathcal{S}}(\mathrm{f}$. d. weight spaces). If $Z \mathcal{M}=0$, then $[\mathcal{M}] \in \widehat{U(\mathrm{sl2})}$ (weight). Without loss of generality we may assume that $[\mathcal{M}] \in \overline{\mathcal{S}(\lambda, v)}$ (f. d. weight spaces) for
some $\lambda \in \mathbb{K}^{*}$ and $v \in \mathbb{K}$. Every simple weight $\mathcal{S}(\lambda, v)$-module in Theorem 3.11 has infinite dimensional weight spaces. Therefore, the module \mathcal{M} must be $\mathbb{K}\left[h_{\lambda}\right]$-torsion, i.e., h_{λ}-weight, since the filed \mathbb{K} is algebraically closed. Then $\mathcal{M}=M \otimes N$ for some $[M] \in \widehat{U_{\lambda}^{\prime}(v)}\left(H_{\lambda}^{\prime}\right.$-weight) and $[N] \in \widehat{A_{1}(\lambda)}\left(\mathbb{K}\left[h_{\lambda}\right]\right.$-torsion) by Proposition 3.3 (ii), Corollary 3.2(ii), and Theorem 3.10. By Theorem 3.6.

$$
\widehat{A_{1}(\lambda)}\left(\mathbb{K}\left[h_{\lambda}\right] \text {-torsion }\right)=\left\{\left[V^{ \pm}(\lambda)\right],\left[W\left(\lambda, \mathcal{O}^{\prime}\right)\right] \mid \mathcal{O}^{\prime} \in \mathbb{K} / \mathbb{Z}, \mathcal{O}^{\prime} \neq \mathbb{Z}\right\}
$$

Notice that $V^{+}(\lambda)=\oplus_{i \geqslant 0} \mathbb{K} Y^{i} \overline{1}$ where $\overline{1}=1+A_{1}(\lambda) X$ and $h_{\lambda} Y^{i} \overline{1}=Y^{i}\left(h_{\lambda}+i\right) \overline{1}=$ $(i+1) Y^{i} \overline{1}$. Similarly, $V^{-}(\lambda)=\oplus_{i \geqslant 0} \mathbb{K} X^{i} \overline{1}$ where

$$
\overline{1}=1+A_{1}(\lambda) Y \quad \text { and } \quad h_{\lambda} X^{i} \overline{1}=X^{i}\left(h_{\lambda}-i\right) \overline{1}=-i X^{i} \overline{1}
$$

For $\mathcal{O}^{\prime} \in \mathbb{K} / \mathbb{Z}$ such that $\mathcal{O}^{\prime} \neq \mathbb{Z}, W\left(\lambda, \mathcal{O}^{\prime}\right)=\oplus_{i \in \mathbb{Z}} \mathbb{K} v(\lambda)_{i} \overline{1}$ where $\overline{1}=1+A_{1}(\lambda)\left(h_{\lambda}-\right.$ $\left.\mu_{\mathcal{O}^{\prime}}\right)$ and $h_{\lambda} v(\lambda)_{i} \overline{1}=\left(i+\mu_{\mathcal{O}^{\prime}}\right) v(\lambda)_{i} \overline{1}$. (The elements $v(\lambda)_{i}$ are defined in 2.6). Recall that $H=H_{\lambda}^{\prime}-h_{\lambda}+\frac{1}{2}$. Given elements $m_{i} \in M$ and $n_{j} \in N$ such that $H_{\lambda}^{\prime} m_{i}=i m_{i}$ and $h_{\lambda} n_{j}=j n_{j}$. Then $H m_{i} \otimes n_{j}=\left(i-j+\frac{1}{2}\right) m_{i} \otimes n_{j}$. Now the result follows easily from Theorem 3.6

We say that a weight module has uniformly bounded weight spaces if their dimensions do not exceed a fixed natural number.

Corollary 3.15 (i) The set

$$
\widehat{U(\text { sl } 2)}(\text { weight }) \sqcup \underset{\lambda \in \mathbb{K}^{*}}{ } \widehat{U_{\lambda}^{\prime}}(\text { fin. dim. }) \otimes\left\{\widehat{A_{1}(\lambda)}\left(\mathbb{K}\left[h_{\lambda}\right] \text {-torsion }\right) \backslash\left\{V^{ \pm}(\lambda)\right\}\right\}
$$

contains precisely the isomorphism classes of simple weight \mathcal{S}-modules where all the weight components are finite dimensional vector spaces of the same dimension.
(ii) The set

$$
\widehat{U(\text { sl } 2)}(\text { weight }) \sqcup \underset{\lambda \in \mathbb{K}^{*}}{ } \widehat{U_{\lambda}^{\prime}}(\text { fin. dim. }) \otimes\left\{V^{+}(\lambda), V^{-}(\lambda)\right\}
$$

contains precisely the isomorphism classes of simple weight \mathcal{S}-modules with uniformly bounded finite dimensional weight spaces.

The first statement of the corollary above strengthens the result due to Wu and Zhu [29] stating that if V is a simple weight \mathcal{S}-module which is neither a highest weight nor a lowest weight module then all its weight spaces have the same dimension.

References

[1] M. Auslander, On the dimension of modules and algebras. III. Global dimension. Nagoya Math. J. 9(1955), 66-77. http://dx.doi.org/10.1017/S0027763000023291
[2] V. V. Bavula, Finite-dimensionality of Ext^{n} and Tor_{n} of simple modules over a class of algebras. Funct. Anal. Appl. 25(1991) no. 3, 229-230. http://dx.doi.org/10.1007/BF01085496
[3] , Simple $D[X, Y ; \sigma, a]$-modules. Ukrainian Math. J. 44(1992), no. 12, 1500-1511. http://dx.doi.org/10.1007/BF01061275
[4] , Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules. In Representations of algebras (Ottawa, 1992), CMS Conf. Proc., 14, American Mathematical Society, Providence, RI, 1993, pp. 83-107.
[5] _ Description of two-sided ideals in a class of noncommutative rings. I. Ukrainian Math. J. 45(1993), no. 2, 223-234. http://dx.doi.org/10.1007/BF01060977
[6] , Generalized Weyl algebras and their representations. St. Petersburg Math. J. 4(1993), no. 1, 71-92.
[7] , Global dimension of generalized Weyl algebras. In: Representation of Algebras (Cocoyoc, 1994), CMS Conf. Proc., 18, American Mathematical Society, Providence, RI, 1996, pp. 81-107.
[8] , Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras. Bull. Sci. Math. 120(1996), no. 3, 293-335.
[9] V. V. Bavula and T. Lenagan, Krull dimension of generalized Weyl algebras with noncommutative coefficients. J. Algebra 235(2001), 315-358. http://dx.doi.org/10.1006/jabr.2000.8466
[10] \longrightarrow, Generalized Weyl algebras are tensor Krull minimal. J. Algebra 239(2001), 93-111. http://dx.doi.org/10.1006/jabr.2000.8641
[11] V. V. Bavula and T. Lu, The prime spectrum and simple modules over the quantum spatial ageing algebra. Algebr. Represent. Theory 19(2016), no. 5, 1109-1133. http://dx.doi.org/10.1007/s10468-016-9613-8
[12] Prime ideals of the enveloping algebra of the Euclidean algebra and a classification of its simple weight modules. J. Math. Phys. 58(2017), no. 1, 011701, 33. http://dx.doi.org/10.1063/1.4973378
[13] Torsion simple modules over the quantum spatial ageing algebra. Commun. Algebra (published online 26 Oct. 2016). http://dx.doi.org/10.1080/00927872.2016.1240177
[14] , The universal enveloping algebra $U\left(\operatorname{sl} 2 \ltimes V_{2}\right)$, its prime spectrum and a classification of its simple weight modules. J. Lie Theory, to appear.
[15] , The universal enveloping algebra of the Schrödinger algebra and its prime spectrum. Bull. Lond. Math. Soc., to appear.
[16] V. V. Bavula and F. Van Oystaeyen, Krull dimension of generalized Weyl algebras and iterated skew polynomial rings: commutative coefficients. J. Algebra 208(1998), 1-34. http://dx.doi.org/10.1006/jabr. 1998.7482
[17] R. E. Block, The irreducible representations of the Lie algebra $\mathfrak{s l}(2)$ and of the Weyl algebra. Adv. Math. 39(1981), 69-110. http://dx.doi.org/10.1016/0001-8708(81)90058-X
[18] B. Dubsky, Classification of simple weight modules with finite-dimensional weight spaces over the Schrödinger algebra. Linear Algebra Appl. 443(2014), 204-214. http://dx.doi.org/10.1016/j.laa.2013.11.016
[19] B. Dubsky, R. Lü, V. Mazorchuk, and K. Zhao, Category \mathcal{O} for the Schrödinger algebra. Linear Algebra Appl. 460(2014), 17-50. http://dx.doi.org/10.1016/j.laa.2014.07.030
[20] V. Dobrev, H. D. Doebner, and C. Mrugalla, Lowest weight representations of the Schrödinger algebra and generalized heat/Schrödinger equations. Reports on Mathematical Physics 39(1997), 201-218. http://dx.doi.org/10.1016/S0034-4877(97)88001-9
[21] T. J. Hodges, Noncommutative deformation of type-A Kleinian singularities. J. Algebra 161(1993) no. 2, 271-290. http://dx.doi.org/10.1006/jabr.1993.1219
[22] R. Lü, V. Mazorchuk, and K. Zhao, Classification of simple weight modules over the 1-spatial ageing algebra. Algebr. Represent. Theory 18(2015), no. 2, 381-395. http://dx.doi.org/10.1007/s10468-014-9499-2
[23] J. C. McConnell and J. C. Robson, Noncommutative noetherian rings. Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001. http://dx.doi.org/10.1090/gsm/030
[24] M. Perroud, Projective representations of the Schrödinger group. Helv. Phys. Acta 50(1977), 233-252.
[25] G. S. Reinhart, Note on the global dimension of a certain ring. Proc. Amer. Math. Soc. 13(1962), 341-346. http://dx.doi.org/10.1090/S0002-9939-1962-0137747-7
[26] R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés. C. R. Acad. Sci. Paris Sér. A-B, 265(1967), A712-A715.
[27] S. P. Smith, Krull dimension of the enveloping algebra of sl(2). J. Algebra 71(1981), 89-94. http://dx.doi.org/10.1016/0021-8693(81)90114-9
[28] J. T. Stafford, Homological properties of the enveloping algebra U (sl2). Math. Proc. Camb. Phil. Soc. 91(1982), no. 1, 29-37. http://dx.doi.org/10.1017/S0305004100059089
[29] Y. Wu and L. Zhu, Simple weight modules for Schrödinger algebra. Linear Algebra Appl. 438(2013), 559-563. http://dx.doi.org/10.1016/j.laa.2012.07.029
[30] X. Zhang and Y. Cheng, Simple Schrödinger modules which are locally finite over the positive part. J. Pure Appl. Algebra 219(2015), 2799-2815. http://dx.doi.org/10.1016/j.jpaa.2014.09.029

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK e-mail: v.bavula@sheffield.ac.uk
School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China e-mail: lutao@hqu.edu.cn

[^0]: Received by the editors October 12, 2016; revised March 16, 2017.
 Published electronically May 23, 2017.
 AMS subject classification: 17B10, 17B20, 17B35, 16E10, 16P90, 16P40, 16P50.
 Keywords: weight module, simple module, centralizer, Krull dimension, global dimension, tensor homological minimal algebra, tensor Krull minimal algebra.

