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Classification of Simple Weight Modules
over the Schrödinger Algebra

V. V. Bavula and T. Lu

Abstract. A classiûcation of simpleweightmodules over the Schrödinger algebra is given. _eKrull
and the global dimensions are found for the centralizer CS(H) (and some of its prime factor alge-
bras) of the Cartan element H in the universal enveloping algebraS of the Schrödinger (Lie) algebra.
_e simple CS(H)-modules are classiûed. _e Krull and the global dimensions are found for some
(prime) factor algebras of the algebra S (over the centre). It is proved that some (prime) factor
algebras of S and CS(H) are tensor homological/Krull minimal.

1 Introduction

In this paper, module means a le� module, K is a ûeld of characteristic zero, K∗ =

K ∖ {0}, N = {0, 1, 2, . . .}, and N+ = {1, 2, . . .}.
_e Schrödinger (Lie) algebra s = sl 2⋉H is a semidirect product of the Lie algebras

sl 2 = K⟨E , F ,H ∣ [H, E] = 2E , [H, F] = −2F , [E , F] = H⟩ ,

H = K⟨X ,Y , Z ∣ [X ,Y] = Z , [Z , X] = 0, [Z ,Y] = 0⟩ ,
whereH is the 3-dimensional Heisenberg (Lie) algebra. _e ad-action of the Lie alge-
bra sl 2 on H is given by the rule:

[H, X] = X , [E , X] = 0, [F , X] = Y , [s, Z] = 0,
[H,Y] = −Y , [E ,Y] = X , [F ,Y] = 0.

So, by deûnition, Z is a central element of the Lie algebra s. _e relations above to-
gether with the deûning relations of the Lie algebras sl 2 andH are deûning relations
of the Lie algebra s. Let S = U(s) be the universal enveloping algebra of the Lie
algebra s.
An s-module M is called a weight s-module if M =⊕λ∈K Mλ where

Mλ ∶= {m ∈ M ∣ Hm = λm}

is called the weight subspace/component of weight µ providedMµ /= 0. _e aim of this
paper is to classify simple weight s-modules (Proposition 3.3(ii) and _eorem 3.4).
A ûrst step was done in [20] where simple highest/lowest weight S-modules were
classiûed. In [18], a classiûcation of simple weight S-modules with ûnite dimensional
weight spaces were classiûed over C. Every weight component Mµ /= 0 of a weight
S-module M is a module over the centralizer CS(H) ∶= {a ∈ S ∣ aH = Ha} of the
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Classiûcation of SimpleWeight Modules over the Schrödinger Algebra 17

Cartan element H in S. If, in addition, the S-module M is simple, then every weight
component Mµ is a simpleCS(H)-module. So, the problemof classiûcation of simple
weight S-modules consists of three steps:
Step 1: To classify all the simple CS(H)-modules.
Step 2: How to reassemble some of the simple CS(H)-modules into a single simple

S-module.
Step 3: To decide whether two simple weight S-modules are isomorphic.
What has just been said is true in a more general situation: a Lie algebra and its
abelian subalgebras or an algebra A and its commutative (ûnitely generated) subal-
gebra H where an A-module is called weight if it is a semisimple H -module (e.g.,
S and H = K[H]). As a rule, the centralizer CA(H ) has a very rich and complex
structure that is a re�ection of richness of the category of weight modules. _e prob-
lem of ûnding explicit generators and deûning relations for the centralizer CA(H )

is a challenging one. A reason for that is that generators for CA(H ) are (linear com-
binations of) products of generators of the algebra A of high degree and, as a result,
deûning relations are also of high degree and are very complex (it is a real Noncom-
mutative Geometry).
A problem of classiûcation of simple weight S-modules is essentially reduced to

the one for its factor algebras S(λ) ∶= S/(Z − λ) where λ ∈ K. A classiûcation of
simple weight S(0)-modules was given in [14]. _e case λ /= 0 is considered in this
paper. For the algebra S(λ) where λ ∈ K∗, the centralizer CS(λ)(H) turns out to
be a generalized Weyl algebra (which is a Noetherian domain of Gelfand–Kirillov
dimension 4), and the centre of CS(λ)(H) is a polynomial algebra in two variables H
and ∆′λ (Proposition 2.13(ii)). So, the problem of classiûcation of simple CS(λ)(H)-
modules is reduced to the problem of classiûcation of simplemodules over the factor
algebras Cµ ,ν

λ ∶= CS(λ)(H)/(H − µ, ∆′λ − ν) where µ, ν ∈ K. _e algebras Cµ ,ν
λ are

generalizedWeyl algebraswith coeõcients from a Dedekind domain (more precisely,
K[H]). A classiûcation of all simplemodules for such generalizedWeyl algebras was
obtained in [3,6]. _en the set of simpleweight S-modules are partitioned into several
classes, and each of them is dealt separately with diòerent techniques; see Section 3.

In Section 2,we compute theKrull and global dimensions of the algebra CS(λ)(H)

(Proposition 2.13) and some of its (prime) factor algebras Cν
λ ∶= CS(λ)(H)/(∆′λ − ν)

(Lemma 2.16) and Cµ ,ν
λ (Corollary 2.14). In more detail (K denotes the Krull dimen-

sion),

K(CS(λ)(H)) = 3 and gldimCS(λ)(H) = 4.

K(Cν
λ) = 2 and gldimCν

λ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if ν = −1,
3 if ν ∈ {n(n + 2) ∣ n = 0, 1, 2, . . .},
2 otherwise.

K(Cµ ,ν
λ ) = 1 and gldim Cµ ,ν

λ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if ν ∈ Λ∞(µ),
2 if ν ∈ Λ f (µ) ∖ Λ∞(µ),
1 otherwise,
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where

Λ f
(µ) = {(2i + µ −

1
2
)(2i + µ +

3
2
) , (2i + µ +

1
2
)(2i + µ −

3
2
) ,

j2 − 1 ∣ i ∈ Z ∖ {0}, j = 1, 2, . . .} ,

Λ∞
(µ) = {( µ −

1
2
)( µ +

3
2
) , ( µ +

1
2
)( µ −

3
2
) ,−1} .

Similarly (see Proposition 2.13(iii)(iv) and Lemma 2.15(iii)(iv)),

K(S(λ)) = 3 and gldim S(λ) = 4,

K(S(λ, ν)) = 2 and gldim S(λ, ν) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if ν = −1,
3 if ν ∈ {n(n + 2) ∣ n = 0, 1, 2, . . .},
2 otherwise.

It follows directly from the classiûcation of simpleweight S-modules (given in this
paper) that the Finite-Inûnite DimensionalDichotomy holds for them (_eorem 3.12):
For a simple weight S-module all its weight spaces are either ûnite or inûnite di-
mensional. As a corollary, we obtain a short diòerent proof of the result of Dubsky
about classiûcation of simpleweight S-moduleswith ûnite dimensionalweight spaces
(_eorem 3.14) over an arbitrary algebraically closed ûeld K not necessarily K = C
as in [18]. Corollary 3.15(i) gives a classiûcation of simple weight S-modules where
all the weight components have the same ûnite dimensions. _is result strengthens
the result obtained in [29], which states: let V be a simple S-module but not a sim-
ple sl 2-module, if V is neither a highest weight nor a lowest weight module then
Wt(V) = µ + Z for any µ ∈ Wt(V) and all the weight spaces of V have the same di-
mension. Corollary 3.15(ii) gives a classiûcation of simpleweight S-moduleswhere all
the weight components are uniformly bounded (by a constant). In [19], the category
O of the Schrödinger algebrawas studied. In [30], a classiûcation of simpleWhittaker
S-module was given.
A classiûcation of simpleweightmodules over the spatial ageing algebra is given by

Lü,Mazorchuk, and Zhao [22]. Classiûcation of simple weight modules and various
classes of torsion simple modules over the quantum spatial ageing algebra are given
in [11] and [13], respectively. Classiûcation of prime ideals and simpleweightmodules
over the Euclidean algebra are obtained in [12].

2 The Global and Krull Dimensions

_e aim of this section is to study the centralizer CS(λ)(H) of the Cartan element H
in the algebra S(λ) = S/(Z − λ), where λ ∈ K∗ and the (prime) factor algebra S(λ, ν)
where ν ∈ K. _e case λ = 0 was done in [14], and the cases λ /= 0 and λ = 0 are
quite diòerent. We ûnd theKrull and the global dimensions of the algebras CS(λ)(H)

(Proposition 2.13(v)(vi)), Cν
λ (Lemma 2.16(iii)(iv)), Cµ ,ν

λ (Lemma 2.14(iv)(v)), S(λ)
(Proposition 2.13(iii)(iv)), and S(λ, ν) (Lemma 2.15(iii)(iv)). We show that the alge-
bras CS(λ)(H) (Proposition 2.13(i)), Cν

λ (Lemma 2.16(i)) and Cµ ,ν
λ (Corollary 2.14(i))

are generalizedWeyl algebras and ûnd their centres. We also show that some of these
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algebras are tensor homological minimal and tensor Krull minimal with respect to
some classes of le� Noetherian algebras.
At the beginning of this section,we collect some known results about the universal

enveloping algebra S = U(s) of the Lie algebra s. Let SZ be the localization of the
algebra S at the powers of the central element Z of S. _e algebra SZ contains the
Weyl algebra A1 ∶= K⟨X ,Y ∣ [X ,Y] = 1⟩ whereX ∶= Z−1X.

Lemma 2.1 ([15, Lemma 2.2]) (i) Let E′ ∶= E − 1
2Z

−1X2, F′ ∶= F + 1
2Z

−1Y 2, and
H′ ∶= H + Z−1XY − 1

2 . _en the following commutation relations hold in the
algebra SZ :

[H′ , E′] = 2E′ , [H′ , F′] = −2F′ , [E′ , F′] = H′ ,

i.e., the Lie algebra KF′ ⊕KH′ ⊕KE′ is isomorphic to sl 2. Moreover, the subal-
gebraU ′ of SZ generated byH′ , E′, and F′ is isomorphic to the enveloping algebra
U(sl 2). Furthermore, the elements E′ , F′, and H′ commute with X and Y .

(ii) _e localization SZ of the algebra S at the powers of Z is SZ = K[Z±1]⊗U ′⊗A1 .

_e algebra U ′ ≃ U(sl 2) in Lemma 2.1(i) is called the hidden U(sl 2). _e centre
Z(U ′) of the algebraU ′ is a polynomial algebraK[∆′]where ∆′ ∶= 4F′E′+H′2 +2H′

is the Casimir element. One can check that
∆′ = 4FE +H2

+H + 2Z−1
(EY 2

+HXY − FX2
) − 3

4 .
Let

C ∶ = Z∆′ + 3
4Z = Z(4FE +H2

+H) + 2(EY 2
+HXY − FX2

).(2.1)

By Lemma 2.1(ii), Z(S) = K[Z ,C] is a polynomial algebra (see [15, Proposition 2.5]).
_is resultwas known beforewith various degrees of details (for example, the element
C appeared in [24]). It seems that a complete proofwas given in [19]where a diòerent
approach was taken (the proof is much more involved).

The Factor Algebra S/(Z)

_e 1-dimensional space KZ is an ideal of the Schrödinger (Lie) algebra. _e Lie
algebra s/KZ is canonically isomorphic to the semidirect product sl 2 ⋉ V2 of the
Lie algebra sl 2 with its (unique) 2-dimensional simple sl 2-module V2 (treated as an
abelian Lie algebra). By (2.1), the element c ∶= FX2−HXY−EY 2 belongs to the centre
of the universal enveloping algebra A ∶= U(sl 2 ⋉ V2) of the Lie algebra sl 2 ⋉ V2. In
fact, Z(A) = K[c] (see [14]).

Generalized Weyl Algebra

Deûnition 2.2 ([2,6]) LetD be a ring, let σ be an automorphismofD, and let a be an
element of the centre ofD. _e generalizedWeyl algebra A ∶= D(σ , a) ∶= D[X ,Y ; σ , a]
is a ring generated by D, X, and Y subject to the deûning relations:
Xα = σ(α)X and Yα = σ−1

(α)Y for all α ∈ D, YX = a and XY = σ(a).
_e algebra A =⊕n∈Z An is Z-graded where An = Dvn , vn = Xn for n > 0, vn = Y−n

for n < 0 and v0 = 1.
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Global Dimension of GWAs

Let R be a commutative Noetherian ring and σ be its automorphism. An ideal p of
R is called a σ-semistable ideal if σ n(p) = p for some n ⩾ 1. If there is no such n, the
ideal p is called σ-unstable.

_eorem 2.3 ([7, _eorem 3.7]) Let R be a commutative Noetherian ring of global
dimension n < ∞, let T = R(σ , a) be a GWA, and let a be a regular element of R
that gldim (T) < ∞. _en gldim (T) = sup{gldim R, htp + 1, ht q + 1 ∣ p is a σ-
unstable prime ideal of R for which there exist distinct integers i and j with a ∈ σ i(p)
and a ∈ σ j(p); q is a σ-semistable prime ideal of R}.

In this paper, the following theorem is used in many proofs about the global di-
mension of algebras.

_eorem 2.4 ([8, _eorem 1.6]) Let A = D(σ , a) be a GWA, D be a commutative
Dedekind ring, Da = pn1

1 ⋅ ⋅ ⋅pns
s (if a /= 0) where p1 , . . . , ps are distinct maximal ideals

of D. _en the global dimension of the algebra A is

gldimA =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∞ if a = 0 or n i ⩾ 2 for some i,
2 if a /= 0, n1 = ⋅ ⋅ ⋅ = ns = 1, s ⩾ 1 or a is a unit and σ k(pi) = p j

for some k ⩾ 1 and i , j or σ k(q) = q for somemaximal ideal q of D,
1 otherwise.

Example 2.5 _eWeyl algebra A1 is a GWA K[h](σ , a = h) where σ(h) = h − 1.
Hence,

gldimA1 =

⎧⎪⎪
⎨
⎪⎪⎩

1 if charK = 0,
2 if charK /= 0.

_is result is due to Reinhart [25]; his proof is diòerent from this one.

Corollary 2.6 ([2,6,21]) Let K be an algebraically closed ûeld of characteristic zero,
let A = K[H](σ , a) be a GWA where σ(H) = H − 1, and let λ1 , . . . , λs be the roots of
the polynomial a ∈ K[H] provided a ∉ K. _en

gldimA =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if a = 0 or a has a repeated root,
2 if the roots of a /= 0 are distinct and λ i − λ j ∈ Z for some i /= j,
1 otherwise.

_e algebra U(ν) ∶= U(sl 2)/(∆ − ν) = K[H](σ , a = 1
4 (ν − H(H + 2))) (where

σ(H) = H − 2) is a particular example of the GWA in _eorem 2.4. Applying _eo-
rem 2.4 we obtain the result of Staòord [28] (his proof is diòerent),

gldim U(ν) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if ν = −1,
2 if ν ∈ {n(n + 2) ∣ n = 0, 1, 2, . . .},
1 otherwise.

(2.2)
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Tensor Homological/Krull Minimal Algebras

Let d be one of the following dimensions: the weak (homological) dimension wd,
the le� homological dimension lgd, or the le� Krull dimension K. For d = wd, K
(resp., lgd), d(A⊗ B) ⩾ d(A)+ d(B) for all (resp., le� Noetherian) algebras A and B;
see [1,23]. In general, a strict inequality holds. Let Qn = K(x1 , . . . , xn) be the ûeld of
rational functions and d = lgd,K. _en n = d(Qn⊗Qn) > d(Qn)+d(Qn) = 0+0 = 0.

Deûnition 2.7 ([8]) An algebra A is called a tensor d-minimal algebra with respect
to some class of algebras Ω if

d(A⊗ B) = d(A) + d(B) for all B ∈ Ω.

For d = lgd (resp., d = K), we say that the algebra A is tensor homological minimal
(THM) (resp., tensor Krull minimal (TKM)).

Example 2.8 Let K be an algebraically closed uncountable ûeld of characteristic
zero. _en the GWA K[H](σ , a) where σ(H) = H − µ (where µ ∈ K∗) is a tensor
homological minimal algebrawith respect to the classLFN of le�Noetherian, ûnitely
generated algebras [8, Corollary 1.5.(1)]. _eWeyl algebra A1 and all factor algebras
U(ν) = U(sl 2)/(∆ − ν) (where ν ∈ K and ∆ is the Casimir element) are examples of
such GWAs. In particular, they are THM with respect to the class LFN.

Krull Dimension of GWAs

_eorem 2.9 ([16, _eorem 1.2]) Let R be a commutative Noetherian ring with
K(R) <∞ and T = R(σ , a) be aGWA._enK(T) = sup{K(R), htp+ 1, ht q+ 1 ∣ p is
a σ-unstable prime ideal of R forwhich there exists inûnitelymany i ∈ Zwith a ∈ σ i(p);
q is a σ-semistable prime ideal of R}.

Note _e ideals p and q in _eorem 2.9 can be assumed to be maximal of height
K(R). _e case when the ring R is not necessarily commutative is considered in [9]
where explicit formulae for the Krull dimension are obtained.

Example 2.10 _e algebraU(sl 2) is theGWAK[H, ∆](σ , a = 1
4 (∆−H(H + 2))).

Clearly, there are no maximal ideals p and q as in _eorem 2.9. Hence,K(U(sl 2)) =
K(K[H, ∆]) = 2. _e result is due to Smith [27]; his proof is based on a diòerent
approach.

Example 2.11 _eWeyl algebra A1 = K⟨∂, X ∣ [∂, X] = 1⟩ is a GWA K[h](σ , a =
h). Similarly, K(A1) = K(K[h]) = 1 as there are no maximal ideals p and q as in
_eorem 2.9. _e result is due to Rentschler and Gabriel [26]; they used a diòerent
approach.

_e next result shows thatmanyGWAs areTHMwith respect to the class of count-
ably generated le� Noetherian algebras. _is fact allows one to compute eòectively
their Krull dimension as well as their tensor products.
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_eorem 2.12 ([10, _eorem 2.2]) Let T = ⊗
n
i=1 Ti be a tensor product of GWAs

of the form Ti = D i(σi , a i), where each D i is an aõne commutative algebra over an
algebraically closed uncountable ûeldK. _en T is a tensor Krull minimal algebra with
respect to the class of countably generated le� Noetherian algebras; that is,

K(T ⊗ B) =K(T) +K(B) =
n

∑
i=1

K(Ti) +K(B)

for any countable dimensional le� Noetherian algebra B. In particular, K(⊗
n
i=1 Ti) =

∑
n
i=1 K(Ti).

_eWeyl algebra A1 = K⟨X ,Y ∣ [X ,Y] = 1⟩ is a GWA,

A1 = K[h][Y ,X ; σ , h],(2.3)

where σ(h) = h − 1. In particular, h = X Y . _e Weyl algebra A1 = ⊕i∈Z A1, i is a
Z-graded algebra where A1, i = K[h]v i and

v i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Y i if i ⩾ 1,
1 if i = 0,
X −i if i ⩽ −1.

_e algebraU = U(sl 2) is aGWA,U = K[H, ∆][E , F; σ , a = 1
4 (∆−H(H+2)),where

K[H, ∆] is a polynomial algebra and σ(H) = H − 2 and σ(∆) = ∆. Furthermore,
∆ = 4FE + H(H + 2) is the Casimir element of the algebra U , and the centre of U is
equal to Z(U) = K[∆].
For λ ∈ K, letS(λ) ∶= S/S(Z−λ). Clearly, S(0) ≃ A. If λ /= 0, thenbyLemma 2.1(ii),

the algebra

S(λ) = SZ/SZ(Z − λ) = U ′
λ ⊗ A1(λ)(2.4)

is a tensor product of algebras U ′
λ and A1(λ), which are the images of the algebra U ′

and A1 in S(λ) under the epimorphism SZ → SZ/SZ(Z − λ) = S(λ). _e algebra U ′
λ

is canonically isomorphic to the algebra U = U(sl 2). _e elements

H′
λ ∶= H + λ−1XY − 1

2 , E′λ ∶= E −
1
2 λ

−1X2 , F′λ ∶= F +
1
2 λ

−1Y 2 ,

which are the images of the elements H′, E′, and F′, respectively, are canonical gen-
erators for the algebra U ′

λ . _e algebra A1(λ) = K⟨Xλ ,Y ∣ [Xλ ,Y] = 1⟩ is isomor-
phic to theWeyl algebra A1 where Xλ = λ−1X and Y are the images of the elements
X = Z−1X and Y in S(λ). By (2.3), the algebra A1(λ) is a GWA,

A1(λ) = K[hλ][Y ,Xλ ; σ , hλ],(2.5)

where σ(hλ) = hλ − 1 and hλ = XλY = λ−1XY . In particular, A1(λ) = ⊕i∈Z A1(λ)i
is a Z-graded algebra where A1(λ)i = K[hλ]v(λ)i where

v(λ)i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Y i if i ⩾ 1,
1 if i = 0,
X −i

λ if i ⩽ −1.
(2.6)

https://doi.org/10.4153/CMB-2017-017-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-017-7


Classiûcation of SimpleWeight Modules over the Schrödinger Algebra 23

_e algebra U ′
λ is a GWA,

U ′
λ = K[H′

λ , ∆
′
λ][E

′
λ , F

′
λ ; σ

′ , a′λ = 1
4(∆

′
λ −H′

λ(H
′
λ + 2))] ,(2.7)

where σ ′(H′
λ) = H′

λ − 2, σ(∆′λ) = ∆
′
λ , and ∆

′
λ ∶= 4F′λE

′
λ + H′

λ(H
′
λ + 2) is the image

of the Casimir element ∆′ in S(λ). _e algebra U ′
λ =⊕i∈Z U ′

λ , i is a Z-graded algebra
where U ′

λ , i = K[H′
λ , ∆

′
λ]v

′
i and

v′i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

E′iλ if i ⩾ 1,
1 if i = 0,
F′−i
λ if i ⩽ −1.

The Centralizer CS(λ)(H)

Recall that for an element a of an algebra A,we denote by CA(a) ∶= {b ∈ A ∣ ab = ba}
the centralizer of a in A. _e next proposition is about generators and deûning rela-
tions of the centralizer CS(λ)(H) of the element H in the algebra S(λ), the global and
Krull dimensions of the algebra S(λ). If, for an algebra A, the le� and right global
dimension are equal, the common value is denoted by gldim (A).

Proposition 2.13 Suppose that λ ∈ K∗. Let x ∶= E′λY
2 and y ∶= F′λX

2
λ .

(i) _e algebra CS(λ)(H) is a GWA,

CS(λ)(H) = Dλ[x , y; τ, aλ = a′λ ⋅ hλ(hλ + 1)],

where Dλ = K[H, ∆′λ , hλ] is a polynomial algebra and τ(H) = H, τ(∆′λ) = ∆
′
λ

and τ(hλ) = hλ − 2. _e algebra CS(λ)(H) is a Noetherian domain of Gelfand–
Kirillov dimension 4.

(ii) _e centre of the algebra CS(λ)(H) is the polynomial algebraK[H, ∆′λ].
(iii) (K is an algebraically closed uncountable ûeld). _e (le� or right) global dimension

of the algebra S(λ) is equal to gldim S(λ) = 4.
(iv) (K is an algebraically closed uncountable ûeld). _eKrull dimension of the algebra

S(λ) is 3. _e algebra S(λ) is a tensor Krull minimal algebra with respect to the
class of countably generated le� Noetherian algebras.

(v) (K is an algebraically closed ûeld) gldim CS(λ)(H) = 4.
(vi) (K is an algebraically closed ûeld) K(CS(λ)(H)) = 3.

Proof (i) Using the fact that the algebras U ′
λ and A1(λ) are GWA’s (see (2.5) and

(2.7)), we have
S(λ) = U ′

λ ⊗ A1(λ) = ⊕
i , j∈Z

Dλv′iv(λ) j .

Using the equalities [H, v′i] = 2iv′i and [H, v(λ) j] = − jv(λ) j , we see that

CS(λ)(H) = ⊕
i∈Z
Dλv′iv(λ)2i = ⊕

i⩾1
Dλ y i

⊕ Dλ ⊕⊕
i⩾1
Dλx i

= Dλ[x , y; τ, aλ].

(ii) Statement (ii) follows from statement (i).
(iii) _e Weyl algebra A1(λ) is a THM with respect to the class LFN and U ′

λ ∈

LFN. Hence, by (2.4), gldim S(λ) = gldim U ′
λ⊗A1(λ) = gldim U ′

λ +gldim A1(λ) =
3 + 1 = 4.
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(iv)By_eorem 2.12,K(S(λ)) =K(U ′
λ⊗A1(λ)) =K(U ′

λ)+K(A1(λ)) = 2+1 = 3,
and the algebra S(λ) is aTKM algebrawith respect to the class of countably generated
le� Noetherian algebras.

(v) _e algebra S(λ) =⊕i∈Z S(λ)i is a Z-graded algebra where

S(λ)i ∶= { a ∈ S(λ) ∣ [H, a] = ia} and CS(λ)(H) = S(λ)0 .

_erefore, gldim CS(λ)(H) ⩽ gldim S(λ) = 4 < ∞, by statement (iii). Notice that
gldim Dλ = 3. By _eorem 2.3, gldim CS(λ)(H) = 4 as there is amaximal ideal p of
Dλ that satisûes the conditions of _eorem 2.3, e.g., p = (H − µ, ∆′λ − (i2 − 1), hλ +

µ + 1
2 + i) for i ∈ Z ∖ {0}; see Case 1 of the proof of Corollary 2.14(iii).

(vi) By_eorem 2.9,K(CS(λ)(H)) =K(Dλ) = 3 as there are no maximal ideals p
and q that satisfy the conditions of_eorem 2.9.

The Algebras Cµ ,ν
λ

By Proposition 2.13, for every pair µ, ν ∈ K, we can consider the factor algebra
Cµ ,ν

λ ∶= CS(λ)(H)/(H − µ, ∆′λ − ν).

_e algebras Cµ ,ν
λ and all their simplemodules play an important role in a classiûca-

tion of the simple weight modules over the Schrödinger algebra. Roughly speaking,
the problem of classiûcation of simple weight S(λ)-modules is reduced to the prob-
lem of classiûcation of all simple modules for the algebras Cµ ,ν

λ . In general, there is
little connection between the global dimension of an algebra and its factor algebras.
_e next corollary is an example of this fact.

_e next corollary presents a simplicity criterion for the algebra Cµ ,ν
λ ; it also com-

putes values for the Krull and global dimensions of the algebra Cµ ,ν
λ .

Corollary 2.14 Let λ ∈ K∗ and µ, ν ∈ K. _en
(i) _e algebra Cµ ,ν

λ is isomorphic to the algebra CS(λ)(H)/(H − µ, ∆′λ − ν), which
is a GWA,

Cµ ,ν
λ = K[hλ][x , y; τ, a

µ ,ν
λ = 1

4(ν − (hλ + µ − 1
2 )(hλ + µ + 3

2 ))hλ(hλ + 1)] ,

where τ(hλ) = hλ − 2 and aµ ,ν
λ ≡ aλ mod (H − µ, ∆′λ − ν).

(ii) _e algebra Cµ ,ν
λ is a central Noetherian domain of Gelfand-Kirillov dimension 2.

(iii) _e algebra Cµ ,ν
λ is simple if and only if

ν ∉ Λ f
(µ) ∶= {(2i + µ − 1

2 )(2i + µ + 3
2 ),

(2i + µ + 1
2 )(2i + µ − 3

2 ), j
2
− 1 ∣ i ∈ Z ∖ {0}, j = 1, 2, . . .} .

(iv) _e (le� or right) global dimension of the algebra Cµ ,ν
λ is equal to

gldim Cµ ,ν
λ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if ν ∈ Λ∞(µ),
2 if ν ∈ Λ f (µ) ∖ Λ∞(µ),
1 otherwise,

where Λ∞(µ) ∶= {(µ − 1
2 )(µ +

3
2 ), (µ +

1
2 )(µ −

3
2 ), −1}. _e algebra Cµ ,ν

λ is
a tensor homological minimal algebra with respect to the class of le� Noetherian,
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ûnitely generated algebras (providedK is an algebraically closed and uncountable
ûeld).

(v) _e (le� or right) Krull dimension of the algebra Cµ ,ν
λ is 1. _e algebra Cµ ,ν

λ is a
tensor Krull minimal algebra with respect to the class of countably generated le�
Noetherian algebras (provided the ûeldK is algebraically closed and uncountable).

Proof Statements (i) and (ii) follow from Proposition 2.13.
(iii) By [5,6], theGWA Cµ ,ν

λ is not simple if and only if there are two distinct roots
of the polynomial aµ ,ν

λ , say λ1 and λ2, such that λ2 = λ1 + 2i for some i ∈ Z ∖ {0}.
_ere are three cases to consider.
Case 1: λ1 and λ2 are roots of the polynomial P = (hλ + µ − 1

2 )(hλ + µ + 3
2 ) − ν, i.e.,

P = (hλ − λ1)(hλ − λ1 − 2i). _is is possible if and only if
⎧⎪⎪
⎨
⎪⎪⎩

2λ1 + 2i = −2µ − 1,
ν = (µ − 1

2 )(µ +
3
2 ) − λ1(λ1 + 2i),

if and only if λ1 = −µ − 1
2 − i and ν = i2 − 1.

Case 2: λ1 = 0 and λ2 is a root of P, i.e,

0 = P(λ2) = P(0 + 2i)⇔ ν = (2i + µ −
1
2
)(2i + µ +

3
2
) .

Case 3: λ1 = −1 and λ2 is a root of P, i.e.,

0 = P(λ2) = P(−1 + 2i)⇔ ν = (2i + µ −
3
2
)(2i + µ +

1
2
) .

(iv) Let {λ i ∣ i = 1, . . . , s} be the roots of the polynomial aµ ,ν
λ . By _eorem 2.4,

gldim Cµ ,ν
λ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if aµ ,ν
λ has a repeated root,

2 if aµ ,ν
λ has no repeated root, λ i − λ j ∈ 2Z ∖ {0} for some i /= j,

1 otherwise.

By [8, Corollary 1.5.(1)], the algebra Cµ ,ν
λ is a tensor homological minimal algebra

with respect to the class of le� Noetherian, ûnitely generated algebras (providedK is
an algebraically closed and uncountable ûeld).

(a) _e polynomial aµ ,ν
λ has a repeated root if and only if ν ∈ Λ∞(µ): We have to

consider the cases 1–3 in the proof of statement (iii) where i = 0, i.e., λ1 = λ2. _is
gives ν ∈ Λ∞(µ).

(b) By the proof of statement (ii), gldimCµ ,ν
λ = 2 if and only if ν ∈ Λ f (µ)∖Λ∞(µ).

Statement (v) follows from _eorems 2.9 and 2.12.

The Algebra S(λ, ν)

Let λ ∈ K∗ and ν ∈ K. By (2.4), the factor algebra
S(λ, ν) ∶= S(λ)/(∆′λ − ν) ≃ S/(Z − λ, ∆′ − ν) ≃ U ′

λ(ν)⊗ A1(λ)(2.8)
is a tensor product of algebras where

U ′
λ(ν) ∶= U ′

λ/(∆
′
λ − ν) = K[H′

λ][E
′
λ , F

′
λ ; σ

′ , a′νλ ∶= 1
4(ν −H′

λ(H
′
λ + 2))]
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is a GWA where σ ′(H′
λ) = H′

λ − 2. _e algebra S(λ, ν) is a Noetherian domain of
Gelfand–Kirillow dimension 4. _e algebra S(λ, ν) is a GWA of rank 2 as it is a ten-
sor product of two GWAs U ′

λ and A1(λ). _e problem of classiûcation of weight S-
modules are essentially about the problem of classiûcation of simple weight S(λ, ν)-
modules. _e next lemma gives a simplicity criterion for the algebra S(λ, ν) and com-
putes the Krull and global dimensions of the algebra S(λ, ν).

Lemma 2.15 Let λ ∈ K∗ and ν ∈ K.
(i) _e algebra S(λ, ν) is a central Noetherian domain ofGelfand-Kirillov dimension

4.
(ii) _e algebra S(λ, ν) is simple if and only if the algebra U ′

λ(ν) is simple if and only
if ν ∉ {n(n + 2) ∣ n = 0, 1, 2, . . .}.

(iii) (K is an algebraically closed and uncountable ûeld). _e (le� or right) global di-
mension of the algebra S(λ, ν) is equal to

gldim S(λ, ν) = gldim U ′
λ(ν) + gldim A1(λ)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if ν = −1,
3 if ν ∈ {n(n + 2) ∣ n = 0, 1, 2, . . .},
2 if ν ∉ {n(n + 2) ∣ n = −1, 0, 1, 2, . . .}.

_e algebra S(λ, ν) is a tensor homological minimal algebra with respect to the
class of le� Noetherian, ûnitely generated algebras.

(iv) (K is an algebraically closed and uncountable ûeld). _e (le� or right) Krull di-
mension of the algebra S(λ, ν) is 2. _e algebra S(λ, ν) is a tensor Krull minimal
algebra with respect to the class of countably generated le� Noetherian algebras.

Proof (i) _e algebra S(λ, ν) is a central algebra as a tensor product of central alge-
bras, by (2.8).

(ii) Statement (ii) follows from (2.8) and the fact that theWeyl algebra A1(λ) is a
central simple algebra.

(iii) _eWeyl algebra A1(λ) is a tensor homological minimal algebra with respect
to the class LFN [8, Corollary 1.5.(1)], hence

gldimS(λ, ν) = gldim U ′
λ(ν)⊗ A1(λ) = gldim U ′

λ(ν) + gldim A1(λ)

= gldim U ′
λ(ν) + 1.

Now, the result follows from (2.2).
(iv) _eWeyl algebra A1(λ) is a tensor Krull minimal algebra with respect to the

class of countably generated le� Noetherian algebras ([10,_eorem 2.2]), hence
K(S(λ, ν)) =K(U ′

λ(ν)⊗ A1(λ)) =K(U ′
λ(ν)) +K(A1(λ)) = 1 + 1 = 2.

By_eorem 2.12, the algebra S(λ, ν) is a tensor Krull minimal algebrawith respect to
the class of countably generated le� Noetherian algebras.

The Algebras Cν
λ

Let Cν
λ ∶= CS(λ ,ν)(H). _e next lemma describes the centre of the algebra Cν

λ and
computes the Krull and global dimensions of Cν

λ .
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Lemma 2.16 Suppose that λ ∈ K∗ and ν ∈ K.
(i) _e algebra Cν

λ is isomorphic to the algebra CS(λ)(H)/(∆′λ −ν), which is aGWA,

Cν
λ = K[H, hλ][x , y; τ, a′νλ ⋅ hλ(hλ + 1)]

where a′νλ ∶= 1
4 (ν −H′

λ(H
′
λ + 2)) = 1

4 (ν − (H + hλ −
1
2 )(H + hλ +

3
2 )), τ(H) = H

and τ(hλ) = hλ − 2.
(ii) _e centre of the algebra Cν

λ isK[H], and the algebra Cν
λ is a Noetherian domain

of Gelfand–Kirillov dimension 3.
(iii) _e (le� or right) global dimension of Cν

λ is equal to

gldim Cν
λ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if ν = −1,
3 if ν ∈ {n(n + 2) ∣ n = 0, 1, 2, . . .},
2 otherwise.

(iv) _e (le� or right) Krull dimension of Cν
λ is 2. _e algebra Cν

λ is a tensor Krull
minimal algebra with respect to the class of countably generated, le� Noetherian
algebras (providedK is an algebraically closed uncountable ûeld).

Proof Statement (i) follows from Proposition 2.13(i).
Statement (ii) follows from statement (i).
(iii) _e algebra S(λ, ν) = ⊕i∈Z S(λ, ν)i is a Z-graded algebra where S(λ, ν)i ∶=

{a ∈ S(λ, ν) ∣ [H, a] = ia} and Cν
λ = S(λ, ν)0. _erefore, gldim Cν

λ ⩽ gldimS(λ, ν).
By Lemma 2(iii), gldimCν

λ <∞ if ν /= −1. If ν /= −1, then by _eorem 2.3,

gldimCν
λ =

⎧⎪⎪
⎨
⎪⎪⎩

3 if ν ∈ {n(n + 2) ∣ n = 0, 1, 2, . . .},
2 if ν ∉ {n(n + 2) ∣ n = −1, 0, 1, 2, . . .}.

Claim gldim C−1
λ = ∞. _e set S = K[hλ] ∖ {0} is an Ore set of the domain C−1

λ
such that the localization

S−1C−1
λ = K(hλ)[H][x , y; τ, a′νλ ⋅ hλ(hλ + 1)]

is a GWA and the algebraK(hλ)[H] is a Dedekind ring. For ν = −1,

a′νλ = − 1
4 (H + hλ +

1
2 )

2 ,

hence gldim S−1C−1
λ =∞, by_eorem 2.4. Since gldim C−1

λ ⩾ gldim S−1C−1
λ ,wemust

have gldim C−1
λ =∞.

(iv) By _eorem 2.9, K(Cν
λ) = K(K[H, hλ]) = 2. If, in addition, the ûeld K

is algebraically closed and uncountable then the algebra Cν
λ is a TKM algebra with

respect to the class of countably generated, le� Noetherian algebras.
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3 Classification of Simple Weight S-modules with Nonzero Central
Charge

In this section,K is an algebraically closed ûeld of characteristic zero. In this section,
a classiûcation of simple weight S-modules is obtained. _e set Ŝ(weight) of isomor-
phism classes of simple weight S-modules is presented as a disjoint union of subsets
each of which is dealt separately.
For an algebra A, we denote by Â the set of isomorphism classes of simple A-mod-

ules and for an A-module M we denote by [M] its isomorphism classes. If P is a
property of simple modules that is invariant under isomorphisms of modules (e.g.,
being weight), then Â(P) stands for the set of all isomorphism classes of simple A-
modules that satisfy P. Clearly,

Ŝ(weight) = Ŝ(0)(weight) ⊔ ⊔
λ∈K∗

Ŝ(λ)(weight),

Ŝ(λ)(weight) = ⊔
ν∈K

Ŝ(λ, ν)(weight).

_e set Ŝ(0)(weight) was described in [14]. So in this section, we assume that λ /= 0.
In order to ûnish the classiûcation of simple weight S-modules, it remains to classify
simple weight S(λ, ν)-modules for all ν ∈ K.

The Sets Ŝ(λ, ν) (X-torsion) and Ŝ(λ, ν) (Y-torsion)

_e sets SX ∶= {X i ∣ i ∈ N} and SY ∶= {Y i ∣ i ∈ N} areOre sets of the domain S. Each
S-module M contains the so-called X-torsion and Y-torsion submodules

torSX(M) ∶= {m ∈ M ∣ X im = 0 for some i ∈ N},

torSY (M) ∶= {m ∈ M ∣ Y im = 0 for some i ∈ N},

respectively. _e module M is called X-torsion (resp., Y-torsion) if M = torSX(M)

(resp., M = torSY (M)). First, we classify all the simple X-torsion/Y-torsion
S(λ, ν)-modules (_eorem 3.1), and as a result we obtain a classiûcation of simple
weight X-torsion/Y-torsion S(λ, ν)-modules (Corollary 3.2).
For λ /= 0, the following theorem gives classiûcations of simple S(λ, µ)-modules

that are either X-torsion or Y-torsion.

_eorem 3.1 Let λ ∈ K∗ and ν ∈ K. _en

(i) Ŝ(λ, ν)(X-torsion) = Û ′
λ(ν)⊗ [

A1(λ)
A1(λ)X

] = {[M ⊗
A1(λ)
A1(λ)X

] ∣ [M] ∈ Û ′
λ(ν)}

and S(λ, ν)-modules M ⊗A1(λ)/A1(λ)X andM′ ⊗A1(λ)/A1(λ)X are isomorphic if
and only if [M] = [M′].

(ii) Ŝ(λ, ν)(Y-torsion) = Û ′
λ(ν)⊗[

A1(λ)
A1(λ)Y

] = {[M⊗
A1(λ)
A1(λ)Y

] ∣ [M] ∈ Û ′
λ(ν)}
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and S(λ, ν)-modules M ⊗ A1(λ)/A1(λ)Y andM′ ⊗ A1(λ)/A1(λ)Y are isomorphic if
and only if [M] = [M′].

(iii) Ŝ(λ, ν)(X-torsion) ∩ Ŝ(λ, ν) (Y-torsion) = ∅.

Proof (i) _e A1(λ)-module V ∶= A1(λ)/A1(λ)X is a simple A1(λ)-module
with EndA1(λ)(V) = K. Recall that S(λ, ν) = U ′

λ(ν) ⊗ A1(λ). Every simple
X-torsion S(λ, ν)-module M is an epimorphic image of the S(λ, ν)-module V ∶=

S(λ, ν)/S(λ, ν)X = U ′
λ(ν) ⊗ V . Each S(λ, ν)-submodule of V is equal to I ⊗ V

for some le� ideal I of the algebra U ′
λ(ν), and so M ≃ M ⊗ V for some simple

Uλ(ν)-module M, and statement (i) follows.
Statement (ii) can be proved in a similar way as statement (i) (by replacing X by

Y).
Statement (iii) follows from statements (i) and (ii), since the A1(λ)-modules

A1(λ)/A1(λ)X and A1(λ)/A1(λ)Y are not isomorphic.

We obtain classiûcations of simple weight S(λ, ν)-modules that are X-torsion or
Y-torsion as a corollary of_eorem 3.1,

Corollary 3.2 Let λ ∈ K∗ and ν ∈ K.
(i)

Ŝ(λ, ν)(weight, X-torsion) = Û ′
λ(ν) (H

′
λ-weight)⊗ [

A1(λ)
A1(λ)X

]

= {[M ⊗
A1(λ)
A1(λ)X

] ∣ [M] ∈ Û ′
λ(ν) (H

′
λ-weight)}

and S(λ, ν)-modules M ⊗
A1(λ)
A1(λ)X and M′ ⊗ A1(λ)

A1(λ)X are isomorphic if and only if
[M] = [M′].

(ii)

Ŝ(λ, ν)(weight,Y-torsion) = Û ′
λ(ν) (H

′
λ-weight)⊗ [

A1(λ)
A1(λ)Y

]

= {[M ⊗
A1(λ)
A1(λ)Y

] ∣ [M] ∈ Û ′
λ(ν) (H

′
λ-weight)}

and S(λ, ν)-modules M ⊗
A1(λ)
A1(λ)Y and M′ ⊗ A1(λ)

A1(λ)Y are isomorphic if and only if
[M] = [M′].

(iii) Ŝ(λ, ν)(weight, X-torsion) ∩ Ŝ(λ, ν)(weight,Y-torsion) = ∅.

Proof (i) Recall that H′
λ = H+ λ−1X ⋅Y − 1

2 = H+Y ⋅ λ−1X+ 1
2 . Every simple,weight,

X-torsion S(λ, ν)-module is an epimorphic image of the S(λ, ν)-module (for some
µ ∈ K)

S(λ, ν)/S(λ, ν)(H − µ, X) = S(λ, ν)/S(λ, ν)(H′
λ − µ −

1
2
, X)

≃
U ′

λ(ν)
U ′

λ(ν)(H
′
λ − µ − 1

2 )
⊗
A1(λ)
A1(λ)X

=∶M(µ),
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which is a H′
λ-weight module. Conversely, any module from

Û ′
λ(ν) (H

′
λ-weight)⊗ [

A1(λ)
A1(λ)X

]

is an epimorphic image of the weight S(λ, ν)-moduleM(µ) for some µ. Now state-
ment (i) follows from _eorem 3.1(i).

Statement (ii) can be proved in a similar obvious way.
Statement (iii) follows from _eorem 3.1(iii).

The Set Ŝ(λ, ν)(weight, T-torsion)

Let λ ∈ K∗. _e elements {hλ − i ∣ i ∈ Z} generate an Ore set in Cµ ,ν
λ , and the algebra

T−1Cµ ,ν
λ = (T−1K[hλ])[x , y; σ , a

µ ,ν
λ ]

is a GWA where σ(hλ) = hλ − 2. By Corollary 2.14(ii), the algebra T−1Cµ ,ν
λ is central

with Gelfand–Kirillov dimension 2. _e set T is an Ore set in theWeyl algebra A1(λ)
such that the localization

T−1A1(λ) = (T−1K[hλ])[Y ,Y−1; σ]

is a skew Laurent polynomial algebra where σ(hλ) = hλ − 1. By (2.4), the set T is also
an Ore set of the algebras S(λ) and S(λ, ν),

T−1S(λ) ≃ U ′
λ ⊗ T−1A1(λ) and T−1S(λ, ν) ≃ U ′

λ/(∆
′
λ − ν)⊗ T−1A1(λ).

_e next proposition together with Corollary 3.2 classiûes the simple (weight)
T-torsion S(λ, ν)-modules.

Proposition 3.3

Ŝ(λ, ν)(T-torsion) = Ŝ(λ, ν) (X-torsion) ⊔ Ŝ(λ, ν) (Y-torsion).(i)

Ŝ(λ, ν)(weight, T-torsion) = Ŝ(λ, ν)(weight, X-torsion)(ii)

⊔ Ŝ(λ, ν)(weight,Y-torsion).

Proof (i) By _eorem 3.1(iii), the union in statement (i) is a disjoint union. _e
equality in statement (i) follows from (2.8) and the equalities

Y iX i
= λ i

(hλ − 1)(hλ − 2) ⋅ ⋅ ⋅ (hλ − i) and X iY i
= λ ihλ(hλ + 1) ⋅ ⋅ ⋅ (hλ + i − 1)

for all i ⩾ 1.
(ii) Statement (ii) follows from statement (i).

We have that

Ŝ(λ, ν)(weight) = Ŝ(λ, ν)(weight, T-torsion) ⊔ Ŝ(λ, ν) (weight, T-torsionfree).

Corollary 3.2(i)(ii) and Proposition 3.3(ii) classify the set of simple,weight, T-torsion
S(λ, ν)-modules. In order to ûnish a classiûcation of simple weight S-modules, it
remains to classify elements of the set Ŝ(λ, ν)(weight, T-torsionfree).
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The Set Ŝ(λ, ν)(weight, T-torsionfree)

Notice that T ⊆ Cν
λ , and so

T−1S(λ, ν) = CT−1S(λ ,ν)(H)[Y ,Y−1;ωY] = (T−1CS(λ ,ν)(H))[Y ,Y−1;ωY](3.1)

= (T−1Cν
λ)[Y ,Y

−1;ωY]

where ωY(c) = YcY−1. In particular, ωY(H) = H + 1, ωY(hλ) = hλ − 1, ωY(x) = x
and ωY(y) = y(1 − 2(hλ − 1)−1). In more detail,

ωY(x) = YxY−1
= YE′λY

2Y−1
= E′λY

2
= x ,

ωY(y) = YyY−1
= YF′λX

2
λ Y

−1
= F′λYX 2

λ Y
−1
= F′λ(X

2
λ Y − 2Xλ)Y−1

= y − 2F′λXλXλ(YXλ)
−1
= y( 1 − 2(hλ − 1)−1) .

_e group Z acts in the obvious way on K (by addition). For each µ ∈ K, O(µ) ∶=
µ +Z is the orbit of µ. Let K/Z be the set of all Z-orbits. For each orbit O ∈ K/Z, we
ûx a representative µO, i.e., O = µO +Z.

Let [M] ∈ Ŝ(λ, ν)(weight, T-torsionfree). _en Wt (M) ⊆ O for some orbit O ∈

K/Z. Since, in the algebra S(λ, ν),

Y iX i
= λ i

(hλ − 1)(hλ − 2) ⋅ ⋅ ⋅ (hλ − i),

X iY i
= λ ihλ(hλ + 1) ⋅ ⋅ ⋅ (hλ + i − 1) for i ⩾ 1,

themaps XM ∶M → M, m ↦ Xm, and YM ∶M → M, m ↦ Ym, are injections. _ere-
fore,Wt (M) = O. Hence,

Ŝ(λ, ν)(weight, T-torsionfree) = ⊔
O∈K/Z

Ŝ(λ, ν)(weight, T-torsionfree,O),

where the set Ŝ(λ, ν)(weight, T-torsionfree,O) contains all the isomorphism classes
of simple, weight, T-torsionfree S(λ, ν)-modules M such that Wt (M) = O.

_e next theorem (together with _eorems 3.6 and 3.8) classiûes the elements of
the set Ŝ(λ, ν)(weight, T-torsionfree).

_eorem 3.4 Let λ ∈ K∗, ν ∈ K and O ∈ K/Z. We ûx an element µO ∈ O, i.e.,
O = µO +Z. _en themap

Ŝ(λ, ν)(weight, T-torsionfree,O)Ð→ ĈµO ,ν
λ (T-torsionfree), [M]z→ [MµO

],

is a bijection with the inverse

[N]z→ socS(λ ,ν)(T−1S(λ, ν)⊗T−1Cν
λ
T−1N) = ⊕

i∈Z
socCν

λ
(Y iT−1N)

= ⊕
i∈Z

socCν
λ
(X iT−1N).

Proof (i) _emap [M]↦ [MµO
] is well deûned: It is obvious.

(ii)_emap [N]↦ [socS(λ ,ν)(T−1S(λ, ν)⊗T−1Cν
λ
T−1N)] =⊕i∈Z socCν

λ
(Y iT−1N)

is well deûned: By (3.1), the T−1S(λ, ν)-module Ñ ∶= T−1S(λ, ν)⊗T−1Cν
λ
T−1N is a di-

rect sum⊕i∈Z Y iT−1N . Clearly, the T−1CµO ,ν
λ -module T−1N is simple. Moreover, for
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each i ∈ Z, the T−1Cν
λ-module Y iT−1N is isomorphic to the twisted T−1Cν

λ-module
ω−1

Y i T−1N and, hence, is simple. So, ω−1
Y i T−1N is a simple T−1CµO+i ,ν

λ -module. By
[6], socC µO+i ,ν

λ
(Y iT−1N) is a simple, T-torsionfree CµO+i ,ν

λ -module/Cν
λ-module, it

is an essential Cν
λ-submodule of Y iT−1N , and so it is contained in every nonzero

Cν
λ-submodule of Y iT−1N .

Claim socS(λ ,ν)(Ñ) = ⊕i∈Z socCν
λ
(Y iT−1N): Let S be the direct sum of socles.

_en it is contained in each S(λ, ν)-submodule of Ñ . _e equality follows from the
fact that S is an S(λ, ν)-module, since S is the intersection of all nonzero S(λ, ν)-
submodules of Ñ . Let us givemore details. Clearly, S is contained in the intersection,
say S′. In fact, S = S′, since for each i ∈ Z, the (µO + i)-th weight component of the
S(λ, ν)-submodule S(λ, ν) socCν

λ
(Y iT−1N) is precisely socCν

λ
(Y iT−1N). _e proof

of statement (ii) is complete. Clearly, themaps in statements (i) and (ii) aremutually
inverse. Notice that, for all i ∈ Z, Y iT−1N = X−iT−1N , since for all j ⩾ 1, X jY j ,
Y jX j ∈ T . So the last equality of the theorem is obvious.

Below, we give a classiûcation of simple CµO ,ν
λ -modules (_eorems 3.6 and 3.8)

and also give an explicit construction of the direct sumof socles in_eorem 3.4 (_e-
orem 3.10 and 3.11).

Classification of Simple A-modules where A = D(σ , a)and D is a Dedekind
Ring

Let A = D(σ , a) = D[x , y; σ , a] be aGWA such that D is a Dedekind ring, a /= 0, and
the automorphism σ of D satisûes the condition that σ i(p) /= p for all i ∈ Z∖{0} and
all maximal ideals p of D.

Example 3.5 A = K[H](σ , a)where σ(H) = H−γ, γ ∈ K∗ and a /= 0. In particular,
the algebras Cµ ,ν

λ are of this type. A classiûcation of simple K[H](σ , a)-modules is
given in [3,6].

Let us recall a classiûcation of simple A-modules for the algebra A = D(σ , a); see
[3,4,6] for details. Clearly

Â = Â(D-torsion) ⊔ Â(D-torsionfree).

The Set Â(D-torsion) = Â(weight)

_e group ⟨σ⟩ ≃ Z acts freely on the set Max (D) ofmaximal ideals of the Dedekind
ring D. For each maximal ideal p of D, O(p) = {σ i(p) ∣ i ∈ Z} is its orbit. We use
the bijection Z→ O(p), i ↦ σ i(p), to deûne the order ⩽ on each orbitO(p): σ i(p) ⩽
σ j(p) if and only if i ⩽ j. A maximal ideal of D is called marked if it contains the
element a. _ere are onlyûnitelymanymarked ideals. AnorbitO is called degenerated
if it contains a marked ideal. Marked ideals, say p1 < ⋅ ⋅ ⋅ < ps , of a degenerated orbit
O partition it into s + 1 parts,

Γ1 = (−∞, p1], Γ2 = (p1 , p2], . . . , Γs = (ps−1 , ps], Γs+1 = (ps ,∞).
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Two ideals p, q ∈ Max(D) are called equivalent p ∼ q if they belong either to a non-
degenerated orbit or to some Γi . We denote by Max (D)/∼ the set of equivalence
classes in Max(D).
AnA-moduleV is calledweight ifV =⊕p∈Max(D) Vp,whereVp = {v ∈ V ∣ pv = 0},

is the sum of all simple D-submodules of V which are isomorphic to D/p. _e set
Supp(V) = {p ∈ Max(D) ∣ Vp /= 0} is called the support of V ; elements of Supp(V)

are called weights, and Vp is called the component of V of weight p. Clearly, an A-
module is weight if and only if it is a semisimple D-module. Clearly,

Â(D-torsion) = Â(weight),

i.e., a simple A-module is D-torsion if and only if it is weight.

_eorem 3.6 ([3,4,6] (Classiûcation of simple D-torsion/weight A-modules)) _e
map Max(D)/∼→ Â(D-torsion), Γ ↦ [L(Γ)], is a bijection with the inverse [M] ↦

Supp(M) where
(i) if Γ is a non-degenerated orbit, then L(Γ) = A/Ap where p ∈ Γ;
(ii) if Γ = (−∞, p], then L(Γ) = A/A(p, x);
(iii) if Γ = (σ−n(p), p] for some n ⩾ 1, then L(Γ) = A/A(yn , p, x); the D-length of

L(Γ) is n;
(iv) if Γ = (p,∞), then L(Γ) = A/A(σ(p), y).

The Set Â(D-torsionfree)

For elements α, β ∈ D, we write α < β if p < q for all p, q ∈ Max (D) such that
O(p) = O(q), α ∈ p and β ∈ q. (We write α < β if there are no such ideals p and q).
Recall that the GWA A =⊕i∈Z A i is a Z-graded algebra where A i = Dv i = v iD.

Deûnition 3.7 ([3,4,6]) An element b = v−mβ−m+v−m+1β−m+1+⋅ ⋅ ⋅+β0 ∈ A (where
m ⩾ 1, all β i ∈ D and β−m , β0 /= 0) is called a normal element if β0 < β−m and β0 < a.

_e set S ∶= D ∖ {0} is an Ore set of the domain A. Let k ∶= S−1D be the ûeld of
fractions ofD. _e algebra B ∶= S−1A = k[x , x−1; σ] is a skew Laurent polynomial ring
that is a (le� and right) principle ideal domain. So, any simple B-module is of type
B/Bb for some irreducible element b of B. Two simple B-modules are isomorphic,
B/Bb ≃ B/Bc, if and only if the elements b and c are similar (i.e., there exists an
element d ∈ B such that 1 is the greatest common right divisor of c and d, and bd is a
least common le� multiple of c and d).

_eorem 3.8 ([3,4,6] (Classiûcation of simple D-torsionfree A-modules))

Â(D-torsionfree) = {[Mb ∶= A/A∩ Bb] ∣ b is a normal irreducible element of B} .

_e A-modules Mb and Mb′ are isomorphic if and only if the elements b and b′ are
similar.

For all nonzero elements α, β ∈ D, the B-modules S−1Mb and S−1Mβbα−1 are iso-
morphic. If an element b = v−mβ−m + ⋅ ⋅ ⋅ + β0 is irreducible in B but not necessarily
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normal, the next lemma shows that there are explicit elements α and β such that the
element βbα−1 is normal and irreducible in B.

Lemma 3.9 ([3, Lemma 13] (Normalization procedure)) Given an element b =

v−mβ−m + ⋅ ⋅ ⋅ + β0 ∈ A where m ⩾ 1, all β i ∈ D and β−m , β0 /= 0. Fix a natural
number s ∈ N such that

σ−s
(β0) < β−m , σ−s

(β0) < β0 , and σ−s
(β0) < a.

Let α = ∏
s
i=0 σ

−i(β0) and β = ∏
s+m
i=1 σ−i(β0). _en the element βbα−1 is a normal

element,which is called a normalization of b and denoted bnorm (we can always assume
that s is the least possible).

Explicit Construction of the Socle in Theorem 3.4

Every S(λ, ν)-module is also a K[hλ]-module (since K[hλ] ⊆ S(λ, ν)). _erefore,
for each orbit O ∈ K/Z,

Ŝ(λ, ν)(weight, T-torsionfree,O) =(3.2)

Ŝ(λ, ν)(weight, T-torsionfree,O,K[hλ]-torsion)

⊔ Ŝ(λ, ν)(weight,O,K[hλ]-torsionfree),

ĈµO ,ν
λ (T-torsionfree) =(3.3)

ĈµO ,ν
λ (T-torsionfree,K[hλ]-torsion) ⊔ Ĉ

µO ,ν
λ (K[hλ]-torsionfree).

_e map [M] ↦ [MµO
] in _eorem 3.4 respects the disjoint unions (3.2) and (3.3).

Recall that for each orbit O ∈ K/Z we ûxed its representative µO.

_eorem 3.10 Let λ ∈ K∗, ν ∈ K, and O ∈ K/Z. _en

Ŝ(λ, ν)(weight, T-torsionfree,O,K[hλ]-torsion) =

⊔
O′∈K/Z,O′ /=Z

Û ′
λ(ν) (H

′
λ-weight)⊗ [W(λ,O′

)],

whereW(λ,O′) ∶= A1(λ)/A1(λ)(hλ−µO′) and Û ′
λ(ν) (H

′
λ-weight)⊗[W(λ,O′)] ∶=

{[M ⊗W(λ,O′)] ∣ M ∈ Û ′
λ(ν) (H

′
λ-weight)} and S(λ, ν)-modules M ⊗W(λ,O′),

and M′ ⊗W(λ,O′) are isomorphic if and only if the U ′
λ(ν)-modules M and M′ are

isomorphic.

Proof Recall that H′
λ = H + λ−1XY − 1

2 = H + hλ −
1
2 . Let

[M] ∈ Ŝ(λ, ν)(weight, T-torsionfree,O,K[hλ]-torsion) .
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_en M is an epimorphic image of the S(λ, ν)-module

S(λ, ν)/S(λ, ν)(H − µ, hλ − µ′)

≃ S(λ, ν)/S(λ, ν)(H′
λ − µ − µ′ +

1
2
, hλ − µ′)

≃
U ′

λ(ν)
U ′

λ(ν)(H
′
λ − µ − µ′ + 1

2 )
⊗

A1(λ)
A1(λ)(hλ − µ′)

≃
U ′

λ(ν)
U ′

λ(ν)(H
′
λ − µ − µ′ + 1

2 )
⊗W(λ, µO′),

where O′ ∶= O(µ′) /= Z. Since EndA1(λ)W(λ, µO′) = K, the result follows.

_e elements X and Y are units in the algebra T−1Cν
λ . For each i ∈ Z, the inner

automorphism ωX−i = ω−1
X i ∶ T−1Cν

λ → T−1Cν
λ induces the algebra isomorphism

ω−1
X i ∶CµO ,ν

λ Ð→ CµO+i ,ν
λ , u z→ X−iuX i ,

(since X−i(hλ − µO)X i = hλ − i − µO). _e localization of the GWA CµO ,ν
λ at the

Ore set S ∶= K[hλ] ∖ {0} is a skew polynomial algebra B = K(hλ)[Y ,Y−1 , σ] where
σ(hλ) = hλ − 1. Notice that B = K(hλ)[X , X−1; σ−1 = ωX].

Let Mb ∶= C
µO ,ν
λ /CµO ,ν

λ ∩ Bb be aK[hλ]-torsionfree simple CµO ,ν
λ -module where

b = Xmβ−m + Xm−1β−m+1 + ⋅ ⋅ ⋅ + β0 ∈ CµO ,ν
λ is a normal and irreducible element

in B (m ⩾ 1, all β i ∈ K[hλ], and β−m , β0 /= 0). For each i ∈ Z, the Cν
λ-socle of the

T−1Cν
λ-module/Cν

λ-module/CµO−i ,ν
λ -module

X iT−1Mb = X i T−1CµO ,ν
λ

T−1CµO ,ν
λ ∩ Bb

=
ω−1
X i
(

T−1CµO ,ν
λ

T−1CµO ,ν
λ ∩ Bb

) ≃
T−1CµO−i ,ν

λ

T−1CµO−i ,ν
λ ∩ B(X ibX−i)

is equal to CµO−i ,ν
λ /CµO−i ,ν

λ ∩ B(X ibX−i)norm. Now, the next theorem follows from
_eorem 3.4.

_eorem 3.11 Let λ ∈ K∗ , ν ∈ K, and O ∈ K/Z. _emap

Ŝ(λ, ν)(weight,O,K[hλ]-torsionfree) Ð→ Ĉ
µO ,ν
λ (K[hλ]-torsionfree) ,

[M]z→ [MµO
],

is a bijection with the inverse

[Mb ∶=
CµO ,ν

λ

CµO ,ν
λ ∩ Bb

] Ð→ ⊕
i∈Z

socCν
λ
(X iT−1Mb) = ⊕

i∈Z

CµO−i ,ν
λ

CµO−i ,ν
λ ∩ B(X ibX−i)norm

where b ∈ CµO ,ν
λ is a normal and irreducible element in B and (X ibX−i)norm ∈ CµO−i ,ν

λ
is the normalization in CµO−i ,ν

λ of the irreducible element X ibX−i in B.

_e following result was proved in [29] for K = C.

_eorem 3.12 For a simple weight S-module all weight spaces are either ûnite or
inûnite dimensional.
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Proof _is follows directly from a classiûcation of all simple weight S-modules
where λ /= 0. For λ = 0, this follows from the classiûcation of simple modules ob-
tained in [14].

The Set of Simple S(λ)-modules Û ′
λ ⊗ Â1(λ)

By (2.4), S(λ) = U ′
λ ⊗ A1(λ). Given a U ′

λ-module [M] and an A1(λ)-module N .
_eir tensor product overK,M ⊗N , is an S(λ)-module. If, in addition, themodules
M and N are simple, then EndU ′

λ
(M) = K and EndA1(λ)(N) = K, and so M ⊗ N is a

simple S(λ)-module.

Proposition 3.13 Û ′
λ ⊗ Â1(λ) ∶= {[M ⊗ N] ∣ M ∈ Û ′

λ , N ∈ Â1(λ)} ⊆ Ŝ(λ), and
[M ⊗ N] = [M′ ⊗ N ′] if and only if [M] = [M′] and [N] = [N ′].

Proposition 3.13 gives plenty of simple S(λ)-modules, as the simplemodules over
the algebras U ′

λ and A1(λ) are classiûed; see [17] or _eorems 3.6 and 3.8.

Classification of Simple Weight S-modules with Finite Dimensional Spaces

Using the classiûcation of simple S-modules we can easily describe the set of iso-
morphism classes of simple weight S-modules with ûnite dimensional weight spaces
Ŝ(f . d.weight spaces). _iswas done byDubsky forK = C using a diòerent approach
[18]. _e simple lowest weight S-modules were classiûed earlier in [20]. Clearly,

Ŝ(f . d.weight spaces) = Ŝ(0)(f . d.weight spaces) ⊔ ⊔
λ∈K∗

Ŝ(λ)(f . d.weight spaces).

It was shown that Ŝ(0)(f . d.weight spaces) = Û(sl 2)(weight) [14, 18]. Clearly, for
λ /= 0,

Ŝ(λ)(f . d.weight spaces) = ⊔
ν∈K

Ŝ(λ, ν)(f . d.weight spaces).

For λ ∈ K∗, we denote by Û ′
λ(ûn. dim.) (resp., Û ′

λ(h.w. dim = ∞); Û ′
λ(l.w. dim =

∞)) the set of isomorphism classes of simple ûnite dimensional (resp., highestweight
inûnite dimensional; lowest weight inûnite dimensional) U ′

λ-modules. Let V+(λ) ∶=
A1(λ)/A1(λ)X and V−(λ) ∶= A1(λ)/A1(λ)Y . _e next theorem classiûes all the
simple weight S-modules with ûnite dimensional weight spaces.

_eorem 3.14

Ŝ(f . d.weight spaces)

= Û(sl 2)(weight) ⊔ ⊔
λ∈K∗

{ Û ′
λ(ûn. dim.)⊗ Â1(λ)(K[hλ]-torsion)

⊔ Û ′
λ(h.w. dim =∞)⊗ V+

(λ)

⊔ Û ′
λ(l.w. dim =∞)⊗ V−

(λ)} .

Proof Let [M] ∈ Ŝ(f . d.weight spaces). If ZM = 0, then [M] ∈ Û(sl 2)(weight).
Without loss of generality wemay assume that [M] ∈ Ŝ(λ, ν)(f . d.weight spaces) for
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some λ ∈ K∗ and ν ∈ K. Every simple weight S(λ, ν)-module in _eorem 3.11 has
inûnite dimensionalweight spaces. _erefore, themoduleMmust beK[hλ]-torsion,
i.e., hλ-weight, since the ûled K is algebraically closed. _en M = M ⊗ N for some
[M] ∈ Û ′

λ(ν)(H
′
λ-weight) and [N] ∈ Â1(λ) (K[hλ]-torsion) by Proposition 3.3(ii),

Corollary 3.2(ii), and_eorem 3.10. By _eorem 3.6,

Â1(λ)(K[hλ]-torsion) = {[V±
(λ)], [W(λ,O′

)] ∣ O′
∈ K/Z,O′

/= Z} .

Notice that V+(λ) = ⊕i⩾0KY i1 where 1 = 1 + A1(λ)X and hλY i1 = Y i(hλ + i)1 =
(i + 1)Y i1. Similarly, V−(λ) =⊕i⩾0KX i1 where

1 = 1 + A1(λ)Y and hλX i1 = X i
(hλ − i)1 = −iX i1.

For O′ ∈ K/Z such that O′ /= Z,W(λ,O′) =⊕i∈ZKv(λ)i1 where 1 = 1 + A1(λ)(hλ −

µO′) and hλv(λ)i1 = (i+µO′)v(λ)i1. (_e elements v(λ)i are deûned in (2.6)). Recall
that H = H′

λ − hλ +
1
2 . Given elements m i ∈ M and n j ∈ N such that H′

λm i = im i and
hλn j = jn j . _en Hm i ⊗ n j = (i − j + 1

2 )m i ⊗ n j . Now the result follows easily from
_eorem 3.6.

We say that a weight module has uniformly bounded weight spaces if their dimen-
sions do not exceed a ûxed natural number.

Corollary 3.15 (i) _e set

Û(sl 2)(weight) ⊔ ⊔
λ∈K∗

Û ′
λ(ûn. dim.)⊗ { Â1(λ) (K[hλ]-torsion) ∖ {V±

(λ)}}

contains precisely the isomorphism classes of simple weight S-modules where all the
weight components are ûnite dimensional vector spaces of the same dimension.

(ii) _e set

Û(sl 2)(weight) ⊔ ⊔
λ∈K∗

Û ′
λ(ûn. dim.)⊗ {V+

(λ),V−
(λ)}

contains precisely the isomorphism classes of simple weight S-modules with uniformly
bounded ûnite dimensional weight spaces.

_e ûrst statement of the corollary above strengthens the result due toWu andZhu
[29] stating that if V is a simple weight S-module which is neither a highest weight
nor a lowest weight module then all its weight spaces have the same dimension.
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