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Classification of Simple Weight Modules
over the Schrodinger Algebra

V. V. Bavulaand T. Lu

Abstract. A classification of simple weight modules over the Schrédinger algebra is given. The Krull
and the global dimensions are found for the centralizer Cg (H) (and some of its prime factor alge-
bras) of the Cartan element H in the universal enveloping algebra S of the Schrédinger (Lie) algebra.
The simple Cg (H)-modules are classified. The Krull and the global dimensions are found for some
(prime) factor algebras of the algebra 8 (over the centre). It is proved that some (prime) factor
algebras of 8 and Cg (H) are tensor homological/Krull minimal.

1 Introduction

In this paper, module means a left module, K is a field of characteristic zero, K* =
K~ {0},N={0,1,2,...},and N, ={1,2,...}.
The Schrodinger (Lie) algebra s = s12x I is a semidirect product of the Lie algebras

sl2=K(E,F,H | [H,E] =2E,[H,F] = -2F,[E,F] = H),
H=K(X,Y,Z|[X,Y]=2,[2,X]=0,[2,Y] =0),

where J{ is the 3-dimensional Heisenberg (Lie) algebra. The ad-action of the Lie alge-
bra sl2 on K is given by the rule:

[H,X] =X, [E,X] =0, [F,X]=Y, [s,2] =0,
[H,Y]=-Y, [E,Y]=X, [F,Y]=0.

So, by definition, Z is a central element of the Lie algebra s. The relations above to-
gether with the defining relations of the Lie algebras s12 and JH{ are defining relations
of the Lie algebra s. Let § = U(s) be the universal enveloping algebra of the Lie
algebra s.

An s-module M is called a weight s-module if M = @,k M) where

My :={meM|Hm=2Am}

is called the weight subspace/component of weight y provided M, # 0. The aim of this
paper is to classify simple weight s-modules (Proposition [3.3(ii) and Theorem [3.4).
A first step was done in [20] where simple highest/lowest weight 8-modules were
classified. In [18]], a classification of simple weight 8-modules with finite dimensional
weight spaces were classified over C. Every weight component M, # 0 of a weight
8-module M is a module over the centralizer Cs(H) := {a € 8§ | aH = Ha} of the
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Cartan element H in 8. If, in addition, the 8-module M is simple, then every weight
component M, is a simple Cs (H)-module. So, the problem of classification of simple
weight 8-modules consists of three steps:

Step 1: To classify all the simple Cg (H)-modules.

Step 2: How to reassemble some of the simple Cs(H)-modules into a single simple
S-module.

Step 3: To decide whether two simple weight S-modules are isomorphic.

What has just been said is true in a more general situation: a Lie algebra and its
abelian subalgebras or an algebra A and its commutative (finitely generated) subal-
gebra J7 where an A-module is called weight if it is a semisimple 5#’-module (e.g.,
S and # = K[H]). As a rule, the centralizer C4 () has a very rich and complex
structure that is a reflection of richness of the category of weight modules. The prob-
lem of finding explicit generators and defining relations for the centralizer C4(.77)
is a challenging one. A reason for that is that generators for C4(.7¢) are (linear com-
binations of) products of generators of the algebra A of high degree and, as a result,
defining relations are also of high degree and are very complex (it is a real Noncom-
mutative Geometry).

A problem of classification of simple weight S-modules is essentially reduced to
the one for its factor algebras S(1) := §/(Z — 1) where A € K. A classification of
simple weight $(0)-modules was given in [14]. The case A # 0 is considered in this
paper. For the algebra (1) where A € K*, the centralizer Cg(y)(H) turns out to
be a generalized Weyl algebra (which is a Noetherian domain of Gelfand-Kirillov
dimension 4), and the centre of Cs(,)(H) is a polynomial algebra in two variables H
and A’ (Proposition ii)). So, the problem of classification of simple Cg,y(H)-
modules is reduced to the problem of classification of simple modules over the factor
algebras CY*" := Cg(x)(H)/(H — , A, — v) where y,v € K. The algebras C!"" are
generalized Weyl algebras with coeflicients from a Dedekind domain (more precisely,
K[H]). A classification of all simple modules for such generalized Weyl algebras was
obtained in [36]. Then the set of simple weight 8-modules are partitioned into several
classes, and each of them is dealt separately with different techniques; see Section 3|

In Section|2} we compute the Krull and global dimensions of the algebra Cg () (H)
(Proposition 2.13) and some of its (prime) factor algebras C} := Cg(x)(H)/(A} - v)
(Lemma ) and C; v (Corollary. In more detail (X denotes the Krull dimen-
sion),

K(Csy(H)) =3 and gldim Cs(yy(H) = 4.
oo ifv=-],
X(Cy)=2 and gldimC) =43 ifve{n(n+2)|n=0,1,2,...},
2 otherwise.
oo ifveA®(u),
x(chr) =1 and gldim C}"" =42 ifve AS(u) ~ A®(p),

1  otherwise,
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where
Af(y):{(2i+y—%)(2i+‘u+%),(2i+‘u+%)(2i+‘u—%),

F-1liezs{o}hj=12,...},

A= ={ (o= 3) (0 3) (0 3) (0-3) 1

Similarly (see Proposition [2.13{(iii)(iv) and Lemma i) (iv)),
K(8(A))=3 and gldim 8(A) =4,
oo ifv=-1,

K(S8(A,v))=2 and gldim S(A,v)=43 ifve{n(n+2)|n=0,1,2,...},

2 otherwise.

It follows directly from the classification of simple weight 8-modules (given in this
paper) that the Finite-Infinite Dimensional Dichotomy holds for them (Theorem[3.12):
For a simple weight S-module all its weight spaces are either finite or infinite di-
mensional. As a corollary, we obtain a short different proof of the result of Dubsky
about classification of simple weight S-modules with finite dimensional weight spaces
(Theorem over an arbitrary algebraically closed field K not necessarily K = C
as in [18]. Corollary 3.15(i) gives a classification of simple weight 8-modules where
all the weight components have the same finite dimensions. This result strengthens
the result obtained in [29], which states: let V be a simple 8-module but not a sim-
ple s12-module, if V is neither a highest weight nor a lowest weight module then
Wt(V) = y + Z for any u € Wt(V) and all the weight spaces of V have the same di-
mension. Corollary[3.15(ii) gives a classification of simple weight 8-modules where all
the weight components are uniformly bounded (by a constant). In [[19], the category
O of the Schrodinger algebra was studied. In [30], a classification of simple Whittaker
S-module was given.

A classification of simple weight modules over the spatial ageing algebra is given by
Lii, Mazorchuk, and Zhao [22]]. Classification of simple weight modules and various
classes of torsion simple modules over the quantum spatial ageing algebra are given
in [11] and [13]], respectively. Classification of prime ideals and simple weight modules
over the Euclidean algebra are obtained in [12].

2 The Global and Krull Dimensions

The aim of this section is to study the centralizer Cg(,)(H) of the Cartan element H
in the algebra 8(1) = 8/(Z - 1), where A € K* and the (prime) factor algebra S(A, v)
where v € K. The case A = 0 was done in [14], and the cases A # 0 and A = 0 are
quite different. We find the Krull and the global dimensions of the algebras Cs,)(H)
(Proposition V)(Vi)), C} (Lemma iii)(iv)), C;’V (Lemma iv)(v)), 8(1)
(Proposition iii)(iv)), and 8(A, v) (Lemma iii)(iv)). We show that the alge-
bras Cs(y)(H) (Proposition i)), Cy (Lemmi)) and C{"" (Corollaryi))
are generalized Weyl algebras and find their centres. We also show that some of these
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algebras are tensor homological minimal and tensor Krull minimal with respect to
some classes of left Noetherian algebras.

At the beginning of this section, we collect some known results about the universal
enveloping algebra 8 = U(s) of the Lie algebra s. Let Sz be the localization of the
algebra 8 at the powers of the central element Z of 8. The algebra S, contains the
Weyl algebra A, := K(2",Y |[2,Y] =1) where 2" := Z7'X.

Lemma 2.1 ([15 Lemma22]) (i) LetE' :=E-1Z'X* F :=F+31Z'Y? and
H' := H+ Z7'XY — 1. Then the following commutation relations hold in the
algebra 8z:

[H',E'|=2E, [H F]=-2F, [E.F]=H,
i.e., the Lie algebra KF' @ KH' @ KE' is isomorphic to s12. Moreover, the subal-
gebra U’ of 8 7 generated by H', E', and F' is isomorphic to the enveloping algebra

U(sl2). Furthermore, the elements E', F', and H' commute with X and Y.
(ii) The localization 8 7 of the algebra 8 at the powers of Z is S7 = K[Z*'| @ U’ ® A;.

The algebra U’ = U(sl2) in Lemma[2.1{i) is called the hidden U(sl2). The centre
Z(U'") of the algebra U’ is a polynomial algebra K[A’] where A’ := 4F'E’ + H"> + 2H’
is the Casimir element. One can check that

A" =4FE+H*+H+2Z'(EY* + HXY - FX?) - 3.
Let
(2.1) C:=ZA +3Z=Z(4FE+H* + H) + 2(EY? + HXY - FX?).

By Lemma[2.1(ii), Z(8) = K[Z, C] is a polynomial algebra (see [15} Proposition 2.5]).
This result was known before with various degrees of details (for example, the element
C appeared in [24])). It seems that a complete proof was given in [[19] where a different
approach was taken (the proof is much more involved).

The Factor Algebra 8/(Z)

The 1-dimensional space KZ is an ideal of the Schrodinger (Lie) algebra. The Lie
algebra s/KZ is canonically isomorphic to the semidirect product sl2 x V; of the
Lie algebra sl2 with its (unique) 2-dimensional simple sl 2-module V, (treated as an
abelian Lie algebra). By (2.1), the element ¢ := FX*~ HXY — EY? belongs to the centre
of the universal enveloping algebra A := U(sl2 x V,) of the Lie algebra sl2 x V,. In
fact, Z(A) = K[c] (see [14]).

Generalized Weyl Algebra

Definition 2.2 ([2)6]) Let Dbearing, let o be an automorphism of D, and let a be an
element of the centre of D. The generalized Weyl algebra A := D(o,a) := D[X,Y;0,a]
is a ring generated by D, X, and Y subject to the defining relations:

Xa=0(a)X and Ya=o'(a)YforallaeD, YX=a and XY =o(a).

The algebra A = @,z Ay is Z-graded where A, = Dv,, v, = X" forn >0,v, =Y ™"
forn <0and vy =1.

https://doi.org/10.4153/CMB-2017-017-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-017-7

20 V. V.Bavulaand T. Lu
Global Dimension of GWAs

Let R be a commutative Noetherian ring and o be its automorphism. An ideal p of
R is called a o-semistable ideal if ¢” (p) = p for some n > 1. If there is no such n, the
ideal p is called o-unstable.

Theorem 2.3 ([7, Theorem 3.7]) Let R be a commutative Noetherian ring of global
dimension n < oo, let T = R(0,a) be a GWA, and let a be a regular element of R
that gldim (T) < oco. Then gldim (T) = sup{gldim R,htp + Lhtq+1 | pisa o-
unstable prime ideal of R for which there exist distinct integers i and j with a € o' (p)
and a € a/(p); q is a o-semistable prime ideal of R}.

In this paper, the following theorem is used in many proofs about the global di-
mension of algebras.

Theorem 2.4 ([8l Theorem 1.6]) Let A = D(0,a) be a GWA, D be a commutative

Dedekind ring, Da = p;’l o-p? (if a # 0) where py, ..., ps are distinct maximal ideals

of D. Then the global dimension of the algebra A is

oo ifa=0orn; >2 for some i,

ldim A - 2 ifa#0,m=-= T’fs ._1, sk>10ra zsaumtanda‘ (pi)‘ =pj
forsome k > 1and i, jor a*(q) = q for some maximal ideal q of D,

1 otherwise.

Example 2.5 'The Weyl algebra A; isa GWA K[h](0,a = h) where o(h) = h - L
Hence,
1 ifcharK=0,

ldim A; =
gama {2 if charK # 0.

This result is due to Reinhart [25]; his proof is different from this one.

Corollary 2.6 ([2}[6}21]) Let K be an algebraically closed field of characteristic zero,
let A=K[H](0,a) bea GWA where 6(H) = H -1, and let Ay, ..., A be the roots of
the polynomial a € K[H] provided a ¢ K. Then
oo ifa =0 or a has a repeated root,
gldimA =12  iftheroots of a # 0 are distinct and A; — A;j € Z for some i # j,
1 otherwise.

The algebra U(v) = U(s12)/(A - v) = K[H](0,a = $(v - H(H +2))) (where
o(H) = H - 2) is a particular example of the GWA in Theorem 2.4} Applying Theo-
rem we obtain the result of Stafford [28] (his proof is different),

o ifv=-],
(2.2) gldim U(v) =42 ifve{n(n+2)|n=0,1,2,...},

1  otherwise.
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Tensor Homological/Krull Minimal Algebras

Let d be one of the following dimensions: the weak (homological) dimension wd,
the left homological dimension lgd, or the left Krull dimension X. For d = wd, K
(resp.,1gd), d(A® B) > d(A) + d(B) for all (resp., left Noetherian) algebras A and B;
see [1,23]. In general, a strict inequality holds. Let Q, = K(xj, ..., x,) be the field of
rational functions and d = 1gd, X. Thenn = d(Q,®Q,) > d(Q,)+d(Q,) =0+0 = 0.

Definition 2.7 ([8]) An algebra A is called a tensor d-minimal algebra with respect
to some class of algebras Q) if

d(A®B)=d(A)+d(B) forallBeQ.

For d = lgd (resp., d = KX), we say that the algebra A is tensor homological minimal
(THM) (resp., tensor Krull minimal (TKM)).

Example 2.8 Let K be an algebraically closed uncountable field of characteristic
zero. Then the GWA K[H](o, a) where 0(H) = H — u (where y € K*) is a tensor
homological minimal algebra with respect to the class LIFN of left Noetherian, finitely
generated algebras [8, Corollary 1.5.(1)]. The Weyl algebra A, and all factor algebras
U(v) = U(sl2)/(A - v) (where v € K and A is the Casimir element) are examples of
such GWAs. In particular, they are THM with respect to the class LFN.

Krull Dimension of GWAs

Theorem 2.9 ([16, Theorem 1.2]) Let R be a commutative Noetherian ring with
K(R) <ocoand T =R(0,a) bea GWA. Then X(T) = sup{K(R),htp+1,htq+1|pis
a o-unstable prime ideal of R for which there exists infinitely many i € Z with a € o' (p);
q is a o-semistable prime ideal of R}.

Note  The ideals p and g in Theorem [2.9) can be assumed to be maximal of height
K(R). The case when the ring R is not necessarily commutative is considered in [9]
where explicit formulae for the Krull dimension are obtained.

Example 2.10  The algebra U(sl2) is the GWA K[H, A](0,a = 7 (A-H(H+2))).
Clearly, there are no maximal ideals p and q as in Theorem[2.9] Hence, X(U(s12)) =
K(K[H, A]) = 2. The result is due to Smith [27]; his proof is based on a different
approach.

Example 2.11 The Weyl algebra A; = K(0,X | [0, X] = 1) isa GWA K[h](0,a =
h). Similarly, KX(A;) = KX(K[h]) = 1 as there are no maximal ideals p and q as in
Theorem 2.9] The result is due to Rentschler and Gabriel [26]); they used a different
approach.

The next result shows that many GWAs are THM with respect to the class of count-
ably generated left Noetherian algebras. This fact allows one to compute effectively
their Krull dimension as well as their tensor products.
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Theorem 2.12 ([10, Theorem 2.2]) Let T = Q' T; be a tensor product of GWAs
of the form T; = D;(0;, a;), where each D; is an affine commutative algebra over an
algebraically closed uncountable field K. Then T is a tensor Krull minimal algebra with
respect to the class of countably generated left Noetherian algebras; that is,

K(T ® B) = K(T) + K(B) = > K(T;) + X(B)

i=1

for any countable dimensional left Noetherian algebra B. In particular, K(®F., T;) =

Z?:lfK(Ti)-
The Weyl algebra A; = K(2", Y |[ 2", Y] =1) isa GWA,
(2.3) A, =K[h][Y, Z50,h],

where o(h) = h — 1. In particular, h = 2°Y. The Weyl algebra A; = @,z Ay, is a
Z-graded algebra where A; ; = K[h]v; and

Y? ifi>1,
v; =41 ifi=0,
2 ifig -1

Thealgebra U = U(sl2) isa GWA, U = K[H, A][E, F;0,a = ;(A-H(H+2)), where
K[H, A] is a polynomial algebra and ¢(H) = H - 2 and 6(A) = A. Furthermore,
A = 4FE + H(H + 2) is the Casimir element of the algebra U, and the centre of U is
equalto Z(U) = K[A].

For A € K,letS(A) := 8/8(Z-1). Clearly, $(0) ~ A. If A # 0, then by Lemmal2.1{ii),
the algebra
(2.4) 8(A) =82/82(Z-1) =U; ® Ai(A)
is a tensor product of algebras U; and A;(A), which are the images of the algebra U’
and A; in 8(A) under the epimorphism 8 - 87/87(Z - 1) = 8(A). The algebra U}
is canonically isomorphic to the algebra U = U(sl2). The elements
Ej=E-1A"'X% F=F+117Y7,

Hy:=H+A"'XYy -1,

which are the images of the elements H', E’, and F’, respectively, are canonical gen-
erators for the algebra U). The algebra A;(A) = K(Z23,Y|[Z3,Y] = 1) is isomor-
phic to the Weyl algebra A; where 2 = A7'X and Y are the images of the elements
2 =Z'Xand Y in §(1). By (2.3), the algebra A;(1) is a GWA,

(25) Ai(A) =K[m][Y, Z350, ],

where o(hy) = hy —land hy = 23Y = A1 XY. In particular, A;(A) = @,z A1(1);
is a Z-graded algebra where A;(1); = K[k, ]v(1); where

Y! ifix1l,
(2.6) v(d); =11 ifi=0,
27 ifi<-L
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The algebra Uj is a GWA,
(2.7) U, = K[H}, Ay ][ Ey. Fiso'say = 1(A) - Hy(Hy +2)) ],

where 0'(H)) = H} =2, 0(A}) = A}, and A := 4F, E} + H)(H, + 2) is the image
of the Casimir element A’ in 8(1). The algebra U) = @ez U, ; is a Z-graded algebra
where Uj ; = K[H), A} ]v; and

Ey  ifixl,
vi=41 ifi =0,
Fitoifig-L

The Centralizer Cs())(H)

Recall that for an element a of an algebra A, we denote by C4(a) := {b e A| ab = ba}
the centralizer of a in A. The next proposition is about generators and defining rela-
tions of the centralizer Cg(yy(H) of the element H in the algebra (1), the global and
Krull dimensions of the algebra S(1). If, for an algebra A, the left and right global
dimension are equal, the common value is denoted by gldim (A).

Proposition 2.13  Suppose that A € K*. Let x := E{ Y and y := F{ 2.
(i)  The algebra Cg(yy(H) is a GWA,

Cs(ny(H) = Dy[x, y; 1,2y = a) - ha(hy +1)],

where Dy = K[H, A}, hy] is a polynomial algebra and 1(H) = H, 7(A}) = A}
and 1(hy) = hy - 2. The algebra Cs()y(H) is a Noetherian domain of Gelfand-
Kirillov dimension 4.

(ii)  The centre of the algebra Cgy)(H) is the polynomial algebra K[H, A ].

(iii) (K is an algebraically closed uncountable field). The (left or right) global dimension
of the algebra 8(A) is equal to gldim S(1) = 4.

(iv) (Kisan algebraically closed uncountable field). The Krull dimension of the algebra
8(Q) is 3. The algebra 8(A) is a tensor Krull minimal algebra with respect to the
class of countably generated left Noetherian algebras.

(v) (Kis an algebraically closed field) gldim Cs(,)(H) = 4.

(vi) (Kis an algebraically closed field) X(Cgyy(H)) = 3.

Proof (i) Using the fact that the algebras U} and A;(1) are GWA’s (see and

[2.7)), we have
S() = U @A) = @® Daviv(M);.

i,jeZ
Using the equalities [H, v;] = 2iv} and [H,v(1);] = —jv(A), we see that
Csn)(H) = EBZD,\V,'-V(A)zi = EBIDU/" ®D)® GBID,\xi =Dy[x, 37,2, ]
ie i> i>

(ii) Statement (ii) follows from statement (i).

(iii) The Weyl algebra A;(1) is a THM with respect to the class LFN and Uj €
LFN. Hence, by (2.4), gldim (1) = gldim U; ® A;(A) = gldim U} +gldim A;(}) =
3+1=4.
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(iv) By Theorem[212} K(8(A)) = K(U;®A; (1)) = K(Uy)+K(A1(A)) = 2+1=3,
and the algebra 8(1) is a TKM algebra with respect to the class of countably generated
left Noetherian algebras.

(v) The algebra 8(1) = @z S(1); is a Z-graded algebra where

8(A)i={ae8(A)|[H,a]=ia} and Cs(y(H) =8(A)o.
Therefore, gldim Cg(yy(H) < gldim 8(1) = 4 < oo, by statement (iii). Notice that
gldim D, = 3. By Theorem[2.3) gldim Cg(,)(H) = 4 as there is a maximal ideal p of
D, that satisfies the conditions ofTheorem eg.p=(H=-u Ay - (i*-1), hy +
p+ 3 +1i) for i € Z~ {0}; see Case 1 of the proof of Corollaryiii).

(vi) By Theorem K(Csry(H)) = K(Dy) = 3 as there are no maximal ideals p
and q that satisfy the conditions of Theorem 2.9} ]

The Algebras C!""

By Proposition 2.13} for every pair , v € K, we can consider the factor algebra
Cy" = Csy (H)/(H = p, Ay = v).

The algebras C!{” and all their simple modules play an important role in a classifica-
tion of the simple weight modules over the Schrédinger algebra. Roughly speaking,
the problem of classification of simple weight S(1)-modules is reduced to the prob-
lem of classification of all simple modules for the algebras C}"”. In general, there is
little connection between the global dimension of an algebra and its factor algebras.
The next corollary is an example of this fact.

The next corollary presents a simplicity criterion for the algebra C}""; it also com-
putes values for the Krull and global dimensions of the algebra C¥"".

Corollary 2.14 Let A e K* and p,v € K. Then

(i)  The algebra CY" is isomorphic to the algebra Cg(yy(H)/(H — p, A} = v), which
isa GWA,

Cr=Klm[xyimay” = {(v=(+u=- 3 +p+3)) (b + 1],
where 1(hy) = hy —2and a"" = ay mod (H -y, A} —v).
(i)  The algebra C" is a central Noetherian domain of Gelfand-Kirillov dimension 2.
(iii) The algebra C\*" is simple if and only if
ve A (u) = { Qi+ p-3)@i+rp+3),
Qi+pu+)Qi+p-2),72-11ieZ~{0}, j=1,2,...}.
(iv) The (left or right) global dimension of the algebra CY*" is equal to
oo ifveAT(p),
gldim C{"" =42 ifve A (u) N A®(p),
1 otherwise,

where A% () = {(4 = 5)(u +3), (u + 3)(u - 3), -1} The algebra C{"" is
a tensor homological minimal algebra with respect to the class of left Noetherian,
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finitely generated algebras (provided K is an algebraically closed and uncountable
field).

(v)  The (left or right) Krull dimension of the algebra CY"" is 1. The algebra C}"" is a
tensor Krull minimal algebra with respect to the class of countably generated left
Noetherian algebras (provided the field K is algebraically closed and uncountable).

Proof Statements (i) and (ii) follow from Propositionm

(iii) By [546]], the GWA C!"" is not simple if and only if there are two distinct roots
of the polynomial a{*", say A1 and A,, such that A, = A, + 2i for some i € Z ~ {0}.
There are three cases to consider.

Case I: Ay and A, are roots of the polynomial P = (hy + p — 2)(hy + p+ 3) — v, iie,
P = (hy - M) (hy — M —2i). This is possible if and only if
20 +2i=-2u—1,
{v (- D ) - M+ 20),
ifand onlyif Ay = —p— 3 —iandv=i*-1.
Case 2: .y =0and A, isaroot of P, i.e,

: : 1 ) 3
0=P(1,) :P(0+21)<:>v:(21+y—5)(21+‘u+5),
Case 3: .y = —-1and 1, isarootof P, i.e.,
: . 3 , 1
0=P(Ay) = P(-1+2i) & v= (21+y—5)(21+y+5).
(iv) Let {A; | i =1,...,s} be the roots of the polynomial a{*". By Theorem

Y
oo ifa}’" hasarepeated root,
gldim C{"" = {2 ifa!"" has no repeated root, 1; — A; € 2Z ~ {0} for some i # j,
1  otherwise.
By [8, Corollary 1.5.(1)], the algebra Cj{ " is a tensor homological minimal algebra
with respect to the class of left Noetherian, finitely generated algebras (provided K is
an algebraically closed and uncountable field).

(a) The polynomial %" has a repeated root if and only if v € A> (u): We have to
consider the cases 1-3 in the proof of statement (iii) where i = 0, i.e., A; = A,. This
gives v e A% (p).

(b) By the proof of statement (ii), gldim C{” = 2ifand only if v € Af ()N A% ().

Statement (v) follows from Theorems[2.9]and [
The Algebra S(A,v)

Let A € K* and v € K. By (2.4), the factor algebra
(2.8) S(A,v) =8(N)/(Ay —v) 2 8/(Z- A A" —v) ~ Uy(v) ® A (A)
is a tensor product of algebras where

Uy (v) = Us /(A) - v) =K[H} ][ B}, Fis0',ay = 3(v - Hy (H) +2)) |
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is a GWA where ¢'(H}) = H) — 2. The algebra 8(A, v) is a Noetherian domain of
Gelfand-Kirillow dimension 4. The algebra S(A, v) is a GWA of rank 2 as it is a ten-
sor product of two GWAs U; and A;()). The problem of classification of weight 8-
modules are essentially about the problem of classification of simple weight S(A, v)-
modules. The nextlemma gives a simplicity criterion for the algebra §(A, v) and com-
putes the Krull and global dimensions of the algebra S(A, v).

Lemma 2.15 LetleK* andveK

(i)  Thealgebra 8(A,v) is a central Noetherian domain of Gelfand-Kirillov dimension
4.

(ii) The algebra 8(A, v) is simple if and only if the algebra U (v) is simple if and only
ifvé{n(n+2)|n=0,12,...}.

(iii) (K is an algebraically closed and uncountable field). The (left or right) global di-
mension of the algebra S(A,v) is equal to

gldim 8(A,v) = gldim Uy (v) + gldim A;(1)

oo ifv=-],
=13 ifve{n(n+2)|n=0,12,...},
2 ifvé{n(n+2)|n=-10,12,...}.
The algebra S(A,v) is a tensor homological minimal algebra with respect to the
class of left Noetherian, finitely generated algebras.
(iv) (K is an algebraically closed and uncountable field). The (left or right) Krull di-

mension of the algebra 8(A,v) is 2. The algebra 8(A, v) is a tensor Krull minimal
algebra with respect to the class of countably generated left Noetherian algebras.

Proof (i) The algebra 8(A, v) is a central algebra as a tensor product of central alge-

bras, by (2.8).

(ii) Statement (ii) follows from and the fact that the Weyl algebra A;(1) is a
central simple algebra.

(iii) The Weyl algebra A;(A) is a tensor homological minimal algebra with respect
to the class LIN [8, Corollary 1.5.(1)], hence

gldim 8(A,v) = gldim Uj(v) ® A;(A) = gldim Uy (v) + gldim A;(A)
= gldim U (v) +1.

Now, the result follows from (2.2).
(iv) The Weyl algebra A;(A) is a tensor Krull minimal algebra with respect to the
class of countably generated left Noetherian algebras ([10, Theorem 2.2]), hence

K(S(A,v)) = K(U,(v) ® A1(A)) = K(U,(v) + K(A (1)) =1+1=2.

By Theorem|2.12] the algebra S(A, v) is a tensor Krull minimal algebra with respect to
the class of countably generated left Noetherian algebras. ]

The Algebras C}

Let C} = Cg(y,y)(H). The next lemma describes the centre of the algebra C} and
computes the Krull and global dimensions of Cj.
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Lemma 2.16  Suppose that A € K* and v e K.
(i)  The algebra C is isomorphic to the algebra Cgyy(H) /(A —v), which isa GWA,

Cy = K[H, ][ x, ys7,a) - hy(hy +1)]

where a! := X(v-H)(H, +2)) = s(v=(H+m - 3)(H+hy+3)), 7(H)=H
and T(h)t) = ]’l,\ -2.

(ii) The centre of the algebra C} is K[H], and the algebra C} is a Noetherian domain
of Gelfand-Kirillov dimension 3.

(ili) The (left or right) global dimension of C} is equal to

oo ifv=-],
gldim Cy =<3  ifve{n(n+2)|n=0,12,...},
2 otherwise.

(iv) The (left or right) Krull dimension of C) is 2. The algebra C} is a tensor Krull
minimal algebra with respect to the class of countably generated, left Noetherian
algebras (provided K is an algebraically closed uncountable field).

Proof Statement (i) follows from Proposition [2.13(i).

Statement (ii) follows from statement (i).

(iii) The algebra 8(A,v) = @jez S(A,v); is a Z-graded algebra where S(A,v); :=
{a€8(A,v)|[H,a] =ia}and C} = 8(A,v)o. Therefore, gldim C} < gldim8(A,v).
By Lemmaiii), gldim C} < co if v # 1. If v # —1, then by Theorem

3 ifve{n(n+2)|n=0,12,...},

ldim C} =
gEm {2 ifvé{n(n+2)|n=-1,012,..}

Claim  gldim C;' = oo. The set S = K[h;] {0} is an Ore set of the domain C;*
such that the localization

ST'Cyt = K(h,\)[H][x,y; T,a) - hy(hy + 1)]
is a GWA and the algebra K(h, )[H] is a Dedekind ring. For v = -1,
Cliv = —i(H-ﬁ- ]’l,\ + %)2,

hence gldim $7'C! = o0, by Theorem Since gldim C;' > gldim S™'C;", we must
have gldim C;' = oo.

(iv) By Theorem X(C}) = K(K[H, hy]) = 2. If, in addition, the field K
is algebraically closed and uncountable then the algebra C; is a TKM algebra with
respect to the class of countably generated, left Noetherian algebras. ]
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3 Classification of Simple Weight S-modules with Nonzero Central
Charge

In this section, K is an algebraically closed field of characteristic zero. In this section,
a classification of simple weight S-modules is obtained. The set §(weight) of isomor-
phism classes of simple weight 8-modules is presented as a disjoint union of subsets
each of which is dealt separately.

For an algebra A, we denote by A the set of isomorphism classes of simple A-mod-
ules and for an A-module M we denote by [M] its isomorphism classes. If P is a
property of simple modules that is invariant under isomorphisms of modules (e.g.,
being weight), then A (P) stands for the set of all isomorphism classes of simple A-
modules that satisfy P. Clearly,

S(weight) = 8’(-\0)(weight) U Ll 8(A)(weight),
AeK*

S—(T)(weight) = I 8(A, v)(weight).
veK

The set S/(F)(weight) was described in [14]. So in this section, we assume that A # 0.
In order to finish the classification of simple weight S-modules, it remains to classify
simple weight 8(A, v)-modules for all v € K.

The Sets S(A, v) (X-torsion) and $(A, v) (Y-torsion)

The sets Sy := {X' | i e N} and Sy := {Y? | i € N} are Ore sets of the domain 8. Each
8-module M contains the so-called X-torsion and Y -torsion submodules

tors, (M) := {m € M | X'm = 0 for some i € N},
tors, (M) := {me M| Y'm = 0 for some i € N},

respectively. The module M is called X-torsion (resp., Y-torsion) if M = torgs, (M)
(resp., M = tors,(M)). First, we classify all the simple X-torsion/Y-torsion
8(A,v)-modules (Theorem [3.1), and as a result we obtain a classification of simple
weight X-torsion/Y -torsion 8(A, v)-modules (Corollary 3.2).

For A # 0, the following theorem gives classifications of simple S(A, 4 )-modules
that are either X-torsion or Y-torsion.

Theorem 3.1 LetA e K* andv e K. Then

() SOLv) (X-torsion) - T (7) & | Aﬁ%)x] {[Me Afz(&] (M1 T9))

and S(A,v)-modules M ® A1(A)/A; (X)X and M’ ® A1(A)/A1(A)X are isomorphic if
and only if [M] = [M'].

(i) S(A,v)(Y-torsion) = méb [ Afil(%)y] = {[M@ A/:I(St/l))Y] | [M] e U,’l(v)}
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and 8(A, v)-modules M ® A1(1)/A1(A)Y and M’ ® A1(1)/A1(A)Y are isomorphic if
and only if [M] = [M'].

(iii) 8(A, v)(X-torsion) N §(A, v) (Y-torsion) = @.

Proof (i) The A;(1)-module V := A;(A)/A;(1)X is a simple A;())-module
with Ends 1)(V) = K. Recall that 8(A,v) = U;(v) ® Aj(A). Every simple
X-torsion 8(A, v)-module M is an epimorphic image of the $(A,v)-module V :=
8(A,v)/8(A,v)X = U;(v) ® V. Each 8(A,v)-submodule of V is equal to I ® V
for some left ideal I of the algebra Uj(v), and so M ~ M ® V for some simple
U, (v)-module M, and statement (i) follows.

Statement (ii) can be proved in a similar way as statement (i) (by replacing X by
Y).

Statement (iii) follows from statements (i) and (ii), since the A;(A)-modules
A1(1)/A1(A)X and A;(1)/A;(1)Y are not isomorphic. [ |

We obtain classifications of simple weight S(A, v)-modules that are X-torsion or
Y-torsion as a corollary of Theorem 3.1}

Corollary 3.2 LetA e K* andveK
@)

8(A, v)(weight, X-torsion) = U} (v) (H} - weight) ® [ A]EA)X:I
= A1(4) T (N (! .
- { [M ® AI(A)X] \ [M] e Uj(v) (Hl—welght)}
and 8(, v)-modules M ® Afl(%)x and M’ ® A[?I(%)X are isomorphic if and only if
[M] =[M].
(ii)
ST8,9)(weight, -orsion) = D103 (11 weight) & [ 405 ]

- {[M ® A?%)Y] ‘ [M] e U (v) (Hg-weight)}
A1(1)

hOVY and M' ® 210 are isomorphic if and only if

and $(A, v)-modules M ® WONG

[(M] = [M'].
(iii) S(A,v)(weight, X-torsion) N 8(A, v)(weight, Y-torsion) = @.

Proof (i)Recallthat H, = H+A'X-Y - % =H+Y A1X+ % Every simple, weight,
X-torsion $(A, v)-module is an epimorphic image of the 8(A, v)-module (for some
u € K)

S(Av)/S(A, ) (H - 1, X) = 8(A,v) [S(A, v)( Hf — e - %X)
Ui(v) A (Q) .

TG [CAEPEE R

M(u),
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which is a H) -weight module. Conversely, any module from

Ai(A) ]
A (DX

m (H} - weight) ® [

is an epimorphic image of the weight S(A, v)-module M(u) for some y. Now state-
ment (i) follows from Theorem [3.1{i).

Statement (ii) can be proved in a similar obvious way.

Statement (iii) follows from Theorem [3.1{(iii). [ |

R

The Set S(A, v) (weight, T-torsion)
Let A € K*. The elements {h, — i | i € Z} generate an Ore set in C%"", and the algebra
T7'Cy" = (T7'K[m]) [ %, ys0.a)"]

isa GWA where o(h,) = h) — 2. By Corollaryii), the algebra T™'CY"” is central
with Gelfand-Kirillov dimension 2. The set T is an Ore set in the Weyl algebra A;(1)
such that the localization

T'A;(A) = (T'K[m])[Y, Y 5 0]

is a skew Laurent polynomial algebra where o (h,) = h) — 1. By (2.4), the set T is also
an Ore set of the algebras $(1) and 8(1, v),

T'8(A\) 2 U, ® T'A;(A) and T'8(A,v) = Uj/(A} —v)® T'A; (D).

The next proposition together with Corollary [3.2] classifies the simple (weight)
T-torsion $(A, v)-modules.

Proposition 3.3
(i) 8(A, v)(T-torsion) = 8(A, v) (X-torsion) U S(A, v) (Y-torsion).
(i)  8(A,v)(weight, T-torsion) = 8(A, v)(weight, X-torsion)

u 8(A, v)(weight, Y-torsion).
Proof (i) By Theorem iii), the union in statement (i) is a disjoint union. The
equality in statement (i) follows from and the equalities
VX' =M (hy=1)(hy =2)---(hy—i) and X'Y'=Ahy(hy+1)---(hy +i—1)

foralli > 1.
(ii) Statement (ii) follows from statement (i). [ |

We have that
S(A,v)(weight) = 8(A, v)(weight, T-torsion) L S(A, v) (weight, T-torsionfree).

Corollary[3.2(i)(ii) and Proposition[3.3{ii) classify the set of simple, weight, T-torsion
8(A,v)-modules. In order to finish a classification of simple weight S-modules, it

remains to classify elements of the set S(A, v) (weight, T-torsionfree).
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[

The Set S(A, v) (weight, T-torsionfree)

Notice that T ¢ C7, and so
(3.0) T7'8(A,v) = Crag(am (Y, Y S wy] = (T Csa,y (H)) [V, Y S 0y ]
=(T7'Cy)[Y, Y wy]
where wy(c) = YcY™L In particular, wy(H) = H+ 1, wy(hy) = hy -1, wy(x) = x
and wy(y) = y(1-2(hy —1)7"). In more detail,
wy(x)=YxY ' =YE\Y?Y ' = E{Y*=x,
wy(y)=YyY ' = YR 2P2Y ' = FiYZ22Y ! = Fi(22Y -22,) 7!
=y- ZFQ%A%A(Y%A)A = )/(1 - 2(]’1,\ - 1)71) .
The group Z acts in the obvious way on K (by addition). For each y € K, O(u) :=
y + Z is the orbit of u. Let K/Z be the set of all Z-orbits. For each orbit O € K/Z, we
fix a representative y, i.e., O = po + Z.
Let [M] € 8(A, v)(weight, T-torsionfree). Then Wt (M) € O for some orbit O €
K/Z. Since, in the algebra S(1, v),
Y'X = A (b = 1) (hy =2) - (ha = i),
X'Y ' =AMhy(hy+1)---(hy +i—-1) forix1,
the maps Xpr: M — M, m — Xm, and Yp: M - M, m — Ym, are injections. There-

fore, Wt (M) = O. Hence,

—— —

8(A, v)(weight, T-torsionfree) = || 8(A, v)(weight, T-torsionfree, O),
OeK/Z

[

where the set S(A, v) (weight, T-torsionfree, Q) contains all the isomorphism classes
of simple, weight, T-torsionfree S(A, v)-modules M such that Wt (M) = O.
The next theorem (together with Theorems [3.6|and [3.8) classifies the elements of

the set S(A, v) (weight, T-torsionfree).

Theorem 3.4 Let A € K*, v € Kand O € K/Z. We fix an element po € O, ie.,
O = po + Z. Then the map

8(A, v)(weight, T-torsionfree, 0) — C{*"(T-torsionfree), [M]— [M,,],
is a bijection with the inverse

[N] — socs(;w)( T7'8(A,v) ®7-1cy T_IN) = SBZSOCC;(YI'T_IN)
= 2SOCC;(X1‘T71N).
Proof (i) The map [M] + [M,, ] is well defined: It is obvious.
(ii) The map [N] = [socg (1) (T7'8(A,v) @110y T'N)] = @jez socc; (Y T™'N)

is well defined: By (B.1), the T™'8(A, v)-module N := T7'8(1,v) ®r1cy T™'Nisadi-
rect sum @,z Y’ T7'N. Clearly, the T_IC)PL'“J "*-module TN is simple. Moreover, for

https://doi.org/10.4153/CMB-2017-017-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-017-7

32 V. V.Bavulaand T. Lu

each i € Z, the T™'C}-module Y*T'N is isomorphic to the twisted T~'C}-module
“yi T-IN and, hence, is simple. So, “¥ T"!N is a simple T'CY° ™ -module. By
l6l, soccfoﬂ-,v(Y"T_lN) is a simplg, T-torsionfree Cf{“’+i’v—m0dule/CX—module, it
is an essential C}-submodule of Y’ T7IN, and so it is contained in every nonzero
C}-submodule of Y/ T™'N.

Claim socs(l,v)(ﬁ) = @iz socC;(YiT’lN): Let S be the direct sum of socles.
Then it is contained in each 8(A, v)-submodule of N. The equality follows from the
fact that S is an 8(A, v)-module, since S is the intersection of all nonzero 8(A, v)-
submodules of N. Let us give more details. Clearly, S is contained in the intersection,
say S, In fact, S = §’, since for each i € Z, the (po + i)-th weight component of the
S(A, v)-submodule 8(A, v) socc: (Y T™'N) is precisely socc: (Y'T™'N). The proof
of statement (ii) is complete. Clearly, the maps in statements (i) and (ii) are mutually
inverse. Notice that, for all i € Z, Y'T™'N = X~'T7!N, since for all j > 1, X/Y/,
Y7 X/ € T. So the last equality of the theorem is obvious. [

and also give an explicit construction of the direct sum of socles in Theorem|3.4](The-

orem 3.10]and [3.11).

Classification of Simple A-modules where A = D(¢,a)and D is a Dedekind
Ring

Below, we give a classification of simple C}*"-modules (Theorems d

Let A= D(o0,a) = D[x, y;0,a] be a GWA such that D is a Dedekind ring, a # 0, and
the automorphism o of D satisfies the condition that ¢/ (p) # p forall i € Z ~ {0} and
all maximal ideals p of D.

Example 3.5 A=K[H]|(0,a)whereo(H) = H-y,y € K* and a # 0. In particular,
the algebras C}"" are of this type. A classification of simple K[H](0, a)-modules is
given in [3,/6].

Let us recall a classification of simple A-modules for the algebra A = D(o, a); see
[3li4}6] for details. Clearly

A = A (D-torsion) U A (D-torsionfree).

The Set A ( D-torsion) = A(weight)

The group (o) ~ Z acts freely on the set Max (D) of maximal ideals of the Dedekind
ring D. For each maximal ideal p of D, O(p) = {0’(p) | i € Z} is its orbit. We use
the bijection Z — O(p), i = o' (p), to define the order < on each orbit O(p): o’ (p) <
0/(p) if and only if i < j. A maximal ideal of D is called marked if it contains the
element a. There are only finitely many marked ideals. An orbit O is called degenerated
if it contains a marked ideal. Marked ideals, say p; < --- < p;, of a degenerated orbit
O partition it into s + 1 parts,

I =(—o0,m], Lp=(pnp2)s--osls = (s-1 P55 Torr = (s, 00).
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Two ideals p, q € Max (D) are called equivalent p ~ q if they belong either to a non-
degenerated orbit or to some I;. We denote by Max (D)/ ~ the set of equivalence
classes in Max(D).

An A-module V is called weight if V = @pemax(p) Vp> Where V,, = {v € V' | pv = 0},
is the sum of all simple D-submodules of V which are isomorphic to D/p. The set
Supp(V) = {p € Max(D) | V,, # 0} is called the support of V; elements of Supp(V)
are called weights, and V,, is called the component of V of weight p. Clearly, an A-
module is weight if and only if it is a semisimple D-module. Clearly,

A (D-torsion) = A(weight),
i.e., a simple A-module is D-torsion if and only if it is weight.

Theorem 3.6 ([3}[4,/6] (Classification of simple D-torsion/weight A-modules)) The

map Max(D) /~— A (D-torsion), T ~ [L(T)], is a bijection with the inverse [M] +

Supp(M) where

(i)  if T is a non-degenerated orbit, then L(T') = A/ Ap wherep € T;

(ii) #fT = (—oo,p], then L(T) = A/A(p, x);

(iii) if T = (07" (p),p] for some n > 1, then L(T') = A/A(y",p,x); the D-length of
L(T) is n;

(1v) ifT = (p, o), then L(T) = AJA(o(p), ).

The Set A ( D-torsionfree)

For elements «a, 8 € D, we write « < B if p < q for all p,q € Max (D) such that
O(p) = O(q), a € p and B € q. (We write a < f8 if there are no such ideals p and q).
Recall that the GWA A = @,z A, is a Z-graded algebra where A; = Dv; = v;D.

Definition 3.7 ([3}446]]) Anelementd =v_,,_p+V_m1f-ms1+---+Po € A(where
m > 1,all B; € Dand B_,,, Bo # 0) is called a normal element if o < B_,, and By < a.

The set S := D \ {0} is an Ore set of the domain A. Let k := S™' D be the field of
fractions of D. The algebra B := S™'A = k[x, x™'; 0] is a skew Laurent polynomial ring
that is a (left and right) principle ideal domain. So, any simple B-module is of type
B/Bb for some irreducible element b of B. Two simple B-modules are isomorphic,
B/Bb ~ B/Bc, if and only if the elements b and c are similar (i.e., there exists an
element d € B such that 1 is the greatest common right divisor of ¢ and d, and bd is a
least common left multiple of ¢ and d).

Theorem 3.8 ([3l/4bl6]] (Classification of simple D-torsionfree A-modules))
A(D-torsionfree) = { [M,, := A/AN Bb] | b is a normal irreducible element of B} .

The A-modules My and My are isomorphic if and only if the elements b and b’ are
similar.

For all nonzero elements «, 3 € D, the B-modules $™' M}, and S_lMﬁb‘x—l are iso-
morphic. If an element b = v_,,f_,,, + -+ + o is irreducible in B but not necessarily
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normal, the next lemma shows that there are explicit elements & and f such that the
element Bba! is normal and irreducible in B.

Lemma 3.9 ([3) Lemma 13] (Normalization procedure)) Given an element b =
VemPom + -+ Po € Awherem > 1, all B; € D and B_,,, B0 # 0. Fix a natural
number s € N such that

a7 (Bo) < P-m> °(Bo) <Po, and c*(Po) < a.

Let a = [Iio 07 (Bo) and B = T2 07 (Bo). Then the element Bba™ is a normal
element, which is called a normalization of b and denoted b™°™™ (we can always assume
that s is the least possible).

Explicit Construction of the Socle in Theorem|3.4

Every 8(A, v)-module is also a K[/, |-module (since K[},] € S(A,v)). Therefore,
for each orbit O € K/Z,

(3.2) 8(A,v)(weight, T-torsionfree, O) =
S(A, v)(weight, T-torsionfree, O, K[ h, ]-torsion)
u8(A, v)(weight, O, K[h, ]-torsionfree),
(3.3) Cfo’v (T-torsionfree) =
CH" (T-torsionfree, K[ ]-torsion) u CY*” (K[h)]-torsionfree).

The map [M] = [M,,, ] in Theorem 3.4 respects the disjoint unions (3.2) and (3.3).
Recall that for each orbit O € K/Z we fixed its representative y¢.

Theorem 3.10 Let A € K*, v e K, and O € K/Z. Then

S(A, v)(weight, T-torsionfree, O, K[h, ]-torsion) =

U, (v) (Hjy-weight) ® [W(A,0")],
0'eK/Z,0'#7

where W(A, ") := A;(X)/A(A) (hy —por) and U] (v) (H}- weight) ® [W (1, 0')] :=

{{Me® W(A,0")] | M € Uj(v) (H}-weight) } and S(A,v)-modules M ® W(A,0"),
and M' ® W(A, Q") are isomorphic if and only if the U} (v)-modules M and M’ are
isomorphic.

Proof Recallthat Hy =H+A"'XY -1 =H+h) - 3. Let

[M] e8(A,v) ( weight, T-torsionfree, O, K[h,\]—torsion) .
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Then M is an epimorphic image of the §(A, v)-module
S(A,v)/8(A,v)(H =, by — ")

~ S(A,v)/S(A,v)(Hi —u-u'+ %,h;t - y’)

- Ui(v) Ai(1)

U H -+ y) A (- )

. v

S U (Hy -+ 3)
where O := O(u") # ZZ. Since End 4, (1) W(A, por) = K, the result follows. [ |

® W(A, [Jol),

The elements X and Y are units in the algebra T™'C}. For each i € Z, the inner
automorphism wx-i = wy} : T™'C} — T7'C} induces the algebra isomorphism
w;(li: Cgo,\’ . Cﬁloﬂ',v’ U —s XfiuXi’

(since X" (hy — puo)X* = hy — i — pp). The localization of the GWA Cfo’v at the
Ore set S := K[h] \ {0} is a skew polynomial algebra B = K(h,;)[Y, Y™}, o] where
o(hy) = hy — 1. Notice that B = K(h))[X, X 507" = wx].

Let My, := CY*"/C{*"" n Bb be a K[h) ]-torsionfree simple C{°*"-module where
b= X"B_y + X" Py + -+ Po € C{" is a normal and irreducible element
in B (m > 1,all §; € K[hy], and B_,u, Bo # 0). For each i € Z, the C;-socle of the
T7'C}-module/C}-module/CY° " -module

—1 MOV -1 —1 MOV ~1pMo—iv
T CAU w ( T CAO ) . T C)LO
T

X'TMy =X A =" :
R ST CRY: T T-1C¥ A Bb SICHOTRY  B(XibXT)

is equal to Cf“_i’V/Ci’O—i’v N B(X'bX ") Now, the next theorem follows from
Theorem[3.4l

Theorem 3.11 Let A e K*,veK, and O € K/Z. The map

8(1, v)(weight, O, K[h,]-torsionfree) — Ck°*"(K[h,]-torsionfree),

[M]— [My, ],
is a bijection with the inverse
C,uo:v ) Cy@—i,v
My = —A——| — @ socer (X' T'M,) = —
[ Ci”'n 5ol — @l D=2 Clo™HY  B(X1pX~iynorm

where b € CY°" is a normal and irreducible element in B and (X'bX™")"™ ¢ Cf{“’_i’v

is the normalization in Cﬁf“’_i’v of the irreducible element X'bX ™" in B.
The following result was proved in [29] for K = C.

Theorem 3.12  For a simple weight 8-module all weight spaces are either finite or
infinite dimensional.
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Proof This follows directly from a classification of all simple weight S-modules
where A # 0. For A = 0, this follows from the classification of simple modules ob-
tained in [14]. |

The Set of Simple S(1)-modules U\}’L ® A1(A)

By 24), 8(1) = U} ® A;(1). Given a Uj-module [M] and an A;(A)-module N.
Their tensor product over K, M ® N, is an §(1)-module. If, in addition, the modules
M and N are simple, then Endy; (M) = Kand Endy,(1)(N) =K,andso M ® Nisa
simple §(1)-module.

Proposition 3.13 f]\)’L ®A; (1) = {{M®N] | MeU,Nea L)} cSQ),and
[M®N]=[M ®N']ifand only if[M] = [M'] and [N] = [N'].

Proposition gives plenty of simple S(1)-modules, as the simple modules over
the algebras U} and A;(A) are classified; see [17] or Theorems3.6|and[3.8]

Classification of Simple Weight S-modules with Finite Dimensional Spaces

Using the classification of simple 8-modules we can easily describe the set of iso-
morphism classes of simple weight S-modules with finite dimensional weight spaces
S(f. d. weight spaces). This was done by Dubsky for K = C using a different approach
(18]. The simple lowest weight S-modules were classified earlier in [20]. Clearly,

S(f. d. weight spaces) = S(0)(f. d. weight spaces) U || S(A)(f.d. weight spaces).
AeK*

It was shown that $(0)(f. d. weight spaces) = U(sl2)(weight) [14,/18]. Clearly, for
A#0,
S(A)(f. d. weight spaces) = || S(A, v)(f.d. weight spaces).
veK

For A € K*, we denote by ﬁ\i(ﬁn. dim.) (resp., f]}(h w.dim = o0); f];(l w.dim =
00)) the set of isomorphism classes of simple finite dimensional (resp., highest weight
infinite dimensional; lowest weight infinite dimensional) U}-modules. Let V* (1) :=
A1(1)/A1(AM)X and V~(A) = A;(1)/A1(A)Y. The next theorem classifies all the
simple weight 8-modules with finite dimensional weight spaces.

Theorem 3.14
S(f. d. weight spaces)

= U(s12)(weight) u U { U] (fin. dim.) @ A; (1) (K[ ]-torsion)
AeK*
U U] (h.w.dim = c0) ® V*(A)

LT (L w. dim = 00) ® V‘(A)}.

Proof Let [M] e S(f.d.weight spaces). If ZM = 0, then [M] € U(sl2)(weight).
Without loss of generality we may assume that [M] € S(A, v)(f. d. weight spaces) for
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some A € K* and v € K. Every simple weight $(A, v)-module in Theorem [3.11] has
infinite dimensional weight spaces. Therefore, the module M must be K[k, ]-torsion,
i.e., hy-weight, since the filed K is algebraically closed. Then M = M ® N for some
[M] € W(Ha—weight) and [N] € A;(1) (K[h;]-torsion) by Proposition ii),
Corollary[3.2(ii), and Theorem 3.10} By Theorem 3.6}

A, (M) (K[ ]-torsion) = {[V*(A)], [W(A,0)]| 0 eK/Z,0 4 Z}.

Notice that V*(1) = @50 KY'Iwhere1 =1+ Aj(A)X and by Y1 = Y/(h) + i)l =
(i + 1) Y'L Similarly, V™ (1) = @;5 KX'1 where

1=1+A;(1)Y and hX1=X'(hy -i)l=-iX'1

For O’ € K/Z such that 0" # Z, W(A, Q") = @z Kv(1);1 where1=1+ A; (1) (h) -
por)and hyv(A) ;1= (i+ue:)v(A);1. (The elements v(A); are defined in (2.6)). Recall
that H = H) —h) + % Given elements m; € M and n; € N such that H} m; = im; and
hynj = jnj. Then Hm; ® nj = (i — j+ %)m, ® n;j. Now the result follows easily from
Theorem[3.6 [ |

We say that a weight module has uniformly bounded weight spaces if their dimen-
sions do not exceed a fixed natural number.

Corollary 3.15 (i) The set

U(s12) (weight) U u U7 (fin.dim.) ® { A, (1) (K[h;]-torsion) ~ {V*(1)}}

contains precisely the isomorphism classes of simple weight S-modules where all the
weight components are finite dimensional vector spaces of the same dimension.
(ii) The set

U(s12) (weight) L u Ul (fin.dim.) ® { V*(1), V- (1)}

contains precisely the isomorphism classes of simple weight S-modules with uniformly
bounded finite dimensional weight spaces.

The first statement of the corollary above strengthens the result due to Wu and Zhu
[29] stating that if V' is a simple weight S-module which is neither a highest weight
nor a lowest weight module then all its weight spaces have the same dimension.
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