Nicole Capitaine
Observatoire de Paris

In order to improve the representation of nutation, the effect of elasticity of the Earth on the nutation in space and diurnal nutation of the terrestrial rotation axis is considered and its amplitude is evaluated for the principal terms. The choice between several methods taking this effect into account is discussed. A comparison with the effect induced on nutation by the existence of a liquid core in the Earth's interior shows that the consideration of elasticity alone cannot give any amelioration in the representation of nutation.

INTRODUCTION

For geophysical studies of the rotation of the Earth, it is necessary to take into account all effects acting on the motion of the instantaneous rotation axis which can be mathematically represented. The elasticity of the Earth is one of these effects.

The effect of elasticity on the free motion of the instantaneous rotation axis within the Earth is well known : it converts its Eulerian period of 305 days into the Chandlerian period of 430 days. The effect of elasticity on the tidal variation of gravity and on the tidal deviation of the vertical at each point of the Earth is also well known and is usually considered in the reduction of the observations.

But the modification of the coefficients of nutation due to elasticity is not well known and it is not clear if it is necessary or not to take it into account in the reduction of the observations. Poincaré (1910) and Jeffreys \& Vicente (1957) have evaluated this modification as negligible. In contrast Fedorov (1963, 1977) and Mc Clure (1973) considered that it must be taken into account; however the modification proposed by these authors is not always correctly understood or not always admitted for the diurnal nutation (Mc Carthy 1976).

The question of the axes to which the coefficients of the nutation in space must be referred (Jeffreys 1959, Atkinson 1973) is also of great importance in the case of a non rigid Earth.

In this paper, we have computed the modifications of the coefficients of nutation,in the case of an elastic Earth, referred to three axes which can be considered : the Gz axis fixed within the Earth, the instantaneous axis of rotation and the axis of angular momentum. The results show how elasticity modifies the representation of nutation and whether or not it is necessary to take this modification into account.

1. SOLUTION FOR NUTATION IN SPACE AND DIURNAL NUTATION IN THE CASE OF an ELASTIC EARTH

In the reduction of the observations, we have to express the position of a terrestrial reference frame (Gxyz) (G being the Earth's center of mass) with respect to a non-rotating reference frame. It is thus necessary to express the motion in space of the Gz axis. We do not consider here the Chandlerian free motion nor the forced annual motion of the rotation axis within the Earth, which are not predictable, so we limit the motion in space of the Gz axis to its lunisolar precession and nutation.

Considering the lunisolar torque and the variation of the Earth's inertia tensor due to rotational and tidal deformations, the complex solution for the coordinates of the pole of rotation in (Gxyz) can be written :
with : $\quad E_{\mathbb{Q}}=\frac{3 G m_{G}(C-A)}{c_{G}^{3} \Omega^{2}}(2), R(j)=1-\frac{k_{2} n_{j}}{k_{S} \Omega}$

$$
\begin{equation*}
m=-i E_{\mathbb{C}} \sum_{j} R(j) A_{21 j}^{\prime} e^{-i\left(\omega_{j} t+\beta_{j}\right)} \tag{1}
\end{equation*}
$$

(3), $\quad A_{21 j}^{\prime}=A_{21 j} /\left(1-\frac{A}{C} \Omega^{n}\right)$

G being the gravitational constant,
Ω the Earth's angular velocity, $n_{j}=\Omega-\omega_{j}$,
($\mathrm{A}, \mathrm{A}, \mathrm{C}$) the principal moments of inertia of the Earth in the non deformable case,
$\mathrm{m}_{\mathbb{C}}$ and $\mathrm{c}_{\mathbb{C}}$ respectively the lunar mass and the Earth-Moon mean distance, k_{2} and k_{S} respectively the Love number of degree 2 and the secular Love number,
$A_{21 j}$ the jth Doodson's real coefficient of degree 2 and order 1 for the total lunisolar term of frequency ωj in the tidal potential, $\omega_{j} t+\beta_{j}$ a linear combination of the mean sidereal time Φ, the mean lunar and solar longitudes 0 and \mathbb{C}, the mean longitudes of lunar and solar perigees p and π and the longitude Ω of the lunar ascending node.
(1) is the expression of the diurnal nutation of the rotation axis within the Earth.

Let θ, Ψ, Φ be the Euler's angles between the (Gxyz) system and the non-rotating system (GXYZ) defined by the mean ecliptic and equinox of the epoch $t_{0}: \theta$ is the obliquity of the ecliptic, Ψ the longitude of the equinox and Φ the angle of rotation of the Earth. Using expression (1) for m and Euler's kinematical relations, we obtain, by an
integration assuming $\sin \theta=$ constant, the following expression for the lunisolar precession and nutation of the Gz axis:

$$
\begin{equation*}
\Delta \theta_{z}+i \Delta \Psi_{z} \sin \theta=E_{d}\left[i A_{210} \Omega t+\sum_{j \neq 0} R(j) A_{21_{j}}^{\prime} \frac{\Omega}{n_{j}} e^{-i\left(-n_{j} t+\beta_{j}\right)}\right] \tag{5}
\end{equation*}
$$

The motion of the Gz axis with respect to the (GXYZ) system can be obtained by using the expressions for the lunisolar precession and nutation of either the rotation axis or the angular momentum axis, respectively given by (6) and (8); the additional motions of these axes with respect to the Gz axis are given by (9) and (10) in the (GXYZ) system, and by (1) and (12) in the (Gxyz) system:

$$
\begin{equation*}
\Delta \theta_{\boldsymbol{r}}+i \Delta \Psi_{r} \sin \theta=E_{\mathbb{G}}\left[i A_{210} \Omega t+\sum_{j \neq 0} R(j) A_{24 j}^{\prime \prime} \frac{\Omega}{n_{j}} e^{-i\left(-n_{j} t+\beta_{j}\right)}\right] \tag{6}
\end{equation*}
$$

with : $\quad A_{21 j}^{\prime \prime}=A_{21_{j}}\left(1-\frac{n_{j}}{\Omega}\right) /\left(1-\frac{A}{C} \frac{n_{j}}{\Omega}\right)$

$$
\begin{align*}
& \Delta \theta_{H}+i \Delta \Psi_{H} \sin \theta=E_{\mathbb{Q}}\left[i A_{210} \Omega t+\sum_{j \neq 0} A_{21 j} \frac{\Omega}{n_{j}} e^{-i\left(-n_{j} t+\beta_{j}\right)}\right] \tag{8}\\
& \delta \theta_{r z}+i \delta \Psi_{r z} \sin \theta=E_{ه} \sum_{j} R(j) A_{21 j}^{\prime} e^{-i\left(-n_{j} t+\beta_{j}\right)} \tag{9}\\
& \delta \theta_{H_{z}}+i \delta \Psi_{H_{z}} \sin \theta=E_{\mathbb{C}}(A / C) \sum_{j} R A_{21 j}^{\prime} e^{-i\left(-n_{j} t+\beta_{j}\right)} \tag{10}
\end{align*}
$$

with : $\quad \mathrm{R}=1-\frac{\mathrm{k}_{2}}{\mathrm{k}_{\mathrm{s}}}$

$$
(H / C \Omega)=-i E_{\mathbb{Q}} R \sum_{j} A_{21 j}^{\prime} e^{-i\left(\omega_{j} t+\beta_{j}\right)}
$$

2. COMPARISON WITH THE CASE OF A RIGID EARTH AND WITH THE CASE OF aN
EARTH MODEL INCLUDING A LIQUID CORE

In the case of a rigid Earth, $k_{2}=0$, thus $R(j)=1$ and $R=1$.
In the case of an elastic Earth, as compared to the case of a
rigid Earth, the amplitude of the circular nutation, j, in space of the Gz axis or of the rotation axis is multiplied by the factor $R(j)$. The corresponding modified coefficients of nutation in longitude and obliquity are computed in Table 1 for the principal terms. $R(j)$ is also the factor of modification, due to elasticity, of the amplitude of the term of frequency $\boldsymbol{\omega}_{\mathrm{j}}$ in the expression (1). This factor being between 0.94 and 1.06 for the considered diurnal waves, we see that the diurnal nutation of the rotation axis within the Earth is practically not affected by elasticity. This is confirmed by the values computed in Table 1 .

In contrast, the motion in space of the angular momentum axis
Table 1 - Amplitudes (in 10^{-4} ") of the coefficients $(\Delta \Psi \sin \theta, \Delta \boldsymbol{\theta})$ of the principal nutations in

Argument	Axis of angular momentum			Rotation axis				Gz axis				
	Nutation in space	Diurnal Nutation		Nutation in space		Diurnal Nutation		Nutation in space				
								Jeffreys-				
		Rigid Earth	$\begin{aligned} & \text { astic } \\ & \text { rth } \end{aligned}$			Rigid Earth	Elastic Earth	Rigid Earth	astic arth	Rigid Earth	Elastic Earth	Vicente's Earth-model
Ω	$\begin{array}{r} -68722 \\ 92277 \end{array}$	$\begin{array}{r} -2 \\ 12 \end{array}$	$\begin{array}{r} -1 \\ 8 \end{array}$	$\begin{array}{r} -68722 \\ 92277 \end{array}$	$\begin{array}{r} -68726 \\ 92280 \end{array}$	$\begin{array}{r} -2 \\ 12 \end{array}$	$\begin{array}{r} -2 \\ 12 \end{array}$	$\begin{array}{r} -68708 \\ 92267 \end{array}$	$\begin{array}{r} -68713 \\ 92270 \end{array}$	$\begin{array}{r} -68376 \\ 92020 \end{array}$		
2Ω	$\begin{array}{r}827 \\ -902 \\ \hline\end{array}$	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 827 \\ -902 \end{array}$	$\begin{array}{r} 827 \\ -902 \end{array}$	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 827 \\ -902 \end{array}$	$\begin{array}{r} 827 \\ -902 \end{array}$			
$0-\pi$	$\begin{array}{r} 501 \\ 0 \\ \hline \end{array}$	1 1	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 501 \\ 0 \end{array}$	$\begin{array}{r} 501 \\ 0 \end{array}$	1 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 501 \\ -1 \end{array}$	$\begin{array}{r} 501 \\ -1 \\ \hline \end{array}$			
20	$\begin{array}{r} -5054 \\ 5509 \end{array}$	$\begin{array}{r} -29 \\ 1 \end{array}$	$\begin{array}{r} -20 \\ 1 \end{array}$	$\begin{array}{r} -5054 \\ 5509 \end{array}$	$\begin{array}{r} -5045 \\ 5501 \end{array}$	$\begin{array}{r} -29 \\ 1 \end{array}$	$\begin{array}{r} -29 \\ 1 \end{array}$	$\begin{array}{r} -5084 \\ 5537 \end{array}$	$\begin{array}{r} -5075 \\ 5528 \end{array}$	$\begin{array}{r} -5249 \\ 5743 \end{array}$		
$30-\pi$	$\begin{array}{r} -197 \\ 215 \end{array}$	$\begin{array}{r} -2 \\ 0 \end{array}$	$\begin{array}{r} -1 \\ 0 \end{array}$	$\begin{array}{r} -197 \\ 215 \end{array}$	$\begin{array}{r} -196 \\ 215 \end{array}$	$\begin{array}{r} -2 \\ 0 \end{array}$	$\begin{array}{r} -2 \\ 0 \end{array}$	$\begin{array}{r} -199 \\ 217 \end{array}$	$\begin{array}{r} -198 \\ 216 \end{array}$			
g	$\begin{array}{r} 269 \\ 0 \\ \hline \end{array}$	5 5	$\begin{aligned} & 4 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{r} 269 \\ 0 \end{array}$	$\begin{array}{r} 269 \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	$\begin{array}{r} 269 \\ -10 \\ \hline \end{array}$	$\begin{array}{r} 269 \\ -7 \\ \hline \end{array}$			
2 d	$\begin{array}{r} -812 \\ 885 \end{array}$	$\begin{array}{r} -67 \\ 2 \end{array}$	$\begin{array}{r} -47 \\ 2 \end{array}$	$\begin{array}{r} -812 \\ 885 \end{array}$	$\begin{array}{r} -793 \\ 867 \end{array}$	$\begin{array}{r} -67 \\ 2 \end{array}$	$\begin{array}{r} -65 \\ 3 \end{array}$	$\begin{array}{r} -881 \\ 949 \end{array}$	$\begin{array}{r} -861 \\ 930 \end{array}$	$\begin{array}{r} -903 \\ 978 \end{array}$		
$2 \mathbb{C}-\Omega$	$\begin{array}{r} -136 \\ 183 \end{array}$	$\begin{array}{r} -13 \\ 2 \end{array}$	$\begin{array}{r} -9 \\ 1 \end{array}$	$\begin{array}{r} -136 \\ 183 \end{array}$	$\begin{array}{r} -132 \\ 180 \end{array}$	$\begin{array}{r} -13 \\ 2 \end{array}$	$\begin{array}{r} -12 \\ 2 \end{array}$	$\begin{array}{r} -150 \\ 194 \end{array}$	$\begin{array}{r} -146 \\ 191 \end{array}$			
$2 \mathbb{C}+\mathrm{g}$	$\begin{array}{r} -104 \\ 113 \end{array}$	$\begin{array}{r} -13 \\ 0 \end{array}$	$\begin{array}{r} -9 \\ 0 \end{array}$	$\begin{array}{r} -104 \\ 113 \end{array}$	$\begin{array}{r} -100 \\ 110 \end{array}$	$\begin{array}{r} -13 \\ 0 \end{array}$	$\begin{array}{r} -13 \\ 0 \end{array}$	$\begin{array}{r} -118 \\ 126 \end{array}$	$\begin{array}{r} -114 \\ 122 \end{array}$			

remains unchanged in the case of an elastic Earth as compared to t.e case of a rigid Earth, but its diurnal nutation is multiplied by the factor $R\left(R=0.70\right.$ if $\left.k_{2}=0.30\right)$. The corresponding values for the principal terms are given in Table 1 .

The modified coefficients of nutation of the $G z$ axis, computed by using the factors α (j) of Jeffreys\&Vicente (1957) for the corresponding circular nutations in space of the rotation axis, in the case of an elastic Earth's model including a liquid core, are also given in Table 1 for the three principal terms. We can see that the modifications are much larger than in the simpler case of an elastic Earth.

The computations of Table 1 have been made by using the coefficients of nutation in space of the rotation axis given by Kinoshita (1977) for a rigid Earth and the values $k_{2}=0.30, k_{S}=0.96,(A / C)=0.996$.

CONCLUSION

Table 1 shows that :

- In the case of an elastic Earth, the rotation axis and the angular momentum axis are separated by $0!!0020$.
- The modifications of the coefficients of nutation due to elasticity are lower than 0 'OOOO1 except for the terms of arguments $\Omega, 2 \mathbb{C}-\Omega$, $2 \mathbb{C}+\mathrm{g}$ for which it reachs $0!0004$, for the term of argument 20 for which it reachs $0!0009$ and for the term of argument $2 \mathbb{d}$ for which it reachs 0!'0020 •
- If these modifications were the most important, the best method to take them into account must be to use the modified coefficients of nutation given in Table 1 for an elastic Earth and referred to the Gz axis, in order to avoid diurnal terms referred to the (Gxyz) system.
- Using the present IAU coefficients (Woolard 1953) referred (with a precision of $0 \cdot{ }^{\prime} 0001$) to the axis of angular momentum and unchanged by elasticity, the simplest method to take elasticity into account has been given by Fedorov (1963, 1977) : it consists of multiplying the diurnal nutation of the axis of angular momentum for a rigid Earth by the factor R .
- The influence of elasticity on the coefficients of nutation is negligible with respect to the one due to the presence of a liquid core in the Earth's interior.

We can then conclude that the only good method to improve the representation of nutation must be to use the modified coefficients of nutation in space obtained from observations and from the most complete Earth's model.

The proposition of Atkinson (1973) consists to use the coefficients of nutation in space referred to the $G z$ axis. It seems that this method remains the simplest and the most satisfying one in the case of an elastic Earth and in the case of a more complete Earth's model.

REFERENCES

Atkinson,R.d'E.: 1973,Astr.J.78,pp.147-151.
Fedorov,Ye.P.: 1963,Nutation and Forced Motion of the Earth's Pole. Pergamon Press Ltd,Oxford,London,New-York,Paris.

Fedorov,Ye.P.: 1977, to be published in the Proceedings of the IAU Symposium $n^{\circ} 78$.

Jeffreys,H., apd Vicente,R.O.: 1957,Mon.Not.R.astr.Soc. 117, pp. 142-161.
Jeffreys,H.: 1959, Mon.Not.R. astr.Soc. 119, pp.75-80.
Kinoshita,H.: 1977, Celest.Mech.15,pp.277-362.
Mc Carthy,D.: 1976, Astr.J. 81,pp.482-484.
Mc Clure,P.: 1973,GSFCG report X 592-73-259.
Poincaré, M.H.: 1910 , Bull.astr.Paris $27, \mathrm{pp} .321$ - 357 .
Woolard,E.W.: 1953, Astr.Pap.Amer.Eph.Naut.Almanac 15, 1, pp. 1-165.

